
Pere Mato (CERN)

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

� Physical design concepts

� Software development model

� Packaging

� Keeping dependencies under control

� Monitoring and maintaining the software
organization

12/10/09Software Physical Design, P. Mato/CERN 2

� Large-scale software development requires more
than just logical design issues
◦ Distribution of logical entities (classes, functions, etc.) on
physical entities (files, directories, etc.)

◦ The physical design is the skeleton of the system

� The quality of physical design dictates from the
cost of maintenance to run-time performance
◦ Additional the potential for re-use

� Component1 is the fundamental unit of design

� The most important relationship is DependsOn

� Logical design addresses architectural issues;
physical design addresses organizational issues

12/10/09Software Physical Design, P. Mato/CERN 3

John Lakos, Large-Scale C++ Software design, Addison-Wesley, 1996

12/10/09Software Physical Design, P. Mato/CERN 4

Graph.cxx

EdgeIterEdgeIter

NodeNode

NodeIterNodeIter

GraphGraph

EdgeEdge

Graph.h includes

Physical ViewLogical View

� Logical design emphasizes interaction of classes
and functions in single seamless space
◦ It can be viewed as a ‘sea’ of classes and functions

◦ It does not take into account physical entities such as files
and libraries

� A Component would embody a subset of logical
design that makes sense to exists as an
independent and cohesive unit

� Typically a Component would consists of a single
header file (.h) and implementation files (.cxx)

12/10/09Software Physical Design, P. Mato/CERN 5

� Typically in HEP we put each C++ class in a
different file (naming convention & convenience)
◦ The Lakos’s Component concept does not fit completely.

� A Package is a collection of components organized
as a physically cohesive unit

� A Package is therefore a collection of Classes and
functions that implements some functionality
◦ Physically a Package is a collection of header files and
implementation files organized in some directory structure

� Package is the basic unit in the HEP software
development process

12/10/09Software Physical Design, P. Mato/CERN 6

� How do you create software?
◦ Lots of parts: writing, documenting, testing,
sharing, fixing,…

◦ Usually done by lots of people

� The ‘Process’ is just a big word on how we
do this
◦ It exists whether you talk about it or not

� Every software production unit (e.g. HEP
experiment) follows a process
◦ Sometimes undocumented

◦ Tools to support the process

12/10/09Software Physical Design, P. Mato/CERN 7

� For convenience a Package is developed by one or
few developers
◦ Concurrent development is essential for large projects

� It is the basic development unit (at least in the HEP
communities)
◦ It can checked-out and versioned (tagged)

◦ It can be tested

◦ It can be documented

� Example: ATLAS has ~3000 packages written
mainly in C++ and Python (also Fortran, Java, PERL,
SQL)

12/10/09Software Physical Design, P. Mato/CERN 8

� Code repositories and versioning systems

◦ CVS, SubVersion

� Management of versions

◦ TagCollectors

� Build and configuration tools

◦ Make, CMT, SCRAM

� Nightly build systems

� Test frameworks

◦ CppUnit, QMTest

� Documentation

◦ Doxygen, lxr, OpenGrog, …

� Distribution

◦ Pacman, APT, ..

12/10/09Software Physical Design, P. Mato/CERN 9

� Public Header Files (.h)

� Private Header files (.h)

� Static Libraries (.a)

� Shareable Libraries (.so)
◦ Linker Libraries

◦ Component Libraries (plug-ins, i.e. no symbols
exported)

◦ Other modules (e.g. Python extension modules)

� Programs

� Documentation Files (.html, .doc, …)

12/10/09Software Physical Design, P. Mato/CERN 10

� Everything declared in its set of public header
files
◦ Regardless of access privilege (public, protected,
private)

◦ Any change would cause a re-compilation of clients

� The less information is put on header files
the better
◦ Favor forward declarations of types used as
references and pointers

12/10/09Software Physical Design, P. Mato/CERN 11

� Avoid definitions with external linkage in .cxx files
that are not declared explicitly in the
corresponding .h file
◦ Define exclusively what is declared (no backdoors)

� Avoid accessing a definition with external linkage
in another package via local declaration

◦ Include the .h file for that package

12/10/09Software Physical Design, P. Mato/CERN 12

packA

v1 v1r1 v2

cmt src doc win32 Linuxdbx
i386-
linux22

packA

$PACKAROOT

Version
number

binariesmanager directory
contains the
requirements file

public include files
#include “packA/xxx.h”

. . .

12/10/09 13Software Physical Design, P. Mato/CERN

� Linker Libraries
◦ Are traditional libraries. They export a number of symbols

� Component or plug-in libraries
◦ These libraries are loaded at run-time on demand by the
application (framework)

◦ Typically they do not export any symbol. In some cases a
single global one

� Programs, Tests
◦ Either direct executables or plug-ins

� Documentation

� Additional framework files
◦ Configuration files, plugin databases, etc.

12/10/09Software Physical Design, P. Mato/CERN 14

� A package Y DependsOn a package X if X
is needed in order to compile or link Y
◦ Compile-time dependency if one or more .h files
in X are needed for compilation

◦ Link-time dependency if one or more libraries in
X are needed for linking

◦ Run-time dependency if a program/library in
package Y requires X for running

� In general compile-time dependency
implies link-time dependency and this
implies run-time dependency
◦ Templates defeats this general rule!

� The DependsOn relation is transitive

12/10/09Software Physical Design, P. Mato/CERN 15

YY

XX

DependsOn

� A package defining a function will have a physical
dependency to any other package defining a type
used in the function

� The logical relationship HasA and IsA translates
into a physical dependency

� Dependencies limit
◦ flexibility

◦ ease of maintenance

◦ reuse of components or parts

� Dependency management tries to control
dependencies

12/10/09Software Physical Design, P. Mato/CERN 16

12/10/09Software Physical Design, P. Mato/CERN 17

aa

bb cc

dd ee

ff

gg

ii

hh

jj

kk

oo nn

ll

mm

aa

bb cc

dd

ff

gg

ii

hh

jj

kk

oo nn

ll

mm

� Cyclic dependencies would prevent building the
package. End of story.

� Tools such as Doxygen allows to monitor
dependencies

� Thinning header files will
speedup building process

� External include guards, or
redundant include guards,
were suggested by John Lakos

12/10/09Software Physical Design, P. Mato/CERN 18

#ifndef FILENAME_H_ �#include "Filename.h" �#endif // FILENAME_H_#ifndef FILENAME_H_ �#include "Filename.h" �#endif // FILENAME_H_

� The use of dynamic libraries converts link-time
dependencies to load-time ones
◦ Static libraries are not in fashion nowadays

� Tools such ldd (depends.exe on Windows) allows to
monitor link dependencies

� Performance is strongly affected by the number
and the size of dependent libraries
◦ Interest to keep the them under control

� Reduce the number of needed libraries
◦ re-packaging, re-engineering

� Remove unnecessary libraries
◦ Control package dependencies; use --as-needed‬ flag

12/10/09Software Physical Design, P. Mato/CERN 19

� Compile and link times are unproductive

� In a project with N modules compile and link
time can grow like N2 (assuming every
package is tested) when dependencies are not
controlled

� Loss of productivity

� Long turnaround times → slow development

� Dependency management essential in large
projects

12/10/09 20Software Physical Design, P. Mato/CERN

� libMCEvent.so is a library
for MC event classes
◦ A priory it should not
depend on Boost, ROOT,
Math, GSL, etc.

� The problem is that it
depends on GaudiKernel
and others that these
depend on Boost, ROOT,
etc.

12/10/09Software Physical Design, P. Mato/CERN 21

>>> ldd libMCEvent.so
libdl.so.2 =>
libLHCbKernel.so =>
libPartPropLib.so =>
libGaudiKernel.so =>
libpthread.so.0 =>
libGenVector.so =>
libstdc++.so.6 =>
libgcc_s.so.1 =>
libc.so.6 =>
libGaudiAlgLib.so =>
libm.so.6 =>
libLHCbMathLib.so =>
libReflex.so =>
libboost_thread-gcc34-mt-1_39.so.1.39.0 =>
libboost_system-gcc34-mt-1_39.so.1.39.0 =>
libboost_filesystem-gcc34-mt-1_39.so.1.39.0

=>
libCore.so =>
libCint.so =>
libGaudiUtilsLib.so =>
libboost_regex-gcc34-mt-1_39.so.1.39.0 =>
libgsl.so.0 =>
libgslcblas.so.0 =>
librt.so.1 =>
libcrypt.so.1=>
libHist.so => l
libMatrix.so =>
libMathCore.so =>

� The 22 classes in
the MCEvent
package DependOn
only 4 packages

� Only few
classes/functions of
these packages are
really needed

� These initial
dependencies
brings the rest

� Is this a real
problem?

12/10/09Software Physical Design, P. Mato/CERN 22

MCEventMCEvent

LHCbKernelLHCbKernel PartPropLibPartPropLib

LHCbMathLibLHCbMathLib

GaudiKernelGaudiKernel

GaudiAlgLibGaudiAlgLib GaudiUtilsLibGaudiUtilsLib

ReflexReflexBoostBoost

ROOTROOT GSLGSL

GenVectorGenVector

� These dependencies are due typically to the
plug-in mechanism, [Reflex] dictionary
loading, Python extension modules, etc.
◦ Frameworks make extensive use of run-time
dependencies

� Moving compile and link time dependencies
to run-time dependencies is not a bad
move
◦ Only needed functionality will be loaded

� Packaging and installation of ‘plug-ins’ is
non-trivial
◦

12/10/09Software Physical Design, P. Mato/CERN 23

� At least three possibilities for packaging plug-ins

� (C) is the one that creates less coupling

� (A) and (B) forces a dependency between the library
and the framework

12/10/09Software Physical Design, P. Mato/CERN 24

Library A
Plug-in

Library A
Plug-in

Library ALibrary A

Framework
Package

Framework
Package

Library A
Plug-in

Library A
Plug-in

Library ALibrary A

Framework
Package

Framework
Package

Library A
Plug-in

Library A
Plug-in

Library ALibrary AFramework
Package

Framework
Package

(A) (B)

(C)

� To manage the the dependencies between
packages and to facilitate the building of
packages, experiments are using
configuration and build tools
◦ Remember ATLAS has ~3000 packages :-0

◦ CMT (ATLAS, LHCb), SCRAM (CMS), SRT (BaBar)

� These tools can typically
◦ Find inconsistencies

◦ Create include and library options

◦ Connect build constituents

� Automation of the process

12/10/09Software Physical Design, P. Mato/CERN 25

� Configuration Management Tool written
by C. Arnault (LAL, Orsay)

◦ It is based around the notion of Package

◦ Provides a set of tools for automation the
configuration and building packages

� A variety of products: libraries (linker, plugins),
executables, documentation, etc.

◦ It has been adopted by LHCb, ATLAS (other
experiments are also using it)

12/10/09 26Software Physical Design, P. Mato/CERN

CMTrequirements

codecodecodecodecode

CVS
repository

•What to build
•How to build
•Package dependencies

makefiles
DevStudio files

Building
tools
(compilers,
linkers,
IDEs)

Libraries
&
Executables

12/10/09 27Software Physical Design, P. Mato/CERN

12/10/09 28Software Physical Design, P. Mato/CERN

� Managing and releasing many packages is complex
◦ Integrating and validating releases may take very long

� Some experiments are grouping ‘packages’ into
‘projects’

� A ‘project’ is basic
unit of release

� The same way
packages facilitated
concurrent
development; projects
facilitates concurrent
integration and validation

12/10/09Software Physical Design, P. Mato/CERN 29

ATLAS Project Structure

� Experiments do not release individual packages
◦ Each individual package is ‘tagged’ by developer

� Experiments release complete ‘projects’
◦ The release candidate of a project is made of a collection of
‘tags’ for each package that constitutes the project

◦ Tag collector tools helping here

� Obviously the release order is opposite to the
DependsOn relationship
◦ The version of the top-level project fixes the version of
each dependent project and each package within the
project

� Not all the software system needs to be released at
once

12/10/09Software Physical Design, P. Mato/CERN 30

� Example: avoid cyclic dependencies among
packages

12/10/09Software Physical Design, P. Mato/CERN 31

aa

bb dd

cc

aa

bb dd

cc

� Ignominy (L. Tuura)

12/10/09Software Physical Design, P. Mato/CERN 32

12/10/09Software Physical Design, P. Mato/CERN 33

� When adding a new component to a package, both
the logical and physical characteristics of the
component should be considered

� Minimizing the number and size of exported
header files enhances usability

� A [binary compatible] patch must not affect the
internal layout of any existing object (i.e. no
change in any header file)

� Physical design is

12/10/09Software Physical Design, P. Mato/CERN 34

� A large software system is organized as Classes
�Components � Packages � Projects
◦ Keep complexity under control

◦ Facilitating concurrent development

� Physical dependencies limits strongly the
performance and overall quality of the system
◦ Flexibility, ease of maintenance, reuse of components or
parts

� Tools to monitor and optimize dependencies are
essential

� The software architect is also responsible for the
physical design

12/10/09Software Physical Design, P. Mato/CERN 35

� John Lakos, LargeJohn Lakos, LargeJohn Lakos, LargeJohn Lakos, Large----Scale C++ Softare Design, AddisonScale C++ Softare Design, AddisonScale C++ Softare Design, AddisonScale C++ Softare Design, Addison----
Wesley, 1996 Wesley, 1996 Wesley, 1996 Wesley, 1996

12/10/09 36Software Physical Design, P. Mato/CERN

