
First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Exercise on Parallelization

Caveats: what I suggest here is my way to
proceed, but I’m far to be an expert of

parallelization!

So, of course, it is possible to better…

15/10/2009 ESC09, Exercise Session 1

When we want to parallelize
  Reduction of the wall-time: we want to

achieve better performance, defined as
(results response/execution) times

  Memory problem: large data sample, so we
want to split in different sub-samples

  Remember the two strategies:
  SPMD: Same program, different data
  MIMD: Different programs, different data

15/10/2009 ESC09, Exercise Session 2

Typical problem suitable for parallelization

  The problem can be broken down into subparts:
  Each subpart is independent of the others
  No communication is required, except to split up the problem and

combine the final results
  Ex: Monte-Carlo simulations

  Regular and Synchronous Problems:
  Same instruction set (regular algorithm) applied to all data
  Synchronous communication (or close to): each processor

finishes its task at the same time
  Local (neighbor to neighbor) and collective (combine final results)

communication
  Ex: Algebra (matrix-vector products), Fast Fourier transforms

15/10/2009 ESC09, Exercise Session 3

Before parallelization
  Parallelization is not the first solution when your

program is slow
  Look if you can improve the performance improving

the code
  Sometimes compiler optimizations can make the

difference (and they do the work for you!)
  Try to understand if there are better implementations

of your problem (see our example)
  Do not re-invent the wheel

  Use parallel libraries and look if there are already similar
parallel implementations

  Remember that parallel implementations are more
difficult to debug than serial ones

15/10/2009 ESC09, Exercise Session 4

Parallelization Suggestions
  General Law: THINK PARALLLEL!

  Start to write your program directly thinking
parallel implementations
  Can be challenging for beginners

  Write a serial version of the code and then
move to parallelization
  Good for beginners (use serial as reference)
  Anyway it is wasting time! It can be not so

straightforward to move from a serial to a parallel
implementation of the code

  So, again, THINK PARALLLEL
15/10/2009 ESC09, Exercise Session 5

Real-life case
  Usually we start to think in parallel when our

serial implementations are too slow (or in
general we want to achieve better results
response/execution times)
  In this case we start with a serial implementation

(or in general we “inherit” the code from previous
users)

  Worst situation: sometimes it can be useful to
write the code from scratch (when convenient)
  Many complex serial code implementations are strictly

serial, very difficult to parallelize (no thread-safe,
complex data structure,…)

15/10/2009 ESC09, Exercise Session 6

More practical suggestions (1)
  Either if you are writing a new program or you

have a serial implementation:
  Understand which part of the code is useful to

parallelize
  Understand your data structure

  Which data you want to share, which data are private

  Consider the communications and synchronizations
  Keep low the communication-time/calculation-time

  Start with a simpler parallel implementation, for
example reducing the data structure

  Each parallel implementation MUST have the
possibility to run in serial (a single process)
  Make sure that when run in parallel it gives the same results

15/10/2009 ESC09, Exercise Session 7

More practical suggestions (2)
  Remember to balance the load between the processes

  Final time is given by the slowest process!

  Scalability:
  Depends on your problem, usually on data decomposition

  Ex. a parallelization of a simulation of 10 particles, you can have a
limit of 10 processors

  Speed-up:
  Do not expect to run a program of 1 week in 1 second!
  Remember the Amdahl’s Law:

 S → speedup
 P → portion of code which is parallelized
 N → number of simultaneous process

  Need to find good algorithms to be parallelized!

15/10/2009 ESC09, Exercise Session 8

Amdahl’s Law

15/10/2009 ESC09, Exercise Session 9

The exercise
  Simulation of N interacting particles in a 1D box

  Example from Par Lab Boot Camp
http://www.cs.berkeley.edu/~volkov/cs267.sp09/hw2
  Short-range interaction

  Common simulation problem
  Same implementation can be applied in several other

cases
15/10/2009 ESC09, Exercise Session 10

How to proceed
  Copy the directory

 /nfsmaster/innocente/parallel
 in your area

  Inside this directory you find a README.txt file
  3 proposed serial implementations (see corresponding

directories)
  Make copies of the serial.cxx, renaming in openmp.cxx,

mpi.cxx, and thread.cxx
  Look at the comments inside the file to understand where to

apply parallelization (essentially require modifications only inside
these files)

  You find all “solutions” in our lectures, but you can look in the
web or ask me to find better solutions

15/10/2009 ESC09, Exercise Session 11

case1
  Compile the code with

 make serial
  Run ./serial –h

Options:

-h to see this help

-d draw the particles

-n <int> to set the number of particles

-o <filename> to specify the output file name

15/10/2009 ESC09, Exercise Session 12

case1
  Basically two loops

 for (int i=0; i<N; i++)
 for (int j=0; j<N j++)

 // interaction between [i, j]

 Example (serial execution):
 N = 1000 ---> 5.49 seconds
 N = 500 ---> 1.38 seconds ---> x3.98
 N = 200 ---> 0.22 seconds ---> x24.95

 The parallel implementation in this case is easy...
 Example (OpenMP)
 P = 2, N = 1000 ---> 2.78 seconds ---> x1.97
 P = 3, N = 1000 ---> 1.86 seconds ---> x2.95
 P = 4, N = 1000 ---> 1.40 seconds ---> x3.92
 P = 8, N = 1000 ---> 0.72 seconds ---> x7.62

15/10/2009 ESC09, Exercise Session 13

SCALE as N2!!!

SCALE as P processors

case2
  Note that the interaction between B and A is

the opposite of between A and B
  We can calculate an half of the interactions

for (int i=0; i<N-1; i++)
 for (int j=i+1; j<N j++)
 // interaction betwen [i, j] and [j, i]

 Example (serial execution):
 N = 1000 ---> 2.66 seconds ---> x2.06
 N = 500 ---> 0.70 seconds ---> x7.84
 N = 200 ---> 0.11 seconds ---> 49.91x

Requires some attention to avoid race conditions

15/10/2009 ESC09, Exercise Session 14

SCALE as N2!!!

case3
  How can we scale as N (not N2)?

15/10/2009 ESC09, Exercise Session 15

case3
  How can we scale as N (not N2)?

  Hint: remember that we have a short-range
interaction, i.e. do not need interaction between all
particles

15/10/2009 ESC09, Exercise Session 16

case3
  How can we scale as N (not N2)?

  Hint: remember that we have a short-range
interaction, i.e. do not need interaction between all
particles

15/10/2009 ESC09, Exercise Session 17

Do a mesh (decomposition
of the data sample), where
the size of the cells is the
range of the interaction

case3
  How can we scale as N (not N2)?

  Hint: remember that we have a short-range
interaction, i.e. do not need interaction between all
particles

15/10/2009 ESC09, Exercise Session 18

Loop over the cells.
For each cell, loop over his
particles and make the
interactions with the
particles of the neighboring
cells

case3
  How can we scale as N (not N2)?

  Hint: remember that we have a short-range
interaction, i.e. do not need interaction between all
particles

15/10/2009 ESC09, Exercise Session 19

What do you expect as
speed-up for the serial
implementation?

case3
 N = 1000 ---> 0.19 seconds ---> x28.89
 N = 2000 ---> 0.39 seconds ---> x14.08
 N = 4000 ---> 0.79 seconds ---> x6.95
Better performance are still possible…

  Decomposition problem are common in
many problems

  You can split the data over the processors
  To have a good balance you can do an adaptive

mesh (or more complex adaptive mesh
refinement)

15/10/2009 ESC09, Exercise Session 20

SCALE as N

15/10/2009 ESC09, Exercise Session 21

  Galaxy formation (example from http://
www.isgtw.org/?pid=1001250)
  a total of about one billion individual grid cells
  adaptive mesh refinement

The 3D domain (2 billion light years of side).
Colors represent the density of the gas

And now enjoy the exercise!

15/10/2009 ESC09, Exercise Session 22

