
Andrew Hanushevsky:

Basic I/O API’s

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Goals

• Overview of basic I/O API’s

• Explain some confusing I/O terminology

– Blocking and non-blocking I/O

• Explain performance oriented I/O open options

– 32 and 64 bit I/O

• I/O peculiarities

– Threading implications

• How to get the most performance

10/16/2009 Andrew Hanushevsky 2

Basic Read API’s

• #include <unistd.h>

– ssize_t read(int fd, void *buf, size_t count);

– ssize_t pread(int fd, void *buf, size_t count,

off_t offset);

• #include <sys/uio.h>
– ssize_t readv(int fd, const struct iovec *iov,

int iovcnt);

• struct iovec

{void *iov_base; /* Buffer address */

size_t iov_len; /* Number of bytes*/

};

10/16/2009 3Andrew Hanushevsky

Basic Write API’s

• #include <unistd.h>

– ssize_t write(int fd, void *buf, size_t count);

– ssize_t pwrite(int fd, void *buf, size_t count,

off_t offset);

• #include <sys/uio.h>
– ssize_t writev(int fd, const struct iovec *iov,

int iovcnt);

• struct iovec

{void *iov_base; /* Buffer address */

size_t iov_len; /* Number of bytes*/

};

10/16/2009 4Andrew Hanushevsky

Basic I/O API’s

• Can use API for any type of device

– Synchronous

• I/O occurs only when thread is suspended

– Handles blocking and non-blocking I/O

• Selected with open() flags

• Special errno value indicates blocking state

– Now to explain blocking vs non-blocking I/O

10/16/2009 5Andrew Hanushevsky

Blocking vs Non-Blocking I/O

• A device is considered blocking if it toggles
between ready and not ready states

– Read: no data present so not ready

– Write: data cannot be accepted so not ready

• I/O to a not ready device blocks the process

• I/O to a ready device suspends the process in I/O wait

• Reads and writes either complete to the extent
possible, never start, or end with an error

• Devices that are always ready are non-blocking

• Reads and writes either fully complete, never start, or
end with an error

10/16/2009 6Andrew Hanushevsky

Blocking I/O

User Space

Application

Kernel Space

read()

Not Ready

Block Process

Context

Switch

Check if OK

Copy data

and return

completion

open()

Ready

Data Present

10/16/2009 7Andrew Hanushevsky

Not Ready

Return

EWOULDBLOCK

or EAGAIN

Not Ready

Return

EWOULDBLOCK

or EAGAIN

Blocking I/O Without Blocking I

User Space

Application

Do not do this!

Kernel Space

read()

Not Ready

return

EWOULDBLOCK

or EAGAIN

Context

Switch

read() read() read()

Ready

Data Present

Copy data

and return

completion

open(…,O_NONBLOCK)

10/16/2009 8Andrew Hanushevsky

Blocking I/O Without Blocking II
User Space

Application

Kernel Space

read()

Not Ready

Return

EWOULDBLOCK

or EAGAIN

Context

Switch

poll()

Block process

until data is ready

Time limit may

apply

read()

Copy data

and return

completion

Resume

process

Indicating

ready

request

Blocked State

open(…,NONBLOCK)
Process continues execution

10/16/2009 9Andrew Hanushevsky

Blocking Devices

• Simulated and network devices are blocking

– Pipes, fifo’s, sockets, streams, and terminals

• I/O occurs when device is ready

– Process may or may not block as per open() options

• Not all requested data may be read or written

– Reads transfer data that is immediately available

• Many times this is less than what was requested

– Writes transfer data until device becomes not ready

• Usually because some resource becomes unavailable

10/16/2009 Andrew Hanushevsky 10

Non-Blocking Devices

• By definition, disks are always ready

– So, they are non-blocking

• Implies I/O to regular files should be non-blocking

• However, I/O occurs through a file system

– POSIX compliant file systems are non-blocking

• They must adhere to the non-blocking nature of disks

– Not all file systems are POSIX compliant

• Typically, network based ones may not be fully compliant

10/16/2009 Andrew Hanushevsky 11

Implications

• File system I/O might not be fully non-

blocking

– While relatively rare, this may happen

• Usually in the area of incomplete I/O requests

• Something to worry about?

– Usually not with commonly used file systems

• But, easy to program around

• This section concentrates on non-blocking I/O

– With accommodations for blocking devices

10/16/2009 12Andrew Hanushevsky

Starting With Open

• open() opens any Unix named device

– Normally, files but can be FIFO’s and pipes

• As long as it has a file system path it’s OK

• Always returns and integer

– File descriptor or -1 on error

• Check errno variable for actual reason when -1

• Many options exist

– We will cover the more important ones

10/16/2009 13Andrew Hanushevsky

The Open API

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags,
[mode_t mode]);

mode required
if flags contain O_CREAT

10/16/2009 14Andrew Hanushevsky

Commonly Used Open Flags

• O_RDONLY, O_WRONLY, or O_RDWR

– How the file will be accessed

• O_CREAT, O_EXCL, and O_TRUNC

– File creation disposition

• Read man page for the gory details

10/16/2009 15Andrew Hanushevsky

Esoteric Open Flags

• O_NOATIME (Since Linux 2.6.8)

– Linux specific, don’t update access time in the inode.

• Can significantly improve performance for some applications

• O_CLOEXEC (Since Linux 2.6.23)

– Linux specific, but important threading flag!

• O_DIRECT (Since Linux 2.4.10)

– Generic, bypass file system cache
• Can significantly improve performance in isolated cases

• Not supported by all file systems and may return error if specified

• O_NONBLOCK
– Enable non-blocking I/O

• O_SYNC
– Make sure data written to disk before returning

10/16/2009 16Andrew Hanushevsky

Obsolete Open Flags

• O_LARGEFILE

– Obsolete for 64-bit systems

• CC -D_FILE_OFFSET_BITS=64 preferred

• O_NDELAY

– Obsolete in POSIX conforming systems

• O_NONBLOCK preferred

– O_NDELAY causes read/write to return 0 if blocked

POSIX defines -1 with EWOULDBLOCK

10/16/2009 17Andrew Hanushevsky

Basic I/O API Parameter Types

• ssize_t is signed

– This way -1 can be returned to indicate error

• size_t is unsigned

– Maximum size defined by SSIZE_MAX

• 231-1 for 32 bit architectures (2147483647)

• 263-1 for 64 bit architectures (9223372036854775807)

• off_t is signed (Historical reasons)

• All automatically defined as 32 or 64 bits

– Depending on target architecture

10/16/2009 18Andrew Hanushevsky

Read Peculiarities

• Returns bytes read or -1

– Bytes read can be 0 to amount wanted

• 0 → end of file for regular files o/w nothing available

• When less than requested → all that is available

• -1 indicates error

– Check errno variable for actual value

• The most common ones are

– EINTR call interrupted by a signal, nothing read

– EWOULDBLOCK or EAGAIN for non-blocking I/O

» You will rarely program non-blocking I/O

10/16/2009 19Andrew Hanushevsky

Bullet Proof Read
ssize_t rc;

do {rc = read(fd, buff, blen);}
while(rc < 0 && EINTR == errno);

if (rc < 0) {handle error}

ssize_t rc;
do{do {rc = read(fd, buff, blen);}

while(rc < 0 && EINTR == errno);
if (rc < 0) {handle error}
if (!rc) {handle EOF (e.g., ^D)}
blen -= rc; buff += rc;
} while(blen > 0);

Regular POSIX Files Other Devices

10/16/2009 20Andrew Hanushevsky

Write Peculiarities

• Returns bytes written or -1

– Bytes written can be 0 to amount wanted

• When less than requested → all that could be written

• -1 indicates error

– Check errno variable for actual value

• The most common ones are

– EINTR call interrupted by a signal

– EWOULDBLOCK or EAGAIN for non-blocking I/O

» You will rarely program non-blocking I/O

– ENOSPC for regular files

10/16/2009 21Andrew Hanushevsky

Bullet Proof Write
ssize_t rc;

do {rc = write(fd, buff, blen);}
while(rc < 0 && EINTR == errno);

if (rc < 0) {handle error}

ssize_t rc;
do{do {rc = write(fd, buff, blen);}

while(rc < 0 && EINTR == errno);
if (rc < 0) {handle error}

blen -= rc; buff += rc;
} while(blen > 0);

Regular POSIX Files Other Devices

10/16/2009 22Andrew Hanushevsky

read/write vs pread/pwrite

• read() and write() use the current offset

– Maintained per file pointer per process

– Incremented on each read() and write()

– Can use lseek() to change it

• This is difficult for multi-threaded apps

– Especially ones sharing the same file pointer

• pread() and pwrite() solve this problem

– You specify the offset on each invocation

• Does not affect the current file offset pointer

10/16/2009 23Andrew Hanushevsky

lseek() & write() vs pwrite()
lseek(fd, offset, SEEK_SET);
do {rc = write(fd, buff, blen);}

while(rc < 0 && EINTR == errno);
if (rc < 0) {handle error}

do {rc = pwrite(fd,buff,blen,offset);}
while(rc < 0 && EINTR == errno);

if (rc < 0) {handle error}

logically equivalent to

10/16/2009 24Andrew Hanushevsky

In practice, these are not equivalent in multi-threaded applications
if the underlying file is referenced by more than one thread!

read/write vs readv/writev

• read() and write() only reference single buffer

• readv() and writev() reference one or more

• Use the latter to efficiently scatter/gather data

– Better than multiple read/write calls

• Note OS’s have limits on the number of buffers

– IOV_MAX defines the limit

• E.g., 1024 for Linux but 16 for Solaris

10/16/2009 25Andrew Hanushevsky

Performance Options

• API’s themselves offer no performance options

• How you use them matters

– E.g., using readv/writev when appropriate

• Only one practical possibility

– Page aligned buffers

• Allows some file system to use copy on write

• Avoids extra page reference

– Need not be page aligned; merely aligned within a page

• Always required if you use O_DIRECT open flag

10/16/2009 Andrew Hanushevsky 26

Page Aligning Buffers

• int posix_memalign(

void **memptr

size_t alignment,

size_t size);

– On success, zero returned with . . .

• memptr holding pointer to allocated memory

– Will be at least the size of size and start at an address that is a

multiple of alignment which must be a power of 2 and here should

be the page size.

– On failure, errno value is returned

• errno variable is not set

10/16/2009 Andrew Hanushevsky 27

posix_memalign() Issues

• Not all platforms support posix_memalign()

– Linux supports it since glibc 2.1.91

• Use -D_GNU_SOURCE or -D_XOPEN_SOURCE=600

• Most systems support memalign()
– void *memalign(size_t boundary, size_t size);

– Not necessarily equivalent

• Area allocated might not be used with free()

– Not true if you use glibc (i.e., g++ or gcc)

10/16/2009 Andrew Hanushevsky 28

posix_memalign() Example

10/16/2009 Andrew Hanushevsky 29

#include <stdlib.h>
#include <unistd.h>

static int PageSize = sysconf(_SC_PAGESIZE);
void *Buff;

if ((rc=posix_memalign(&Buff, PageSize, length)) < 0)
{handle error}

#include <stdlib.h>
void *Buff;

if (!(Buff=memalign(sysconf(_SC_PAGESIZE), length)))
{handle error}

logically equivalent to

Alignment Within A Page

10/16/2009 Andrew Hanushevsky 30

#include <stdlib.h>
#include <unistd.h>

static size_t PageSize = sysconf(_SC_PAGESIZE);
size_t Alignment = PageSize;
void *Buff;

if (length < Alignment)
{do {Alignment = Alignment >> 1;}

while(length < Alignment);
Alignment = Alignment << 1; length = Alignment;
}

if (posix_memalign((void **)&Buff, Alignment, length))
{handle error}

Conclusions

• Basic I/O API’s work with any device

– These are the workhorses you will usually use

• Few optimizations available

– Using readv/writev where appropriate

– Page aligning frequently used buffers

• May be be required in some cases

– E.g. O_DIRECT open option

10/16/2009 Andrew Hanushevsky 31

