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Overview

Data Models:
– Event-centric

Data Structures:
– The Role of Containers

● STL, polymorphism, and memory layout

Persistency:
–  Constraints on Data Model Design

● Object relationships
● Schema evolution, T/P separation



 

Personal Biases

● C++/Linux/gcc
● HEP Computing, ATLAS, Gaudi, ROOT
● Transient/Persistent Separation
● Performance-oriented designs
● KISS rule



 

Data Models

● Event-centric
– Collect data from all 

channels for a given 
trigger

– Reconstruction,
Analysis

● Detector-centric
– Collect data from 

all triggers for a 
given channel

– Monitoring, 
Calibration



 

Event-centric Data Model

Typical HENP event 
is a tree (or table) 
of Primary Data 
Objects (PDO)
– Usually the EDM is 

static (all events 
contain the same 
PDOs)

Evt

Trig ID CaloCalo

EM HAD

Cells Clus



 

Primary Data Objects

● PDOs are direct-accessible using the 
event structure API. In ATLAS StoreGate 
McClusterCollection *pClusters;

eventStore()->retrieve(pClusters, “G4Clusters”);

or, in ROOT
McClusterCollection clusters;

pEvTree->SetBranchAddress(“G4Clusters”,&clusters);



 

Secondary Data Objects

● Most PDOs are collections
– We call their elements SDOs

● only accessible navigating  to the parent 
PDO and  using its API

–  Persistable references among SDOs 
challenging to implement particularly when 
elements are accessed via an interface



 

Data Producers and Consumers

● PDOs can look very different to producers 
(adding data to the event) and 
consumers (retrieving it)

● Example Jet Reco using Tracks/Clusters 
even Calorimeter cells as “particles”



 

PDO Containers: 
implementation examples

● std:: containers, vector, string and map
● Ad-hoc containers

– ROOT TClonesArray
– Athena DataVector
– Gaudi VectorMap   (sorted vector)

(manage SDO memory)



 

STL Containers

● Powerful, easy to use
● Too easy to use

map<int,Track>
● Do you know its memory layout?
● What happens when you insert a new 

element?

● Used appropriately solid foundation for 
any C++ data model



 

Container Memory Layout

● Array-based (vector, string, deque)

– Most efficient memory-wise (contiguous 
chunk allocations)

– Easy to access from C, python, java etc

● Node-based (list, map,...)

– Fragmented memory
– Fast insertion/erasures 

2 6 4 56 34 1 11 1



 

Stick to Containers of 
Basic Types

map<int, LArHit> hm;

hm.insert(make_pair(6,aHit));

– aHit is copied upon insertion
– May be copied many more times 

to rebalance the tree on
later insertions

– Vectors are even worse (think about sorting)
– CPU efficiency aside, there is a problem of 

correctness since so many classes have 
broken copy constructors 



 

PDO as Containers: 
Requirements

● Variable size, possibly empty
● Direct access to container elements 

(SDOs)
● Polymorphic 

– SDOs of various types, share an interface

● Manage SDOs memory
● Persistable



 

Containers of Pointers
● For class or struct 

elements use
containers of 
pointers:

vector<LArHit*> hv;

● Beware of

– Memory holes 
(next slide + Lassi 
lectures)

– Element ownership

– Persistency

vector<LArHit*>

LArHit*

LArHit*

LArHit*

LArHit*

LArHit*

LArHit*

LArHit

LArHit

LArHit



 

Memory Pools

● Basically an array of reusable objects
– You decide how many to preallocate and 

when to start reusing them (@ EndEvent)

boost::object_pool<LArHit> hitP(10000);
LarHit* pHit= new(hitP.malloc()) LArHit(x,y,z);

...

hitP.purge_memory();

NextUsed Free

Next Free

reset()

To be reused



 

Polymorphic Containers

● Containers of 
pointers to 
interface class

vector<IHit*> hv;

● Main tool to address 
producer/consumer 
dichotomy

vector<IHit*>

IHit*

IHit*

IHit*

IHit*

LArHit

LArHit

FCalHit

FCalHit

LArHit



 

Pointer Quiz

Class McCluster {

      ...  

   private:
     HepMcParticle* m_truth; 

     vector<IHit*> m_hits;

};

Who owns m_truth and and the hits in m_hits?



 

Pointer Roles

Optional Data

Polymorphic
Containers:

Aggregation

Association (references)



 

Disambiguating Pointers:
Expressing (Shared) Ownership

● boost::shared_ptr<T> 
–  a copyable, ref-counted, smart pointer that 

provides shared ownership of a T
vector<boost::shared_ptr<IHit> > m_hits;

● IHits owned by m_hits (+possibly others)

● boost::scoped_ptr<T> 
– Non-copyable, single ownership of T
boost::scoped_ptr<HepMcParticle> > m_truth;

● Defines m_truth intent (optional 
aggregation)



 

Container-based Memory 
Management

DataVector: a vector<T*> owning its 
elements
DataVector<IHit> > m_hits;

– More compact than vector<shared_ptr<T> >
● No reference counting
● Central control of ownership

– Persistency easier (single owner)
– Not a std::vector (duplicated functionality)
http://twiki.cern.ch/twiki/bin/view/Atlas/DataVector

https://twiki.cern.ch/twiki/bin/view/Atlas/DataVector


 

Another Container-based 
Solution

● ROOT TClonesArray
– Owning container of pointers like DataVector
– Integrates object pool functionality
– Extremely efficient: less allocations, less 

con/destructors calls
● Special constraints on elements 

(need to set/reset internal state)

– Not polymorphic: 
all elements must have same type and size



 

Recap: Event Data Models

● PDOs/SDOs
● Containers of pointers
● Object ownership
● STL and Custom Containers



 

Persistency and Data Models

● Basics
● Data Streaming and Clustering
● Schema Evolution
● Persistency Mechanisms

– Streamers, Dictionaries, T/P Separation

● Persistable References



 

Persistency Basics

...123FA4507B... ...32.0,45.6,-0.9...

double x=32.0;
double y=45.6;
double z=-0.9;

...123FA4507B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Form

Persistent
Form

Persistency
Layer



 

Event Data Streams and 
Processing Stages

– Streaming dictated 
by hardware 
necessities

– Tension disk I/O-
efficiency/usability

– Abstracting level of 
detail in EDM 
allows to use same 
algorithmic code at 
different stages



 

Data Clustering

TrackColl

Event 1

TruthColl Clusters TrackColl

Event 2

TruthColl Clusters

TruthColl

Clusters

TruthColl TruthColl

Clusters Clusters Clusters

TrackColl TrackColl TrackColl

Event 1 Event 2

How are data objects written to disk
– By event (most Raw Data Streams)

– By object, splitting events (most ROOT files)
●  Allows to read subset of event data



 

Schema Evolution

Fact #1: data models evolve

Fact #2: (Peta)bytes already on disk don't

Solution:
● Read old data using current Data Model

– Easy to handle automagically for basic types
– Harder when (pointers to) objects are involved
– Even harder when classes are split or merged



 

Persistency Mechanisms

● Fundamental types (int,float,...)
– Built-in (machine dependent!)

● Structs and Objects
– Streamer-based (manual)
– Dictionary-based (automatic)
– Object-mediated (hybrid)



 

Our Example Class

class McCluster {
 public:

McCluster(); //usually required for persistency

      ...  

    private:
double m_x;
double m_y;
double m_z;
HepMcParticle* m_truth;
vector<IHit*> m_hits;

};

CLASS_DEF(McCluster, 3405700781);



 

Streamer-based Persistency

A classic C++ streamer
streamer_t& operator <<(McCluster& o, streamer_t& s) {

s >> o.m_x >> o.m_y >> o.m_z
  >>  ???     //m_truth

     >>  m_hits; //vector streamer loop elements

}

or the ROOT version
TObject::Streamer(TBuffer&);

– 1st issue: reading back, what object to build?
– How to invoke the streamer?
– The other issue are of course pointers...



 

Pointer Quiz #2

How to write the pointers in our 
MCCluster to disk, and read them back?

– How to write a HepMcCluster*?
– Can you write an IHi?t?
– How do you handle two pointers to the same 

IHit?
● Don't forget you may have a LArHit* and 

an IHit* pointing to the same object...

– Hint: 
● Assume an object read back from disk is 

read-only



 

Reading back from Disk

Choosing the right streamer
– Assign Class Identifier (CLID) to type

CLASS_DEF(McCluster, 0xCAFEDEAD)

– Register streamer with CLID
– Write CLID alongside data object

Invoking streamer
– Generic wrapper for data objects (with CLID)
– Base class method (TObject::Streamer)

● Simpler, but more intrusive

...CAFEDEAD123F...



 

Dictionary-based Persistency

● Generate class reflection dictionary
– Shape (data members)
– Factory methods (default constructor req'd)

● Use dictionary to auto-generate 
streamers

– Pioneered by ROOT/CINT

● Automatic persistency, but
– Efficient persistency constrains EDM design

● C-like simplicity, probably for the best



 

Data Clustering in ROOT

– Use dictionary to 
split objects and 
cluster data 
members

Enables maximal 
data compression
Gains size up to x2

–  Allow to read 
subset of event data 
(or object data, 
usually bad idea)

m_x

m_truth

m_x m_x

m_truth m_truth m_truth

m_z m_z m_z

McCluster 1

McCluster 2

m_y m_y m_y

Full Split Mode
– Like an n-tuple



 

Object-mediated Conversion

...A4560B... ...1320,1456,410...

double x=32.0;
double y=45.6;
double z=-0.9;

...A4560B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Object

Persistency
Layer

uint ix=1320;
uint iy=1456;
uint iz=410;

uint ix=1320;
uint iy=1456;
uint iz=410;

Persistent
Object

T/P Conversion



 

Transient-Persistent Separation

● Transient EDM, Technology-independent
– Full power of the language
– Free(r) to evolve

● Persistent EDM technology-optimized
– To optimize ROOT persistency:

● Avoid polymorphism, pointers in general
● Avoid strings, node-based containers
● Use basic types, and arrays thereof

● Overhead from separated T/P models 
and conversions between the two



 

Power of T/P Separation

vector<IHit*>

IHit*

IHit*
IHit*

IHit*

vector<Link>

Link

Link
Link

vector<LArHit>

LArHit

LArHit

vector<FCalHit>

FCalHit

FCalHit
FCalHit

LArHit

LArHit

FCalHit

FCalHit

LArHit

Heap

ATLAS gained up to x5 in conversion
speed using non-trivial mappings like this

1 Conversion 3

Transient EDM Persistent EDM



 

Persistable References



 

Persistable References

● Pointer value meaningful only within 
program address space

● Replace with persistent object identifier
– ROOT TRef, POOL::Ref

● Replace with logical object identifier
– Gaudi SmartRef, ATLAS Data/ElementLink
– Technology (even language) independent
– Only works for PDOs and SDOs



 

Logical Reference Example
Follow link to 

GenParticle:

1. Get McEventCollection 
using its PDO ID (“key”) 

2. Find GenEvent using 
McEventCollection index

3. Search GenParticle in 
GenEvent using barcode



 

In Summary

● Event Data Models are pulled in opposite 
directions

– Abstract, flexible designs: by physics code
– Concrete, compact implementations: by 

persistency

● T/P separation may help satisfy both
● When in doubt follow the KISS rule
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Extras



 

Consumer/Producer and 
Container “Inheritance”

● Consumer would like to get the 
LArHitCollection as IHitCollection

– Just like you can use a LarHit* as an IHit*



 

DataVector “Inheritance”

● Describe element inheritance relation to 
event store (set of macros)

– Store creates “views” of the collection for 
each base class declared via macro



 

Data Clustering
 Performance Trade-offs

Comp=1
gzip ints

Comp=2
gzip everything

Split=1 one branch 
per member

● Read all vs sample

● Write speed vs 
file size

http://root.cern.ch/root/Ebench.html 1997 results!
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