
15/10/2009 Alfio Lazzaro 1

  What you will heard in this lecture:
  Parallel implementations for High Performance Computing (HPC)
  Basic elements of Message-Passing Interface (MPI)
  Basic MPI functions: point-to-point and collective communications
  Examples

  What you will NOT heard in this lecture:
  A complete list of all MPI functions
  Advanced use of MPI

  Note: this is NOT an alternative to a book on MPI!
 Get your hands dirty is the best way to understand MPI!

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Alfio Lazzaro: Introduction to
“Message-Passing Interface”

References

  Books:
  “Using MPI”, Gropp, Lusk and Skjellum,

http://www.amazon.com/Using-MPI-Programming-Engineering-
Computation/dp/0262571323

  “Using MPI-2”, Gropp, Lusk and Thakur,
http://www.amazon.com/Using-MPI-2-Scientific-Engineering-
Computation/dp/0262571331

  Online tutorials:
  http://www.llnl.gov/computing/tutorials/mpi/
  http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiintro/

index.htm
  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html

15/10/2009 Alfio Lazzaro 2

INTRODUCTION

15/10/2009 Alfio Lazzaro 3

Parallel computing on clusters
  Current steady trend about high performance

architectures is to build large clusters of
symmetric multiprocessing (SMP) nodes with
distributed memory
  Several nodes connected with high-speed networks

(Gigabit Ethernet, InfiniBand, Myrinet,…)
  Each node has several CPUs (multi-cores/multi-

sockets), with large shared memory
  Hybrid of distributed and shared memory

programming is possible, but still not well
exploited
  Usually only distributed memory paradigm is used on

clusters, even for workers of the same node
15/10/2009 Alfio Lazzaro 4

Key Factors
  Parallelism on clusters achieved with exchange of

messages between the computational nodes (workers),
using network system
  Synchronization of the messages
  Low overhead in the communications
  Fast network connections, using particular topologies

  Keep in mind that latency in the network communications
is O(10) microseconds for 1 KByte message (for
reference: main memory latency is O(0.1) microseconds,
disk latency O(10) microseconds)

  Require development of particular algorithms that keep
low the number of communications and that are
optimized for the hardware

15/10/2009 Alfio Lazzaro 5

Top500 (http://www.top500.org)

  Ranking of the 500 most powerful known computer
systems in the world

  First position (June 2009):
  IBM Roadrunner (@ LANL, USA): 12,960 IBM PowerXCell 8i

(9 cores) and 6,480 AMD Opteron dual-core processors
  122,400 computing cores
  3,240 nodes, interconnected via InfiniBand (16 Gbit/s)
  1,105 petaflops (first system to reach petaflops scale)
  444.94 megaflops per Watt (2.35 MW total)

  Note:
  LINPACK benchmark (linear algebra) to set the performance
  For reference: i7 @ 3.2 GHz has about 51 gigaflops

15/10/2009 Alfio Lazzaro 6

Parallel paradigms for clusters

  Parallel computing types:
  SPMD: Same program, different data
  MIMD: Different programs, different data
  Essentially they are the same because any MIMD can

be made SPMD
  Communications for data exchange between

workers:
  Cooperative: all parties agree to transfer data
  One sided: one worker performs transfer of data

15/10/2009 Alfio Lazzaro 7

Data exchange
  Cooperative:

  Each send/receive MUST
have a corresponding receive/
send
  Point-to-point: message

passing between two, and
only two, different MPI tasks.
One task is performing a send
operation and the other task
is performing a matching
receive operation

  Collective: involve all MPI
tasks: reduction, broadcast,
scatter/gather, all to all.

15/10/2009 Alfio Lazzaro 8

Worker 1

memory

data
Network

Worker 1

memory

data

Worker 2

memory
data

Worker n

memory
data

…

Worker 2

memory

data

Point-to-Point

Collective

Data exchange

  One-sided:
  Direct access to the memory

of another worker
  Include shared memory

operations (put/get) and
remote accumulate
operations.

15/10/2009 Alfio Lazzaro 9

Worker 1

memory

data
Network

Worker 2

memory

data

One-sided: Put

Worker 1

memory

data
Network

Worker 2

memory

data

One-sided: Get

MESSAGE-PASSING
INTERFACE (MPI)

15/10/2009 Alfio Lazzaro 10

What is MPI (http://www.mpi-forum.org)
  MPI is not a “complete” standard, but

  It is a specification for APIs that allow many workers to
communicate (distributed memory system)
  It guarantees the portability for almost every distributed

memory architecture

  It provides a language-independent communication
protocol
  Bindings for Fortran, C, C++, Java (and correlated languages)

  Both cooperative (point-to-point and collective) and
one-sided communications are supported

  Several implementations, depending on the hardware
(mainly developed by cluster vendors)
  It guarantees the best performance on a specific hardware

15/10/2009 Alfio Lazzaro 11

MPI Implementations
  Different implementations:

  MPICH: http://www.mcs.anl.gov/research/projects/mpich2
  Open MPI: http://www.open-mpi.org
  custom MPI implementation for specific clusters (Cray, IBM,…)

and networks
  commercial implementations from HP, Intel, Microsoft…

  Each implementation decides the low-level treating of
the data, depending of the hardware, in order to have the
best possible performances (see backup slides for some
examples)
  Transparent to the user
  Different performance (and results) depending on the

implementation: be aware of your MPI implementation!

15/10/2009 Alfio Lazzaro 12

MPI-1 & MPI-2 Specifications
  Two versions of MPI currently used:

  MPI-1 (version 1.3)
  First draft in 1994
  Cooperative data exchange and static runtime environment
  About 128 functions

  MPI-2 (version 2.2)
  includes new features such as parallel I/O, dynamic runtime

environment and one-sided data exchange
  over 500 functions

  NOTE: MPI-2 is an “extension” of the MPI-1 functionality,
although some functions have been deprecated
  Both versions are used
  MPI-1.3 programs still work under MPI implementations

compliant with the MPI-2 standard

15/10/2009 Alfio Lazzaro 13

Caveats of this lecture
  We will focus on MPI-1 functions

  The majority of problems can be solved using
cooperative data exchange

  No need to know all functions
  Basically only about 20 functions are used in usual problems

  We will not take care of shared memory on the
single node

  We will consider only MPI functions that are
implicitly synchronized in the data communication

  We will use the C++ bindings of the functions
  Fortran and C syntaxes are more or less similar

15/10/2009 Alfio Lazzaro 14

MPI PROGRAMS

15/10/2009 Alfio Lazzaro 15

MPI program structure

15/10/2009 Alfio Lazzaro 16

  Only one program is written
  by default, every line of the code

is executed by each worker
  For example, if the code

contains float v = 0;
 each worker will locally
creates a variable and
assigns the value

  Specific part of the code to be
executed by specific workers
must be declared inside an if
statement

 float v;
 if (workerID<3) v = 2.;
 else v = 4.;
 Here workerID identifies each
worker

The “Hello World” example
#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{
 MPI::Init(); // MPI Initialization
 int workerID = MPI::COMM_WORLD.Get_rank();
 int nWorkers = MPI::COMM_WORLD.Get_size();

 std::cout << "Hello world! I'm the worker " << workerID
 << " of " << nWorkers << " workers." << std::endl;

 MPI::Finalize(); // MPI Finalization

 return 0;

}

15/10/2009 Alfio Lazzaro 17

Compile and execute
  MPI installs few wrappers for the compilation, depending

on the language
  mpic++ mpicc mpicxx mpif77 mpif90
  The wrappers uses the normal compilers (GNU, Intel, PGA,…)

  They allow to use the correct MPI includes and library
  You can specify the normal compiler parameters:
 mpic++ -O2 helloworld.cxx -o helloworld

  To execute, you need the mpirun wrapper:
 mpirun -np 10 ./helloworld

  Note that the number of processors used is specified in the
command line. It cannot be changed (static) during the execution
(MPI-1 specification; MPI-2 allows a dynamic number)

15/10/2009 Alfio Lazzaro 18

“Hello World” output
  The stdout/stdin/stderr are in common for the

workers
 helloworld $ mpirun -np 10 ./helloworld
 Hello world! I'm the worker 0 of 10 workers.
 Hello world! I'm the worker 1 of 10 workers.
 Hello world! I'm the worker 2 of 10 workers.
 Hello world! I'm the worker 6 of 10 workers.
 Hello world! I'm the worker 3 of 10 workers.
 Hello world! I'm the worker 4 of 10 workers.
 Hello world! I'm the worker 5 of 10 workers.
 Hello world! I'm the worker 7 of 10 workers.
 Hello world! I'm the worker 8 of 10 workers.
 Hello world! I'm the worker 9 of 10 workers.
 helloworld $

15/10/2009 Alfio Lazzaro 19

Init and Finalize operations
  void MPI::Init()

  All MPI functions MUST be used after this function
  It can be called just one time in the program
  Create the default communicator, called MPI::COMM_WORLD
  Assign a rank/identifier to each worker

  The rank is an integer value, from 0 to n–1 workers

  void MPI::Finalize()
  Close and clean up all MPI states
  After this function, no other MPI functions (even MPI::Init())

can be called
  The user MUST ensure that all pending communications

involving a worker complete before the finalization

15/10/2009 Alfio Lazzaro 20

Communicators
  The communicator is the basic MPI object which connects groups of

workers in the MPI session
  MPI::COMM_WORLD is the global communicator which collects

all workers, declared by the MPI::Init()
  Within each communicator each contained worker has an

independent identifier and the contained workers are arranged in
a topology

  In general, MPI functions must specify their communicator
  int MPI::Comm::Get_rank(): gives the identifier of the worker
  int MPI::Comm::Get_size(): gives the total number of workers

  Different communicators can be defined inside an MPI session, with
different topologies and subset of workers
  Useful for specific operations with regards a set of workers

In this lecture we will use only MPI::COMM_WORLD

15/10/2009 Alfio Lazzaro 21

MPI COMMUNICATIONS

15/10/2009 Alfio Lazzaro 22

Blocking/non-blocking communications
  Blocking functions will only “return” after the data is safely

delivered (from a send to a receive)
  They require synchronization between send and receive:

  A blocking send can be asynchronous if a system buffer is used
to hold the data for eventual delivery to the receive

  A blocking send can be synchronous which means there is
handshaking occurring with the receive task to confirm a safe send

  A blocking receive only “returns” after the data has arrived and is
ready for use by the program (must be synchronous)

15/10/2009 Alfio Lazzaro 23

Blocking/non-blocking communications

  Blocking communications are used for programs where
there is a good load balance between workers
  Speed-up based on the computation to communication ratio

  Non-blocking functions will “return” almost immediately,
without any synchronization
  can be unsafe in case of multiple communications
  primarily used to overlap computation with communication and

exploit possible performance gains

  Not described in this lecture (see backup slides for
more details)

15/10/2009 Alfio Lazzaro 24

Point-to-Point communication functions
  Blocking asynchronous send/receive

  void MPI::COMM_WORLD.Send(buffer,count,datatype,dest,tag)
  void MPI::COMM_WORLD.Recv(buffer,count,datatype,source,tag)

  Parameters
  const void* buffer: local variable in the worker used for the

communication. It can be a vector (e.g. int buffer[10])
  const Datatype& datatype: basic element type of buffer

  MPI::CHAR, MPI::INT, MPI::FLOAT, MPI::DOUBLE,…
  int count: number of basic elements to move, i.e. dimension of
buffer (e.g. for int buffer[10], count is 10)

  int dest/source: ID of destination/source worker for send/receive
  int tag: Arbitrary non-negative integer assigned to uniquely identify

a message. Send/receive operations should match message tags. For
a receive operation, the wild card MPI::ANY_TAG can be used to
receive any message regardless of its tag

15/10/2009 Alfio Lazzaro 25

Example: simple exchange of values

15/10/2009 Alfio Lazzaro 26

For n Workers:

•  Worker 0: send to Worker n – 1, receive from Worker n – 1
•  Worker 1: send to Worker n – 2, receive from Worker n – 2
•  …
•  Worker n – 2: send to Worker 1, receive from Worker 1
•  Worker n – 1: send to Worker 0, receive from Worker 0

Example: 5 workers

W0 W1 W2 W3 W4

#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{

 MPI::Init();
 int workerID = MPI::COMM_WORLD.Get_rank();
 int nWorkers = MPI::COMM_WORLD.Get_size();

 unsigned int tag(0);
 int sBuffer = workerID+1000; // value to send
 int rBuffer; // value to receive
 int destWorkerID = nWorkers-workerID-1;

 MPI::COMM_WORLD.Send(&sBuffer,1,MPI::INT,destWorkerID,tag);
 MPI::COMM_WORLD.Recv(&rBuffer,1,MPI::INT,destWorkerID,tag);

 std::cout << "I'm the worker " << workerID << "/" << nWorkers << ". "
 << "Sending " << sBuffer << " to worker " << destWorkerID << ". "
 << "Receiving " << rBuffer << " from worker "
 << destWorkerID << "." << std::endl;

 MPI::Finalize();

 return 0;
}

15/10/2009 Alfio Lazzaro 27

Example: simple exchange of values

15/10/2009 Alfio Lazzaro 28

  Using the MPE library:
http://www.mcs.anl.gov/research/projects/perfvis/

Collective communications
  Involve communication between all processes in a

specific communicator (I omit MPI::COMM_WORLD.
before the function, i.e. MPI::COMM_WORLD.Bcast)
  Bcast: takes same data from one specific node (root) and sends

that message to all processes (broadcast)
  Reduce: takes data from all processes, performs a user-chosen

operation, and store the results on one individual node
  Scatter: distributes distinct messages from a root to each

processes in the group
  Gather: Gathers distinct messages from each process in the

group to a root (inverse of Scatter operation)
  “All” operations: Allreduce, Alltoall, Allgather

  Only blocking communications with synchronization
  Do not take message tag arguments

  Optimized, involving far less function calls
15/10/2009 Alfio Lazzaro 29

Collective communications
W0 A
W1

W2

15/10/2009 Alfio Lazzaro 30

W0 A
W1 A
W2 A

Broadcast

W0 A0 A1 A2
W1

W2

W0 A0
W1 A1
W2 A2

Scatter

Gather

W0 A0
W1 B0
W2 C0

W0 A0 B0 C0
W1 A0 B0 C0
W2 A0 B0 C0

All gather

W0 A0 A1 A2
W1 B0 B1 B2
W2 C0 C1 C2

W0 A0 B0 C0
W1 A1 B1 C1
W2 A2 B2 C2

All to All

#include "mpi.h"
#include <iostream>

int main(int argc, char* argv[])
{
 const int DIM = 3; // matrix and vector dimension
 const int ROOT = 0; // ROOT index (master)

 int A[DIM][DIM] = {0}, b[DIM] = {0};

 MPI::Init();
 int myID = MPI::COMM_WORLD.Get_rank();

 if (myID==ROOT) // Fill the vector, only by the root
 for (int i = 0; i<DIM; i++)
 b[i] = DIM-i; // some calculation

 // Broadcast the vector from ROOT to all workers
 MPI::COMM_WORLD.Bcast(b,DIM,MPI::INT,ROOT);

 // Output of the vector from each worker
 // skip...

15/10/2009 Alfio Lazzaro 31

 // Do some calculations...
 int sum = 0; // local value
 for (int i = 0; i<DIM; i++) {
 b[i] *= myID+1; // change the local values of b
 sum += b[i];
 }

 // Make the reduce, results only in root
 int max(-1);
 MPI::COMM_WORLD.Reduce(&sum,&max,1,MPI::INT,
 MPI::MAX,ROOT);

 // Insert all vectors in the matrix of each worker
 MPI::COMM_WORLD.Allgather(b,DIM,MPI::INT,
 A,DIM,MPI::INT);

 // Output of max and the matrix from each worker
 // skip...

 MPI::Finalize();
 return 0;
}

15/10/2009 Alfio Lazzaro 32

Complex MPI functions

  If you want to do something complicated, take a
look in the MPI references. You can find a
specific MPI function which does the work for
you (doing specific optimization of the code)
  Essentially most of the functions that I didn’t mention

in this lecture are optimized combinations of basic
functions

  Full lists at:
  MPI-1: http://www.mpi-forum.org/docs/mpi-11-html/node182.html
  MPI-2: http://www.mpi-forum.org/docs/mpi-20-html/node306.html

15/10/2009 Alfio Lazzaro 33

References

  Books:
  “Using MPI”, Gropp, Lusk and Skjellum,

http://www.amazon.com/Using-MPI-Programming-Engineering-
Computation/dp/0262571323

  “Using MPI-2”, Gropp, Lusk and Thakur,
http://www.amazon.com/Using-MPI-2-Scientific-Engineering-
Computation/dp/0262571331

  Online tutorials:
  http://www.llnl.gov/computing/tutorials/mpi/
  http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiintro/

index.htm
  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html

15/10/2009 Alfio Lazzaro 34

Backup Slides
C++/C/Fortran Syntax differences
Examples of MPI functions implementation
Non-blocking communications
Libraries based on MPI
Debugging
Profiling

15/10/2009 Alfio Lazzaro 35

C++/C/Fortran Syntax differences

  Example: the function for the MPI initialization
  C++: void MPI::Init(int& argc, char**& argv)
  C: int MPI_Init(int *argc, char ***argv)
  Fortran: call MPI_INIT(ierror)

  Note:
  In case of error in each MPI function:

  C++ throw an exception
  C return value of the function is reserved for the error
  Fortran requires a specific parameter for the error value

  C++ uses the namespace MPI::, C and Fortran do not
  C/C++ names are case sensitive, Fortran names are not

15/10/2009 Alfio Lazzaro 36

Examples of MPI functions implementation
  Data buffering:

  Each send operation must match a receive operation, usually
with some sort of synchronization

  But what happens if the two tasks are out of synchronization?
  Typically, a system buffer area is reserved to hold data in transit
  Not specified by the standard, but from the particular MPI

implementation

15/10/2009 Alfio Lazzaro 37

Network

Examples of MPI functions implementation
  Collective Computation (reductions)

  One worker of the group collects data from the other workers and
performs an operation (add, multiply, etc.) on that data

  MPI provides a particular function for that: MPI::Reduce
  Different possible implementations, for examples:

  One worker reduce
  All workers send their data to W0

  Only W0 does the reduction operation
  Tree-based reduce

  Several partial operations
  Final result in W0

15/10/2009 Alfio Lazzaro 38

W0 W1 W2 Wn
…

W0 W1

W0

W2 W3

W2

W0

Wn-1 Wn

Wn-1

…

W0

Wn/2

Wn/2

Wn/2 Wn/2+1
…

Examples of MPI functions implementation
  Best performance on the reduction depends on the

hardware, for example the topology of the network
  Examples:

  Note: Possible different results due to rounding
Bottom Line: be aware of your MPI implementation!

  Other details at
https://computing.llnl.gov/tutorials/mpi_performance/

15/10/2009 Alfio Lazzaro 39

Star network topology:
good for one worker reduce

Tree network topology:
good tree-based reduce

Non-blocking communications
  Send and receive will “return” almost immediately

  Basically do not wait for any communication to complete
  Communications will be completed when possible –

user can not predict when that will happen
  Non-blocking communications can be unsafe in

case of multiple communications
  MPI guarantees that messages will not overtake each

other (order is respected)
  Only point-to-point communications can be non-

blocking
  Non-blocking communications are primarily used

to overlap computation with communication and
exploit possible performance gains

15/10/2009 Alfio Lazzaro 40

Non-blocking communications
  Send/receive functions:

  void MPI::COMM_WORLD.Isend(buffer,count,datatype,dest,tag)
  void MPI::COMM_WORLD.Irecv(buffer,count,datatype,source,tag)

  Parameters (same as blocking functions)
  const void* buffer: local variable in the worker used for the

communication. It can be a vector (e.g. int buffer[10])
  const Datatype& datatype: basic element type of buffer

  MPI::CHAR, MPI::INT, MPI::FLOAT, MPI::DOUBLE,…
  int count: number of basic elements to move, i.e. dimension of
buffer (e.g. for int buffer[10], count is 10)

  int dest/source: ID of destination/source worker for send/receive
  int tag: Arbitrary non-negative integer assigned to uniquely identify

a message. Send/receive operations should match message tags. For
a receive operation, the wild card MPI::ANY_TAG can be used to
receive any message regardless of its tag

15/10/2009 Alfio Lazzaro 41

Libraries based on MPI
  There are different libraries, communally used in

HPC, which are based on MPI
  ScaLAPACK: http://www.netlib.org/scalapack

  Scalable package based on LAPACK (Linear Algebra
PACKage)

  Routines for numerical algebra, such as solution of linear
systems of equations, matrix inversion, full-rank linear least
squares problems

  SPRNG: http://sprng.cs.fsu.edu/
  Scalable package for parallel pseudo random number

generation
  This library optimize the random generation in parallel, for

example for Monte Carlo studies

15/10/2009 Alfio Lazzaro 42

Debugging
  Debugging is a pain for a sequential application,

even more complicated for a parallel shared-
memory application, and really a pain for
distributed-memory application…
  TotalView: http://www.totalviewtech.com

  commercial-grade portable debugger for parallel and
multithreaded programs.

  Debugging even if you are running on multiple machines
  Tutorial: https://computing.llnl.gov/tutorials/totalview/

  The OpenMPI site has a great FAQ on MPI debugging
  http://www.open-mpi.org/faq/?category=debugging

15/10/2009 Alfio Lazzaro 43

Profiling
  A good tool for profiling is TAU

  http://www.cs.uoregon.edu/research/tau/home.php
  It provides several GUI applications to see speed-up and scalability

  Other details at
https://computing.llnl.gov/tutorials/performance_tools/

15/10/2009 Alfio Lazzaro 44

