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� Physical design concepts

� Software development model

� Packaging

� Keeping dependencies under control

� Monitoring and maintaining the software 
organization 
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� Large-scale software development requires more 
than just logical design issues
◦ Distribution of logical entities (classes, functions, etc.) on 
physical entities (files, directories, etc.)

◦ The physical design is the skeleton of the system

� The quality of physical design dictates from the 
cost of maintenance to run-time performance 
◦ Additional the potential for re-use

� Component1 is the fundamental unit of design

� The most important relationship is DependsOn

� Logical design addresses architectural issues; 
physical design addresses organizational issues
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John Lakos, Large-Scale C++ Software design, Addison-Wesley, 1996
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� Logical design emphasizes interaction of classes 
and functions in single seamless space
◦ It can be viewed as a ‘sea’ of classes and functions

◦ It does not take into account physical entities such as files 
and libraries

� A Component would embody a subset of logical 
design that makes sense to exists as an 
independent and cohesive unit

� Typically a Component would consists of a single 
header file (.h) and  implementation files (.cxx)
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� Typically in HEP we put each C++ class in a 
different file (naming convention & convenience)
◦ The Lakos’s Component concept does not fit completely.

� A Package is a collection of components organized 
as a physically cohesive unit 

� A Package is therefore a collection of Classes and 
functions that implements some functionality
◦ Physically a Package is a collection of header files and 
implementation files organized in some directory structure 

� Package is the basic unit in the HEP software 
development process  
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� How do you create software?
◦ Lots of parts: writing, documenting, testing, 
sharing, fixing,…

◦ Usually done by lots of people

� The ‘Process’ is just a big word on how we 
do this
◦ It exists whether you talk about it or not

� Every software production unit (e.g. HEP 
experiment) follows a process
◦ Sometimes undocumented

◦ Tools to support the process   
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� For convenience a Package is developed by one or 
few developers
◦ Concurrent development is essential for large projects 

� It is the basic development unit (at least in the HEP 
communities)
◦ It can checked-out and versioned (tagged)

◦ It can be tested

◦ It can be documented

� Example: ATLAS has ~3000 packages written 
mainly in C++ and Python (also Fortran, Java, PERL, 
SQL)  
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� Code repositories and versioning systems

◦ CVS, SubVersion

� Management of versions

◦ TagCollectors

� Build and configuration tools

◦ Make, CMT, SCRAM

� Nightly build systems

� Test frameworks

◦ CppUnit, QMTest

� Documentation

◦ Doxygen, lxr, OpenGrog, …

� Distribution

◦ Pacman, APT, .. 
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� Public Header Files (.h)

� Private Header files (.h)

� Static Libraries (.a)

� Shareable Libraries (.so) 
◦ Linker Libraries

◦ Component Libraries (plug-ins, i.e. no symbols 
exported)

◦ Other modules (e.g. Python extension modules)

� Programs

� Documentation Files (.html, .doc, …)

12/10/09Software Physical Design,  P. Mato/CERN 10



� Everything declared in its set of public header 
files
◦ Regardless of access privilege (public, protected, 
private)

◦ Any change would cause a re-compilation of clients

� The less information is put on header files 
the better
◦ Favor forward declarations of types used as 
references and pointers
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� Avoid definitions with external linkage in .cxx files 
that are not declared explicitly in the 
corresponding .h file
◦ Define exclusively what is declared (no backdoors)

� Avoid accessing a definition with external linkage 
in another package via local declaration

◦ Include the .h file for that package
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� Linker Libraries
◦ Are traditional libraries. They export a number of symbols

� Component or plug-in libraries
◦ These libraries are loaded at run-time on demand by the 
application (framework)

◦ Typically they do not export any symbol. In some cases a 
single global one 

� Programs, Tests
◦ Either direct executables or plug-ins 

� Documentation

� Additional framework files
◦ Configuration files, plugin databases, etc. 
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� A package Y DependsOn a package X if X 
is needed in order to compile or link Y
◦ Compile-time dependency if one or more .h files 
in X are needed for compilation

◦ Link-time dependency if one or more libraries in 
X are needed for linking

◦ Run-time dependency if a program/library in 
package Y requires X for running

� In general compile-time dependency 
implies link-time dependency and this 
implies run-time dependency
◦ Templates defeats this general rule!

� The DependsOn relation is transitive
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� A package defining a function will have a physical 
dependency to any other package defining a type 
used in the function

� The logical relationship HasA and IsA translates 
into a physical dependency

� Dependencies limit
◦ flexibility

◦ ease of maintenance

◦ reuse of components or parts

� Dependency management tries to control 
dependencies 
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� Cyclic dependencies would prevent building the 
package. End of story.

� Tools such as Doxygen allows to monitor 
dependencies

� Thinning header files will
speedup building process

� External include guards, or
redundant include guards, 
were suggested by John Lakos
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#ifndef FILENAME_H_ �#include "Filename.h" �#endif // FILENAME_H_#ifndef FILENAME_H_ �#include "Filename.h" �#endif // FILENAME_H_



� The use of dynamic libraries converts link-time 
dependencies to load-time ones
◦ Static libraries are not in fashion nowadays

� Tools such ldd (depends.exe on Windows) allows to 
monitor link dependencies

� Performance is strongly affected by the number 
and the size of dependent libraries
◦ Interest to keep the them under control

� Reduce the number of needed libraries
◦ re-packaging, re-engineering

� Remove unnecessary libraries
◦ Control package dependencies; use --as-needed‬ flag 
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� Compile and link times are unproductive

� In a project with N modules compile and link 
time can grow like N2 (assuming every 
package is tested) when dependencies are not 
controlled

� Loss of productivity

� Long turnaround times → slow development

� Dependency management essential in large 
projects
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� libMCEvent.so is a library 
for MC event classes
◦ A priory it should not 
depend on Boost, ROOT, 
Math, GSL, etc.

� The problem is that it 
depends on GaudiKernel 
and others that these 
depend on Boost, ROOT, 
etc.  
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>>> ldd libMCEvent.so
libdl.so.2 =>
libLHCbKernel.so =>
libPartPropLib.so =>
libGaudiKernel.so => 
libpthread.so.0 => 
libGenVector.so => 
libstdc++.so.6 =>
libgcc_s.so.1 => 
libc.so.6 =>
libGaudiAlgLib.so =>
libm.so.6 =>
libLHCbMathLib.so => 
libReflex.so => 
libboost_thread-gcc34-mt-1_39.so.1.39.0 =>
libboost_system-gcc34-mt-1_39.so.1.39.0 => 
libboost_filesystem-gcc34-mt-1_39.so.1.39.0 

=>
libCore.so => 
libCint.so =>
libGaudiUtilsLib.so =>
libboost_regex-gcc34-mt-1_39.so.1.39.0 =>
libgsl.so.0 =>
libgslcblas.so.0 =>
librt.so.1 => 
libcrypt.so.1=>
libHist.so => l
libMatrix.so => 
libMathCore.so => 



� The 22 classes in 
the MCEvent 
package DependOn 
only 4 packages

� Only few 
classes/functions of 
these packages are 
really needed

� These initial 
dependencies 
brings the rest

� Is this a real 
problem?  
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� These dependencies are due typically to the 
plug-in mechanism, [Reflex] dictionary 
loading, Python extension modules, etc. 
◦ Frameworks make extensive use of run-time 
dependencies

� Moving compile and link time dependencies 
to run-time dependencies is not a bad 
move
◦ Only needed functionality will be loaded

� Packaging and installation of ‘plug-ins’ is 
non-trivial
◦

12/10/09Software Physical Design,  P. Mato/CERN 23



� At least three possibilities for packaging plug-ins

� (C) is the one that creates less coupling

� (A) and (B) forces a dependency between the library 
and the framework 
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� To manage the the dependencies between 
packages and to facilitate the building of 
packages, experiments are using 
configuration and build tools
◦ Remember ATLAS has ~3000 packages :-0

◦ CMT (ATLAS, LHCb), SCRAM (CMS), SRT (BaBar)

� These tools can typically
◦ Find inconsistencies

◦ Create include and library options

◦ Connect build constituents

� Automation of the process
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� Configuration Management Tool written 
by C. Arnault (LAL, Orsay)

◦ It is based around the notion of Package

◦ Provides a set of tools for automation the 
configuration and building packages

� A variety of products: libraries (linker, plugins), 
executables, documentation, etc.

◦ It has been adopted by LHCb, ATLAS (other 
experiments are also using it)
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CMTrequirements

codecodecodecodecode

CVS
repository

•What to build
•How to build 
•Package dependencies

makefiles
DevStudio files

Building
tools
(compilers, 
linkers, 
IDEs )

Libraries
& 
Executables
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� Managing and releasing many packages is complex
◦ Integrating and validating releases may take very long  

� Some experiments are grouping ‘packages’ into 
‘projects’

� A ‘project’ is basic
unit of release

� The same way 
packages facilitated
concurrent 
development; projects
facilitates concurrent 
integration and validation 
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� Experiments do not release individual packages
◦ Each individual package is ‘tagged’ by developer

� Experiments release complete ‘projects’
◦ The release candidate of a project is made of a collection of 
‘tags’ for each package that constitutes the project

◦ Tag collector tools helping here

� Obviously the release order is opposite to the 
DependsOn relationship
◦ The version of the top-level project fixes the version of 
each dependent project and each package within the 
project

� Not all the software system needs to be released at 
once 
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� Example: avoid cyclic dependencies among 
packages
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� Ignominy (L. Tuura)

12/10/09Software Physical Design,  P. Mato/CERN 32



12/10/09Software Physical Design,  P. Mato/CERN 33



� When adding a new component to a package, both 
the logical and physical characteristics of the 
component should be considered

� Minimizing the number and size of exported 
header files enhances usability

� A [binary compatible] patch must not affect the 
internal layout of any existing object (i.e. no 
change in any header file)

� Physical design is 
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� A large software system is organized as Classes 
�Components � Packages � Projects
◦ Keep complexity under control

◦ Facilitating concurrent development

� Physical dependencies limits strongly the 
performance and overall quality of the system
◦ Flexibility, ease of maintenance, reuse of components or 
parts

� Tools to monitor and optimize dependencies are 
essential

� The software architect is also responsible for the 
physical design   
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