First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009

Andrew Hanushevsky:
File System 1/O

Goals

o Sensitize you to File System limitations
— How 1/O choices make or break performance

 Show what to do and not to do
— Keeping performance high

 How to broadly translate advice
— Databases and frameworks

&tog 10/16/2009 Andrew Hanushevsky

(2
z)

Disk Mechanics

e Disk surface is divided into sectors
— Usually 512 bytes
* An I/O operation requires that the disk
— Move the head to the right circular track (seek time)

— Walit until the proper sector arrives (rotational delay)
— Then transfer the data

Spindle pa.d Track and Sector Arrangement on a Platter

Disk rotation

Sources: http://upload.wikimedia.org/wikipedia/commons/thumb/5/52/Hard_drive-en.svg/300px-Hard_drive-en.svg.png
http://www.comptechdoc.org/hardware/pc/begin/hwharddrive.html

w 10/16/2009 Andrew Hanushevsky INFN

Mechanical Devices Are Slow

Characteristic Seagate Seagate Cheetah Seagate
Barracuda 180 X15-36LP Barracuda 36ES
Type High Capacity = High Performance Desktop
Capacity 181.6GB 36.7GB 18.4GB
Min Seek Time 0.8ms 0.3ms 1.0ms
Avg seek time 7.4ms 3.6ms 9.5ms
Spindle speed 7200rpm 15K rpm 7200 rpm
Avg Rotational
Delay 4.17ms 2 ms 4.17 ms
Max xfr rate 160 MB/s 522-709 MB/s 25 MB/s
Sector Size 512 512 512
Source: ftp://ftp.prenhall.com/pub/esm/sample_chapters/engineering_computer_science/stallings/coa6e/pdf/ch6.pdf
&t‘og 10/16/2009 Andrew Hanushevsky IN/I? 4

Slowness In Perspective

Seagate Barracuda 180

[

-t 0 1 2 3 4 5 6 7 8 9 10 11 12

I N ' ' ' ' ' ' ' ' ! ! ! !
N—— = N————r N\
Ecwt) . Seek time 7.4ms > Rot Delay 4.17ms E<>
== e e e e e e ! | | | e e

Reading 64K requires, on average, 11.77ms,
excluding channel wait time (cwt).

Actual data transfer (x) occupies disk 1.7% of the total time.
You need to read almost 2MB to achieve 50% channel utilization!
The faster Cheetah drive accomplishes this 48% faster (5.652 ms)

But channel utilization drops to less than 1%
requiring a read of 3MB for 50% channel utilization.

&09 10/16/2009 Andrew Hanushevsky INFN

File System Mechanics

File System groups N sectors into an I/O Unit
— Usually 8 to 256 sectors (4K to 128K, sometimes more)

Data always read & written in /O units or blocks
— Simplifies mapping files into memory
* This is why a block size is typically a multiple of the page size

Data, In unit sizes, Is cached in memory
— Speeds future access to data within the block

Additional subsequent blocks may be pre-read
— With the hope they will be wanted in the future

)
&tog 10/16/2009 Andrew Hanushevsky INFN 6

C

File System & Slowness

* File system tries to hide disk slowness

— Memory caching to avoid disk 1/O
» Also done in high-end disk controller caches

— Pre-reading to keep channel utilization high

e Done in the background to minimize impact
— Also done in some high-end RAID disk controllers

— Offset ordering

 Reduces seek time
— Also done in high-end disk controllers

&tog 10/16/2009 Andrew Hanushevsky

Cz
2

File System Performance Varies

Operation Ext3 Ext4 Improvement
Creation of eight
1 GB files 155.9 sec 145.1 sec 6.9 %

Write speed 55.4 MB/sec 59.3 MB/sec 7.0 %

Deletion of eight
1 GB files 11.87 sec 0.33 sec 97.2 %

10,000 random
reads and writes
inan 8 GB file 80.0 ops/sec 88.7 ops/sec 10.9 %

Source: http://www.h-online.com/open/The-Ext4-Linux-file-system--/features/113403/1

&t‘og 10/16/2009 Andrew Hanushevsky IN

What This Implies

S performance = Disk Performance

 Behavior of application is the determinant
— How much application data per I/O request?
— Seguential access?

— Random access?

 What is the r/w cycle length?
— How many different blocks will be hit before a block revisit?

« All of these have a profound effect

— Independent of file system or disk device
 These might make it a little better or worse

&tog 10/16/2009 Andrew Hanushevsky IN

Effect of I/O Request Size

e Recall FS reads/writes data in blocks

— Assume block Is 4K then reading...
o 512 bytes = 12.5% efficiency
» 1024 bytes = 25.0% efficiency
» 2048 bytes = 50.0% efficiency
* 4096 bytes = 100 % efficiency

— Application should try to keep efficiency high

« Each read should be as large as possible
e Subsequent reads should use cached data

=
&tog 10/16/2009 Andrew Hanushevsky INFN 10

C

Effect of Sequential Access

e This Is the easlest for FS and Disk
— Large disk devices are inherently sequential

 However, your app Is not alone

— Application interleaving produces random 1/O
* S read-ahead attempts to alleviate some of this

e Each sequential request should be large
— 1-4MB per request usually the works best

=
&tog 10/16/2009 Andrew Hanushevsky INFN 11

C

Effect of Random I/O

« Random 1I/O Is a performance destroyer
— True for mechanical disks but not for SSD’s

e Cycle length is important

Read
— Of‘fset
R * O'..

£ 409 % cycle Length

Read Offset: 16384 "\ 20480 24567 8192 -
! 10088 i Of 7 pages
Pag | Pag | Pag | Pag | Pag | Pag : 16384 : > cache size
e e e e e e : H
3) y ggggg i of 6 pages
Page containing offset O replaced “"‘2048'::
\ Reading offset 2048 requires re-read!} .
|
Fixed size for flle system memory cache
&09 10/16/2009 Andrew Hanushevsky IN;I?' 12

Contrived Example?

* Yes, memory caches are very large today
— Typically, 1,048,576 pages (4GB)
 \Works great if your application Is alone

— Not true for multi-core batch nodes

e Can shrink to 131,072 pages (500MB) for 8 cores
— Effective size per running job

— Definitely not true for file servers
* They serve thousands of simultaneous clients

)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

13

Advising The File System

e Can use posix_fadvise()

— Tells file system how the app will access data
« Starting at an offset for some number of bytes
» Allows file system to better manage the memory cache

— Few OS’s support this API

* Not present in MacOS X 10.3, FreeBSD 6.0, NetBSD 3.0,
OpenBSD 3.8, AIX 5.1, HP-UX 11, IRIX 6.5, OSF/1 5.1,
Solaris 10, Cygwin 1.5.x, mingw, Interix 3.5, BeOS.

* Present in others but ignored (e.g.,OpenSolaris)

— So, for now, consider it Linux specific
e Orusing HP/UX 11.31

&t‘og 10/16/2009 Andrew Hanushevsky IN

posix_fadvise() Detalls

#i ncl ude <fcntl. h>
I nt posix _fadvise(int fd, off t offset, off t |len, int advice);

Advice:
POSI X _FADV_NORMAL

Standard processing
POSI X _FADV_SEQUENTI AL

Doubles the read-ahead size for entire file
PCSI X _FADV_RANDOM

Disables read-ahead for entire file
PCSI X FADV_W LLNEED

Initiates block read for specified byte range (also see readahead())
POSI X _FADV_DONTNEED

Discards cached file pages in specified byte range
POSI X _FADV_NOREUSE

Data will not be used again
Problematic, some OS’s support this, some ignore it (e.g., Linux)

&t‘og 10/16/2009 Andrew Hanushevsky IN

If It Were So Simple. . .

* Application data framework complications
— Databases like mySQL
— Persistency frameworks like root

 Most HEP applications use one or more
— Actual disk device is hidden
— Hard if not impossible to directly apply advice

e What to do?

&tog 10/16/2009 Andrew Hanushevsky

(2
z)

Databases & Performance

 Translate advice to schema development
— Avoid wide tables when not needed
 Increases payload of only some data wanted

— Use Indices for sparsely accessed rows
» Allows database to optimize access

— Normalize the tables within reason
« Keep related data together

&tog 10/16/2009 Andrew Hanushevsky

(2
z)

Frameworks & Performance

 Know how framework lays out data

— This Is the most difficult part
e Consult framework experts

— Carefully construct your data objects

» Keep useful payload as large as possible
— Be cognizant of any compression done by framework

— Cluster related payloads as much as possible

— Avoid scattered references
* This reduces widely spaced random reads

=
&tog 10/16/2009 Andrew Hanushevsky INFN 18

C

Conclusions

 Be aware you're dealing with mechanics
— Disks are slow and unwieldy devices

* Overlap I/O and CPU as much as possible
— Choose algorithms that make this possible
* This also requires deft multi-threading
o Carefully layout your data

— Keep In mind the database and framework
» Use the advice in this section

)
&tog 10/16/2009 Andrew Hanushevsky INEN
C

19

