

 Data Models and
 Data Structures for

Data-intensive Computing

Paolo Calafiura LBNL
ESC09, Bertinoro

Overview

Data Models:
– Event-centric

Data Structures:
– The Role of Containers

● STL, polymorphism, and memory layout

Persistency:
– Constraints on Data Model Design

● Object relationships
● Schema evolution, T/P separation

Personal Biases

● C++/Linux/gcc
● HEP Computing, ATLAS, Gaudi, ROOT
● Transient/Persistent Separation
● Performance-oriented designs
● KISS rule

Data Models

● Event-centric
– Collect data from all

channels for a given
trigger

– Reconstruction,
Analysis

● Detector-centric
– Collect data from

all triggers for a
given channel

– Monitoring,
Calibration

Event-centric Data Model

Typical HENP event
is a tree (or table)
of Primary Data
Objects (PDO)
– Usually the EDM is

static (all events
contain the same
PDOs)

Evt

Trig ID CaloCalo

EM HAD

Cells Clus

Primary Data Objects

● PDOs are direct-accessible using the
event structure API. In ATLAS StoreGate
McClusterCollection *pClusters;

eventStore()->retrieve(pClusters, “G4Clusters”);

or, in ROOT
McClusterCollection clusters;

pEvTree->SetBranchAddress(“G4Clusters”,&clusters);

Secondary Data Objects

● Most PDOs are collections
– We call their elements SDOs

● only accessible navigating to the parent
PDO and using its API

– Persistable references among SDOs
challenging to implement particularly when
elements are accessed via an interface

Data Producers and Consumers

● PDOs can look very different to producers
(adding data to the event) and
consumers (retrieving it)

● Example Jet Reco using Tracks/Clusters
even Calorimeter cells as “particles”

PDO Containers:
implementation examples

● std:: containers, vector, string and map
● Ad-hoc containers

– ROOT TClonesArray
– Athena DataVector
– Gaudi VectorMap (sorted vector)

(manage SDO memory)

STL Containers

● Powerful, easy to use
● Too easy to use

map<int,Track>
● Do you know its memory layout?
● What happens when you insert a new

element?

● Used appropriately solid foundation for
any C++ data model

Container Memory Layout

● Array-based (vector, string, deque)

– Most efficient memory-wise (contiguous
chunk allocations)

– Easy to access from C, python, java etc

● Node-based (list, map,...)

– Fragmented memory
– Fast insertion/erasures

2 6 4 56 34 1 11 1

Stick to Containers of
Basic Types

map<int, LArHit> hm;

hm.insert(make_pair(6,aHit));

– aHit is copied upon insertion
– May be copied many more times

to rebalance the tree on
later insertions

– Vectors are even worse (think about sorting)
– CPU efficiency aside, there is a problem of

correctness since so many classes have
broken copy constructors

PDO as Containers:
Requirements

● Variable size, possibly empty
● Direct access to container elements

(SDOs)
● Polymorphic

– SDOs of various types, share an interface

● Manage SDOs memory
● Persistable

Containers of Pointers
● For class or struct

elements use
containers of
pointers:

vector<LArHit*> hv;

● Beware of

– Memory holes
(next slide + Lassi
lectures)

– Element ownership

– Persistency

vector<LArHit*>

LArHit*

LArHit*

LArHit*

LArHit*

LArHit*

LArHit*

LArHit

LArHit

LArHit

Memory Pools

● Basically an array of reusable objects
– You decide how many to preallocate and

when to start reusing them (@ EndEvent)

boost::object_pool<LArHit> hitP(10000);
LarHit* pHit= new(hitP.malloc()) LArHit(x,y,z);

...

hitP.purge_memory();

NextUsed Free

Next Free

reset()

To be reused

Polymorphic Containers

● Containers of
pointers to
interface class

vector<IHit*> hv;

● Main tool to address
producer/consumer
dichotomy

vector<IHit*>

IHit*

IHit*

IHit*

IHit*

LArHit

LArHit

FCalHit

FCalHit

LArHit

Pointer Quiz

Class McCluster {

 ...

 private:
 HepMcParticle* m_truth;

 vector<IHit*> m_hits;

};

Who owns m_truth and and the hits in m_hits?

Pointer Roles

Optional Data

Polymorphic
Containers:

Aggregation

Association (references)

Disambiguating Pointers:
Expressing (Shared) Ownership

● boost::shared_ptr<T>
– a copyable, ref-counted, smart pointer that

provides shared ownership of a T
vector<boost::shared_ptr<IHit> > m_hits;

● IHits owned by m_hits (+possibly others)

● boost::scoped_ptr<T>
– Non-copyable, single ownership of T
boost::scoped_ptr<HepMcParticle> > m_truth;

● Defines m_truth intent (optional
aggregation)

Container-based Memory
Management

DataVector: a vector<T*> owning its
elements
DataVector<IHit> > m_hits;

– More compact than vector<shared_ptr<T> >
● No reference counting
● Central control of ownership

– Persistency easier (single owner)
– Not a std::vector (duplicated functionality)
http://twiki.cern.ch/twiki/bin/view/Atlas/DataVector

https://twiki.cern.ch/twiki/bin/view/Atlas/DataVector

Another Container-based
Solution

● ROOT TClonesArray
– Owning container of pointers like DataVector
– Integrates object pool functionality
– Extremely efficient: less allocations, less

con/destructors calls
● Special constraints on elements

(need to set/reset internal state)

– Not polymorphic:
all elements must have same type and size

Recap: Event Data Models

● PDOs/SDOs
● Containers of pointers
● Object ownership
● STL and Custom Containers

Persistency and Data Models

● Basics
● Data Streaming and Clustering
● Schema Evolution
● Persistency Mechanisms

– Streamers, Dictionaries, T/P Separation

● Persistable References

Persistency Basics

...123FA4507B... ...32.0,45.6,-0.9...

double x=32.0;
double y=45.6;
double z=-0.9;

...123FA4507B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Form

Persistent
Form

Persistency
Layer

Event Data Streams and
Processing Stages

– Streaming dictated
by hardware
necessities

– Tension disk I/O-
efficiency/usability

– Abstracting level of
detail in EDM
allows to use same
algorithmic code at
different stages

Data Clustering

TrackColl

Event 1

TruthColl Clusters TrackColl

Event 2

TruthColl Clusters

TruthColl

Clusters

TruthColl TruthColl

Clusters Clusters Clusters

TrackColl TrackColl TrackColl

Event 1 Event 2

How are data objects written to disk
– By event (most Raw Data Streams)

– By object, splitting events (most ROOT files)
● Allows to read subset of event data

Schema Evolution

Fact #1: data models evolve

Fact #2: (Peta)bytes already on disk don't

Solution:
● Read old data using current Data Model

– Easy to handle automagically for basic types
– Harder when (pointers to) objects are involved
– Even harder when classes are split or merged

Persistency Mechanisms

● Fundamental types (int,float,...)
– Built-in (machine dependent!)

● Structs and Objects
– Streamer-based (manual)
– Dictionary-based (automatic)
– Object-mediated (hybrid)

Our Example Class

class McCluster {
 public:

McCluster(); //usually required for persistency

 ...

 private:
double m_x;
double m_y;
double m_z;
HepMcParticle* m_truth;
vector<IHit*> m_hits;

};

CLASS_DEF(McCluster, 3405700781);

Streamer-based Persistency

A classic C++ streamer
streamer_t& operator <<(McCluster& o, streamer_t& s) {

s >> o.m_x >> o.m_y >> o.m_z
 >> ??? //m_truth

 >> m_hits; //vector streamer loop elements

}

or the ROOT version
TObject::Streamer(TBuffer&);

– 1st issue: reading back, what object to build?
– How to invoke the streamer?
– The other issue are of course pointers...

Pointer Quiz #2

How to write the pointers in our
MCCluster to disk, and read them back?

– How to write a HepMcCluster*?
– Can you write an IHi?t?
– How do you handle two pointers to the same

IHit?
● Don't forget you may have a LArHit* and

an IHit* pointing to the same object...

– Hint:
● Assume an object read back from disk is

read-only

Reading back from Disk

Choosing the right streamer
– Assign Class Identifier (CLID) to type

CLASS_DEF(McCluster, 0xCAFEDEAD)

– Register streamer with CLID
– Write CLID alongside data object

Invoking streamer
– Generic wrapper for data objects (with CLID)
– Base class method (TObject::Streamer)

● Simpler, but more intrusive

...CAFEDEAD123F...

Dictionary-based Persistency

● Generate class reflection dictionary
– Shape (data members)
– Factory methods (default constructor req'd)

● Use dictionary to auto-generate
streamers

– Pioneered by ROOT/CINT

● Automatic persistency, but
– Efficient persistency constrains EDM design

● C-like simplicity, probably for the best

Data Clustering in ROOT

– Use dictionary to
split objects and
cluster data
members

Enables maximal
data compression
Gains size up to x2

– Allow to read
subset of event data
(or object data,
usually bad idea)

m_x

m_truth

m_x m_x

m_truth m_truth m_truth

m_z m_z m_z

McCluster 1

McCluster 2

m_y m_y m_y

Full Split Mode
– Like an n-tuple

Object-mediated Conversion

...A4560B... ...1320,1456,410...

double x=32.0;
double y=45.6;
double z=-0.9;

...A4560B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Object

Persistency
Layer

uint ix=1320;
uint iy=1456;
uint iz=410;

uint ix=1320;
uint iy=1456;
uint iz=410;

Persistent
Object

T/P Conversion

Transient-Persistent Separation

● Transient EDM, Technology-independent
– Full power of the language
– Free(r) to evolve

● Persistent EDM technology-optimized
– To optimize ROOT persistency:

● Avoid polymorphism, pointers in general
● Avoid strings, node-based containers
● Use basic types, and arrays thereof

● Overhead from separated T/P models
and conversions between the two

Power of T/P Separation

vector<IHit*>

IHit*

IHit*
IHit*

IHit*

vector<Link>

Link

Link
Link

vector<LArHit>

LArHit

LArHit

vector<FCalHit>

FCalHit

FCalHit
FCalHit

LArHit

LArHit

FCalHit

FCalHit

LArHit

Heap

ATLAS gained up to x5 in conversion
speed using non-trivial mappings like this

1 Conversion 3

Transient EDM Persistent EDM

Persistable References

Persistable References

● Pointer value meaningful only within
program address space

● Replace with persistent object identifier
– ROOT TRef, POOL::Ref

● Replace with logical object identifier
– Gaudi SmartRef, ATLAS Data/ElementLink
– Technology (even language) independent
– Only works for PDOs and SDOs

Logical Reference Example
Follow link to

GenParticle:

1. Get McEventCollection
using its PDO ID (“key”)

2. Find GenEvent using
McEventCollection index

3. Search GenParticle in
GenEvent using barcode

In Summary

● Event Data Models are pulled in opposite
directions

– Abstract, flexible designs: by physics code
– Concrete, compact implementations: by

persistency

● T/P separation may help satisfy both
● When in doubt follow the KISS rule

References

www.boost.org

root.cern.ch

www.cern.ch/gaudi

twiki.cern.ch/twiki/bin/view/Atlas/CoreSoftw
are#Data_Model_Foundation_Classes

twiki.cern.ch/twiki/bin/view/Atlas/TransientP
ersistentSeparation

Extras

Consumer/Producer and
Container “Inheritance”

● Consumer would like to get the
LArHitCollection as IHitCollection

– Just like you can use a LarHit* as an IHit*

DataVector “Inheritance”

● Describe element inheritance relation to
event store (set of macros)

– Store creates “views” of the collection for
each base class declared via macro

Data Clustering
 Performance Trade-offs

Comp=1
gzip ints

Comp=2
gzip everything

Split=1 one branch
per member

● Read all vs sample

● Write speed vs
file size

http://root.cern.ch/root/Ebench.html 1997 results!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

