First INFN International School on Architectures, tools and methodologies for /)
w developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009 L/

Software Physical Design

Pere Mato (CERN)

£5209
Outline

» Physical design concepts

» Software development model

» Packaging

» Keeping dependencies under control

» Monitoring and maintaining the software
organization

Software Physical Design, P. Mato/CERN 12/10/09

8009
Physical Design Concepts

» Large-scale software development requires more
than just logical design issues

- Distribution of logical entities (classes, functions, etc.) on
physical entities (files, directories, etc.)

> The physical design is the skeleton of the system
» The quality of physical design dictates from the
cost of maintenance to run-time performance
- Additional the potential for re-use
» Component! is the fundamental unit of design
» The most important relationship is DependsOn

» Logical design addresses architectural issues;
o physical design addresses organizational issues

Software Physical Design, P. Mato/CERN 12/10/09

5009
Logical vs. Physical View

Logical View Physical View

Edgelter Nodelter
(0O C0)

Graph
® O

4 4

Software Physical Design, P. Mato/CERN 12/10/09

£5009
Components

» Logical design emphasizes interaction of classes
and functions in single seamless space
> |t can be viewed as a ‘sea’ of classes and functions

> It does not take into account physical entities such as files
and libraries

» A Component would embody a subset of logical
design that makes sense to exists as an
independent and cohesive unit

» Typically a Component would consists of a single
header file (.h) and implementation files (.cxx)

Software Physical Design, P. Mato/CERN 12/10/09

£8009
Packages

» Typically in HEP we put each C++ class in a
different file (naming convention & convenience)
- The Lakos’s Component concept does not fit completely.

» A Package is a collection of components organized
as a physically cohesive unit

» A Package is therefore a collection of Classes and
functions that implements some functionality

> Physically a Package is a collection of header files and
implementation files organized in some directory structure

» Package is the basic unit in the HEP software
development process

Software Physical Design, P. Mato/CERN 12/10/09

8009
Software Development Process

» How do you create software?
> Lots of parts: writing, documenting, testing,
sharing, fixing,...
> Usually done by lots of people
» The ‘Process’ is just a big word on how we

do this
> |t exists whether you talk about it or not

» Every software production unit (e.g. HEP
experiment) follows a process

- Sometimes undocumented
B - Tools to support the process

o

Software Physical Design, P. Mato/CERN 12/10/09

Package as Development Unit

» For convenience a Package is developed by one or
few developers
> Concurrent development is essential for large projects

» It is the basic development unit (at least in the HEP
communities)
> It can checked-out and versioned (tagged)

> |t can be tested
> It can be documented

» Example: ATLAS has ~3000 packages written
mainly in C++ and Python (also Fortran, Java, PERL,

Software Physical Design, P. Mato/CERN 12/10/09

£5009
Tools to support the ‘Process’

» Code repositories and versioning systems
> CVS, SubVersion

» Management of versions
- TagCollectors

» Build and configuration tools
- Make, CMT, SCRAM

» Nightly build systems

» Test frameworks
o CppUnit, QMTest

» Documentation
- Doxygen, Ixr, OpenGrog, ...

» Distribution
> Pacman, APT, ..

Software Physical Design, P. Mato/CERN 12/10/09

£8209
Physical Elements

» Public Header Files (.h)
» Private Header files (.h)
» Static Libraries (.a)

» Shareable Libraries (.s0)
o Linker Libraries

- Component Libraries (plug-ins, i.e. no symbols
exported)

> Other modules (e.g. Python extension modules)
» Programs
» Documentation Files (.html, .doc, ...)

Software Physical Design, P. Mato/CERN 12/10/09

10

£8209
Public Interface of a Package

» Everything declared in its set of public header
files

- Regardless of access privilege (public, protected,
private)

- Any change would cause a re-compilation of clients
» The less information is put on header files

the better

- Favor forward declarations of types used as
references and pointers

Software Physical Design, P. Mato/CERN 12/10/09

11

£8209
Major Design Rules

» Avoid definitions with external linkage in .cxx files
that are not declared explicitly in the
corresponding .h file

- Define exclusively what is declared (no backdoors)

» Avoid accessing a definition with external linkage
in another package via local declaration

> Include the .h file for that package

Software Physical Design, P. Mato/CERN 12/10/09

12

£5009
Typical Package Structure

packA
Version { vl virl v2
number
L gpackaroor |
cmt src packA | | doc win32 | | Linuxdbyx- - - ;31?:2-22
— /!
—
manager directory public include files binaries
contains the #include “packA/xxx.h”

requirements file

Software Physical Design, P. Mato/CERN 12/10/09

13

£8009

) Package Products

v

v

v

v Vv

Linker Libraries
- Are traditional libraries. They export a number of symbols
Component or plug-in libraries

> These libraries are loaded at run-time on demand by the
application (framework)

- Typically they do not export any symbol. In some cases a
single global one

Programs, Tests
> Either direct executables or plug-ins

Documentation

Additional framework files
- Configuration files, plugin databases, etc.

Software Physical Design, P. Mato/CERN 12/10/09

14

8009
Package Dependencies

» A package Y DependsOn a package X if X
is needed in order to compile or link Y

- Compile-time dependency if one or more .h files
in X are needed for compilation

> Link-time dependency if one or more libraries in
X are needed for linking

> Run-time dependency if a program/library in
package Y requires X for running
» In general compile-time dependency
implies link-time dependency and this
implies run-time dependency
- Templates defeats this general rule!

Software Physical Design, P. Mato/CERN

|

Y

J

ependsOn

J

12/10/09

15

£5009
Package Dependencies (2)

» A package defining a function will have a physical
dependency to any other package defining a type
used in the function

» The logical relationship HasA and IsA translates
into a physical dependency

» Dependencies limit
o flexibility
- ease of maintenance
> reuse of components or parts

» Dependency management tries to control
dependencies

Software Physical Design, P. Mato/CERN 12/10/09 16

Al
Packages Dependencies (3)

4 N

Software Physical Design, P. Mato/CERN 12/10/09

£5009
Compile-time dependencies

» Cyclic dependencies would prevent building the
package. End of story.

» Tools such as Doxygen allows to monitor
dependencies |

» Thinning header files will
speedup building process

» External include guards, or
redundant include guards,

were suggested by John Lakos | ™=~) h

#ifndef FILENAME_H_

Software Physical Design, P. Mato/CERN 12/10/09

sssssss

18

£5009
Link(Load)-time dependencies

» The use of dynamic libraries converts link-time
dependencies to load-time ones
- Static libraries are not in fashion nowadays

» Tools such |dd (depends.exe on Windows) allows to
monitor link dependencies

» Performance is strongly affected by the number
and the size of dependent libraries
> Interest to keep the them under control
» Reduce the number of needed libraries
> re—-packaging, re-engineering
» Remove unnecessary libraries
e, © Control package dependencies; use --as-needed flag

Software Physical Design, P. Mato/CERN 12/10/09 19

£5009
Compile and Link Times

» Compile and link times are unproductive

» In a project with N modules compile and link
time can grow like N2 (assuming every
package is tested) when dependencies are not
controlled

» Loss of productivity
» Long turnaround times — slow development

» Dependency management essential in large
orojects

Software Physical Design, P. Mato/CERN 12/10/09 20

£8009

~ Realistic Example

>>> |dd libMCEvent.so
libdl.s0.2 =>
libLHCbKernel.so =>
libPartPropLib.so =>
libGaudiKernel.so =>
libpthread.s0.0 =>
libGenVector.so =>
libstdc++.50.6 =>
libgcc_s.so0.1 =>
libc.s0.6 =>
libGaudiAlgLib.so =>
libm.so0.6 =>
libLHCbMathLib.so =>
libReflex.so =>
libboost_thread-gcc34-mt-1_39.s0.1.39.0 =>
libboost_system-gcc34-mt-1_39.s0.1.39.0 =>
libboost_filesystem-gcc34-mt-1_39.50.1.39.0

libCore.so =>
libCint.so =>
libGaudiUtilsLib.so =>
libboost_regex-gcc34-mt-1_39.50.1.39.0 =>
libgsl.s0.0 =>
libgslcblas.so.0 =>
librt.so.1 =>

» libMCEvent.so is a library
for MC event classes

> A priory it should not
depend on Boost, ROOT,
Math, GSL, etc.

» The problem is that it
depends on GaudiKernel
and others that these
depend on Boost, ROOT,
etc.

Software Physical Design, P. Mato/CERN 12/10/09 21

8009
Understanding Dependencies

» The 22 classes in
the MCEvent
package DependOn &~
only 4 packages LHCbKernel

» Only few
classes/functions of
these packages are
really needed

MCEvent

~3
PartPropLib

L &

GenVector

. These initial GaudiAlgLib J[GaudiUtilsLib LHCbMathLib
dependencies N
brings the rest

» Is this a real ROOT . GSL

GaudiKernel
problem? SRR

|

Software Physical Design, P. Mato/CERN 12/10/09 22

&£8009
Run-time dependencies

» These dependencies are due typically to the
plug-in mechanism, [Reflex] dictionary
loading, Python extension modules, etc.

> Frameworks make extensive use of run-time
dependencies

» Moving compile and link time dependencies
to run-time dependencies is not a bad
move
> Only needed functionality will be loaded

» Packaging and installation of ‘plug-ins’ is

=N O n —trivial

Software Physical Design, P. Mato/CERN 12/10/09

8009
Plugins

» At least three possibilities for packaging plug-ins
» (C) is the one that creates less coupling

» (A) and (B) forces a dependency between the library
and the framework

/ Library A m Library A Framework f Library A \
Plug-in | Package . Plug-in
[FIrDamlizwork J (A) (B) [Library A
ackage Library A
PI-in K j

I

Framework
Package

Library A

(C)

Software Physical Design, P. Mato/CERN 12/10/09

&09
Configuration Tools

» To manage the the dependencies between
packages and to facilitate the building of
packages, experiments are using
configuration and build tools
- Remember ATLAS has ~3000 packages :-0
- CMT (ATLAS, LHCb), SCRAM (CMS), SRT (BaBar)

» These tools can typically
> Find inconsistencies
> Create include and library options
> Connect build constituents

o > Automation of the process

Software Physical Design, P. Mato/CERN 12/10/09

25

£5009
CMT

» Configuration Management Tool written
by C. Arnault (LAL, Orsay)

- It is based around the notion of Package
- Provides a set of fools for automation the
configuration and building packages

- A variety of products: libraries (linker, plugins),
executables, documentation, etc.

> It has been adopted by LHCb, ATLAS (other
experiments are also using it)

Software Physical Design, P. Mato/CERN 12/10/09

26

£5009

Using CMT

*What to build
‘How to build
Package dependencies

i

requirements

makefiles
DevStudio files

Building
tools

(compilers,
linkers,
IDEs)

._./
Libraries

&
Executables

Software Physical Desig\n,P.‘lVIaTO'/CER(12/10/09

27

£5009

CMT requirements file

Utilities/CxxFeatures
v2rl
ﬁﬁhﬁ“hg. -
MagneticField - Atlas;’ ti]lcy
v2rl / v2r
Extema]fCLH:EP EXt emamcm
v2rl v2rl

package MagneticField

author Laurent Chevalier <laurent@hep.saclay.cea.fr>
author Marc Virchaux <virchau@hep.saclay.cea.fr>

use AtlasPolicy vZ2rl
Mse CxxFeatures v2rl Utilities
use CLHEP v2Z2rl External

include dirs $(MAGNETICFIELDROOT) /MagneticField

branches MagneticField doc src test

Example from C.
Arnault (LAL and
Atlas)

Software Physical Design, P. Mato/CERN 12/10/09

28

£5009
Grouping Packages

» Managing and releasing many packages is complex
> Integrating and validating releases may take very long

» Some experiments are grouping ‘packages’ into

1 .)
projects _
« === Proposed but not yet implemented ! —
[’ [[

» A ‘project’ is basic
unit of release

} The Same Way Inner Detector |
packages facilitated \ 7
concurrent | ——— e
development; projects R

¥

facilitates concurrent
o integration and validation

ATLAS Project Structure

Software Physical Design, P. Mato/CERN 12/10/09 29

&09
Software Release

» Experiments do not release individual packages
> Each individual package is ‘tagged’ by developer
» Experiments release complete ‘projects’

- The release candidate of a project is made of a collection of
‘tags’ for each package that constitutes the project

> Tag collector tools helping here
» Obviously the release order is opposite to the
DependsOn relationship

> The version of the top-level project fixes the version of
each dependent project and each package within the
project

» Not all the software system needs to be released at

Software Physical Design, P. Mato/CERN 12/10/09

30

£5009

Package Levelization Techniques

s N O ™ [a j
a C

(Y

T T /¥
b < >
" o\ = [@ @j

» Example: avoid cyclic dependencies among
packages

Software Physical Design, P. Mato/CERN 12/10/09

31

£509
Tools to Check Dependencies

» Ignominy (L. Tuura)

i < Analysis Results

hpajuun

b i
43 naa =20
Anaphe 3.6.1 Dependency
Urrrreleray duta
Lsprrbny stainiz | Pt
abetm 1
Low | Wirnm scdy # | /] 43
Bitra detail ALl | Exloden | e [deiall I

L Ceowwrtriied; L Logizall; M Macmed Ls

B Snany Saly; PP PACKAGE Depetbotios
P [Pacloume Pruopees; O 0 Packaps Crigin

Asipaas Faiksges ol ek

Lannl 4. Tuarsy o b o ke 1y

T H ST " T 1 hin
¥ 5] Foan
ol] 17| 77 TLH]
L2
RS T R 3]] A3
i, i d A LREE 1]
5] ET i FTR T IR LE 23
[o] i) R T | 26
b7 15 - F o= TM i3
1= 13 11 £ Kl am 11
] T T L L Th
it L L] e I i

Software Physical Design, P. Mato/CERN 12/10/09

&0
lgnominy

%%‘l}(Dependency Analysis

4 Ignominy scans...

» Make dependency data produced by the compilers (*.d files)
» Source code for #includes (resolved against the ones actually seen)

» Shared library dependencies ("ldd” output)
» Defined and required symbols ("nm” output)

* And maps...

* Source code and binaries into packages
« #include dependencies into package dependencies
» Unresolved/defined symbols into package dependencies

€ And warns... about problems and ambiguities (e.g. multiply
defined symbols or dependent shared libraries not found)

Lol 4. Tomrdy b bt s L |

Produces a simple text file database for the dependency data

\ Software Physical Design, P. Mato/CERN 12/10/09

O kbl 0

33

8009
More Principles

» When adding a new component to a package, both
the logical and physical characteristics of the
component should be considered

» Minimizing the number and size of exported
header files enhances usability

» A [binary compatible] patch must not affect the
internal layout of any existing object (i.e. no
change in any header file)

=» Physical design is

Software Physical Design, P. Mato/CERN 12/10/09 34

£5909
Summary

» A large software system is organized as Classes
= Components = Packages = Projects
- Keep complexity under control
> Facilitating concurrent development

» Physical dependencies limits strongly the
performance and overall quality of the system

- Flexibility, ease of maintenance, reuse of components or
parts

» Tools to monitor and optimize dependencies are
essential

» The software architect is also responsible for the

__ physical design

Software Physical Design, P. Mato/CERN 12/10/09 35

£5009
References

» John Lakos, Large-Scale C++ Softare Design, Addison-
Wesley, 1996

Software Physical Design, P. Mato/CERN 12/10/09

36

