5009

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009

Andrew Hanushevsky:
Basic I/O API’s

Goals

e QOverview of basic I/O API’s

e Explain some confusing I/O terminology
— Blocking and non-blocking I/0

e Explain performance oriented |/O open options
— 32 and 64 bit 1/0

e |/O peculiarities
— Threading implications

 How to get the most performance

&tog 10/16/2009 Andrew Hanushevsky

Cz
2

Basic Read API’s

e #i nclude <unistd. h>
— ssize t read(int fd, void *buf,
— ssize t pread(int fd, void *buf,
off t offset);
 #i nclude <sys/uio.h>
— ssize t readv(int fd, const struct
I nt 1ovecnt);
e struct iovec

{void *iov_base; /* Buffer address */
size t 1tov_len; [/* Nunmber of bytes*/

};

Size t count);

Size_ t count,

| ovec *i ov,

.)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

3

Basic Write APIl’s

e #i nclude <unistd. h>
— ssize t wite(int fd, void *buf, size t count)
— ssize t pwite(int fd, void *buf, size t count,
off t offset);
 #i nclude <sys/uio.h>
— ssize t witev(int fd, const struct iovec *iov,
I nt 1ovecnt);
e struct iovec
{void *iov_base; /* Buffer address */
size t 1tov_len; [/* Nunmber of Dbytes*/
}

.)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

4

Basic I/O API’s

e Can use API for any type of device
— Synchronous
 1/O occurs only when thread is suspended

— Handles blocking and non-blocking /O
e Selected with open() flags
e Special errno value indicates blocking state

— Now to explain blocking vs non-blocking 1/0

&tog 10/16/2009 Andrew Hanushevsky

Blocking vs Non-Blocking 1/0

* A device is considered blocking if it toggles
between ready and not ready states

— Read: no data present so not ready

— Write: data cannot be accepted so not ready
e |/O to a not ready device blocks the process
e |/O to a ready device suspends the process in I/O wait

* Reads and writes either complete to the extent
possible, never start, or end with an error

e Devices that are always ready are non-blocking

e Reads and writes either fully complete, never start, or
end with an error

&tog 10/16/2009 Andrew Hanushevsky | N/f? 6

L/,

Blocking 1/O

User Space
Application
open()
read() Check if OK
Context T
Switch
\j 1 \"f -
Not Ready
Copy data
s and return
ata Present completion

Kernel Space

&t‘og 10/16/2009 Andrew Hanushevsky

Blocking 1/0 Without Blocking |

User Space
Application
Do not do this!
open(...,0 _NONBLOCK)
read() read() read() read()
Context __ T T
i b ‘ | —
Not Ready Not Ready Not Ready Ready
return Return Return Data Present
EWOULDBLOCK EWOULDBLOCK EWOULDBLOCK Copy data
or EAGAIN or EAGAIN or EAGAIN and return
completion

Kernel Space

&t‘og 10/16/2009 Andrew Hanushevsky

(2
z)

Blocking 1/0 Without Blocking Il

User Space
Application

open(...,NONBLOCK)
read() we | poll() Blocked State read()
Context T T T
Switch | T
o Resume o
Not Ready Block process
)) process Copy data
Return until data is ready Indicating and return
EWOULDBLOCK oy g return
or EAGAIN apply request
Kernel Space
&t‘og 10/16/2009 Andrew Hanushevsky]N'/j

L/,

9

Blocking Devices

e Simulated and network devices are blocking

— Pipes, fifo’s, sockets, streams, and terminals

e |/O occurs when device is ready

— Process may or may not block as per open() options

 Not all requested data may be read or written
— Reads transfer data that is immediately available
 Many times this is less than what was requested

— Writes transfer data until device becomes not ready

e Usually because some resource becomes unavailable

&tog 10/16/2009 Andrew Hanushevsky INFN 10
C

Non-Blocking Devices

e By definition, disks are always ready

— So, they are non-blocking

e Implies /0O to regular files should be non-blocking

e However, |I/O occurs through a file system

— POSIX compliant file systems are non-blocking

e They must adhere to the non-blocking nature of disks

— Not all file systems are POSIX compliant

e Typically, network based ones may not be fully compliant

&tog 10/16/2009 Andrew Hanushevsky IN

Implications

e File system I/O might not be fully non-
blocking

— While relatively rare, this may happen

e Usually in the area of incomplete I/O requests

e Something to worry about?

— Usually not with commonly used file systems

e But, easy to program around

e This section concentrates on non-blocking 1/0
— With accommodations for blocking devices

=
&tog 10/16/2009 Andrew Hanushevsky INFN 12

L/,

Starting With Open

e open() opens any Unix named device

— Normally, files but can be FIFO’s and pipes
e Aslong as it has a file system path it’'s OK

e Always returns and integer

— File descriptor or -1 on error

* Check errno variable for actual reason when -1
* Many options exist

— We will cover the more important ones

&tog 10/16/2009 Andrew Hanushevsky

The Open API

#1 ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

| nt open(const char *pat hnane,
[rode_t node]);

mode required
if flags contain O_ CREAT

&t‘og 10/16/2009 Andrew Hanushevsky

Int fl ags,

Commonly Used Open Flags

* O_RDONLY, O_WRONLY, or O_RDWR

— How the file will be accessed

e O _CREAT, O_EXCL, and O_TRUNC

— File creation disposition

e Read man page for the gory details

&tog 10/16/2009 Andrew Hanushevsky

Esoteric Open Flags

O_NOATIME (Since Linux 2.6.8)

— Linux specific, don’t update access time in the inode.
e Can significantly improve performance for some applications

O_CLOEXEC (Since Linux 2.6.23)
— Linux specific, but important threading flag!

O_DIRECT (since Linux 2.4.10)

— Generic, bypass file system cache
e Can significantly improve performance in isolated cases
e Not supported by all file systems and may return error if specified

O_NONBLOCK
— Enable non-blocking 1I/0

O_SYNC

— Make sure data written to disk before returning

2

&t‘og 10/16/2009 Andrew Hanushevsky IN 16

Obsolete Open Flags

e O_LARGEFILE

— Obsolete for 64-bit systems
e CC-D_FILE_OFFSET _BITS=64 preferred

e O_NDELAY

— Obsolete in POSIX conforming systems

* O_NONBLOCK preferred

— O_NDELAY causes read/write to return O if blocked
POSIX defines -1 with EWOULDBLOCK

&tog 10/16/2009 Andrew Hanushevsky

Basic I/O APl Parameter Types

e ssize tis signed

— This way -1 can be returned to indicate error
e size_tis unsigned

— Maximum size defined by SSIZE_MAX

e 2311 for 32 bit architectures (2147483647)
e 2631 for 64 bit architectures (9223372036854775807)

® Off_t IS SignEd (Historical reasons)

e All automatically defined as 32 or 64 bits
— Depending on target architecture

=
&tog 10/16/2009 Andrew Hanushevsky INFN 18
C

Read Peculiarities

e Returns bytes read or -1

— Bytes read can be 0 to amount wanted

e 0 - end of file for regular files o/w nothing available
 When less than requested — all that is available

e -1 indicates error

— Check errno variable for actual value

e The most common ones are

— EINTR call interrupted by a signal, nothing read
— EWOULDBLOCK or EAGAIN for non-blocking I/0
» You will rarely program non-blocking I/0

&tog 10/16/2009 Andrew Hanushevsky IN

Bullet Proof Read

ssize t rc;
do {rc = read(fd, buff, blen);}

1f (rc < 0) {handle error}

while(rc < 0 & EINTR == errno);

t Regular POSIX Files Other Devices 1

ssize t rc;
do{do {rc = read(fd, buff, blen);}

1f (rc < 0) {handle error}
1f (!'rc) {handl e ECF (e.g., "D}
blen -= rc; buff += rc;

} while(blen > 0);

while(rc < 0 & EINTR == errno);

&t‘og 10/16/2009 Andrew Hanushevsky

Cz
2

Write Peculiarities

e Returns bytes written or -1

— Bytes written can be 0 to amount wanted

e When less than requested — all that could be written

e -1 indicates error

— Check errno variable for actual value

e The most common ones are
— EINTR call interrupted by a signal
— EWOULDBLOCK or EAGAIN for non-blocking I/0
» You will rarely program non-blocking 1/0
— ENOSPC for regular files

&tog 10/16/2009 Andrew Hanushevsky IN

Bullet Proof Write

ssize t rc;

do {rc = wite(fd, buff, blen);}

while(rc < 0 & EINTR == errno);
1f (rc < 0) {handle error}
t Regular POSIX Files Other Devices 1

ssize t rc;

while(rc < 0 & EINIR ==
1f (rc < 0) {handle error}

blen -= rc: buff += rc;
} while(blen > 0);

do{do {rc = wite(fd, buff, blen);}

errno),

&t‘og 10/16/2009 Andrew Hanushevsky

(2
z)

read/write vs pread/pwrite

e read() and write() use the current offset
— Maintained per file pointer per process
— Incremented on each read() and write()
— Can use Iseek() to change it
e This is difficult for multi-threaded apps
— Especially ones sharing the same file pointer
e pread() and pwrite() solve this problem

— You specify the offset on each invocation
e Does not affect the current file offset pointer

&tog 10/16/2009 Andrew Hanushevsky

Iseek() & write() vs pwrite()

| seek(fd, offset, SEEK SET);

do {rc = wite(fd, buff, blen);}
while(rc < 0 & EINTR == errno);

If (rc < 0) {handle error}

t logically equivalent to ‘

do {rc = pwite(fd, buff, blen, offset);}
while(rc < 0 & & EINTR == errno);
1f (rc < 0) {handle error}

In practice, these are not equivalent in multi-threaded applications
if the underlying file is referenced by more than one thread!

_ o)
&09 10/16/2009 Andrew Hanushevsky IN 24

L/,

read/write vs readv/writev

e read() and write() only reference single buffer
e readv() and writev() reference one or more

e Use the latter to efficiently scatter/gather data
— Better than multiple read/write calls

e Note OS’s have limits on the number of buffers

— |OV_MAX defines the limit
e E.g., 1024 for Linux but 16 for Solaris

)
&tog 10/16/2009 Andrew Hanushevsky INFN 25

Performance Options

 API’'s themselves offer no performance options

e How you use them matters

— E.g., using readv/writev when appropriate
 Only one practical possibility

— Page aligned buffers

e Allows some file system to use copy on write
e Avoids extra page reference

— Need not be page aligned; merely aligned within a page

e Always required if you use O_DIRECT open flag

&tog 10/16/2009 Andrew Hanushevsky IN

Page Alighing Buffers

e I nt posix_menmalign(
vol d **nmenptr
size t alignnent,
Sl ze t size);

— On success, zero returned with . . .

e memptr holding pointer to allocated memory

— Will be at least the size of size and start at an address that is a
multiple of alignment which must be a power of 2 and here should
be the page size.

— On failure, errno value is returned

* errno variable is not set

&t‘og 10/16/2009 Andrew Hanushevsky IN

posix_memalign() Issues

* Not all platforms support posix_memalign()

— Linux supports it since glibc 2.1.91
e Use -D_GNU_SOURCE or -D_XOPEN_SOURCE=600

e Most systems support memalign()
— void *nmemal i gn(size_t boundary, size t size),;
— Not necessarily equivalent
e Area allocated might not be used with free()

— Not true if you use glibc (i.e., g++ or gcc)

&tog 10/16/2009 Andrew Hanushevsky IN

posix_memalign() Example

#i ncl ude <stdlib. h>
#1 ncl ude <uni std. h>

static int PageSi ze = sysconf(_SC PAGESI ZE) ;
voi d *Buff;

1 f ((rc=posix_memal i gn(&Buff, PageSize, |length)) < 0)
{handl e error}

t logically equivalent to a

#i ncl ude <stdlib. h>
voli d *Buff:

1 f (! (Buff=nemalign(sysconf(_SC PAGESI ZE), |length)))
{handl e error}

.)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

29

Alignment Within A Page

#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

static size t PageSi ze
size t Alignnent
void *Buff;

sysconf (_SC PAGESI ZE) ;
PageSi ze;

1 f (length < Alignnent)
{do {Alignment = Alignnent >> 1;}
while(length < Alignnment);
Alignnment = Alignnent << 1; length = Alignnent;

}

| f (posix _nmemalign((void **)&Buff, Alignnent, |ength))
{handl e error}

)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

30

Conclusions

e Basic I/O API’s work with any device

— These are the workhorses you will usually use

 Few optimizations available
— Using readv/writev where appropriate
— Page aligning frequently used buffers

e May be be required in some cases
— E.g. O_DIRECT open option

&tog 10/16/2009 Andrew Hanushevsky

