
Andrew Hanushevsky:
File System I/O

First INFN International School on Architectures, tools and methodologies for 
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009



Goals

• Sensitize you to File System limitations
– How I/O choices make or break performance

• Show what to do and not to do
– Keeping performance high

• How to broadly translate advice
– Databases and frameworks

10/16/2009 Andrew Hanushevsky 2



Disk Mechanics
• Disk surface is divided into sectors

– Usually 512 bytes
• An I/O operation requires that the disk

– Move the head to the right circular track (seek time)
– Wait until the proper sector arrives (rotational delay)
– Then transfer the data

Sources: http://upload.wikimedia.org/wikipedia/commons/thumb/5/52/Hard_drive-en.svg/300px-Hard_drive-en.svg.png
http://www.comptechdoc.org/hardware/pc/begin/hwharddrive.html

10/16/2009 3Andrew Hanushevsky

Disk rotation



Mechanical Devices Are Slow

Characteristic Seagate Seagate Cheetah Seagate
Barracuda 180 X15-36LP Barracuda 36ES

Type High Capacity High Performance Desktop
Capacity 181.6GB 36.7GB 18.4GB
Min Seek Time 0.8ms 0.3ms 1.0ms
Avg seek time 7.4ms 3.6ms 9.5ms
Spindle speed 7200rpm 15K rpm 7200 rpm
Avg Rotational
Delay 4.17ms 2 ms 4.17 ms
Max xfr rate 160 MB/s 522-709 MB/s 25 MB/s
Sector Size 512 512 512

Source: ftp://ftp.prenhall.com/pub/esm/sample_chapters/engineering_computer_science/stallings/coa6e/pdf/ch6.pdf

10/16/2009 4Andrew Hanushevsky



Slowness In Perspective

10/16/2009 Andrew Hanushevsky 5

0 1 2 3 4 5 6 7 8 9 10 11 12-t

cwt Seek time 7.4ms Rot Delay 4.17ms x

Reading 64K requires, on average, 11.77ms,
excluding channel wait time (cwt).

Actual data transfer (x) occupies disk 1.7% of the total time.
You need to read almost 2MB to achieve 50% channel utilization!
The faster Cheetah drive accomplishes this 48% faster (5.652 ms)

But channel utilization drops to less than 1%
requiring a read of 3MB for 50% channel utilization. 

Seagate Barracuda 180



File System Mechanics

• File System groups N sectors into an I/O Unit
– Usually 8 to 256 sectors (4K to 128K, sometimes more)

• Data always read & written in I/O units or blocks
– Simplifies mapping files into memory

• This is why a block size is typically a multiple of the page size

• Data, in unit sizes, is cached in memory
– Speeds future access to data within the block

• Additional subsequent blocks may be pre-read
– With the hope they will be wanted in the future

10/16/2009 6Andrew Hanushevsky



File System & Slowness

• File system tries to hide disk slowness
– Memory caching to avoid disk I/O

• Also done in high-end disk controller caches

– Pre-reading to keep channel utilization high
• Done in the background to minimize impact

– Also done in some high-end RAID disk controllers

– Offset ordering
• Reduces seek time

– Also done in high-end disk controllers

10/16/2009 Andrew Hanushevsky 7



File System Performance Varies

Operation Ext3 Ext4 Improvement
Creation of eight 
1 GB files 155.9 sec 145.1 sec 6.9 %

Write speed 55.4 MB/sec 59.3 MB/sec 7.0 %

Deletion of eight
1 GB files 11.87 sec 0.33 sec 97.2 %

10,000 random
reads and writes
in an 8 GB file 80.0 ops/sec 88.7 ops/sec 10.9 %

Source: http://www.h-online.com/open/The-Ext4-Linux-file-system--/features/113403/1

10/16/2009 8Andrew Hanushevsky



What This Implies

• FS performance ≈ Disk Performance
• Behavior of application is the determinant

– How much application data per I/O request?
– Sequential access?
– Random access?

• What is the r/w cycle length?
– How many different blocks will be hit before a block revisit?

• All of these have a profound effect
– Independent of file system or disk device

• These might make it a little better or worse

10/16/2009 9Andrew Hanushevsky



Effect of I/O Request Size

• Recall FS reads/writes data in blocks
– Assume block is 4K then reading…

• 512 bytes = 12.5% efficiency
• 1024 bytes = 25.0% efficiency
• 2048 bytes = 50.0% efficiency
• 4096 bytes = 100 % efficiency

– Application should try to keep efficiency high
• Each read should be as large as possible
• Subsequent reads should use cached data

10/16/2009 10Andrew Hanushevsky



Effect of Sequential Access

• This is the easiest for FS and Disk
– Large disk devices are inherently sequential

• However, your app is not alone
– Application interleaving produces random I/O

• FS read-ahead attempts to alleviate some of this

• Each sequential request should be large
– 1-4MB per request usually the works best

10/16/2009 11Andrew Hanushevsky



Effect of Random I/O

• Random I/O is a performance destroyer
– True for mechanical disks but not for SSD’s

• Cycle length is important

10/16/2009 12Andrew Hanushevsky

Pag
e

Pag
e

Pag
e

Pag
e

Pag
e

Pag
e

0 4096 8192 12288 16384 20480 24567

Page containing offset 0 replaced
Reading offset 2048 requires re-read!

2048
Read Offset:

Read
Offset

0
4096
8192
12288
16384
20480
24567
2048

Cycle Length
of 7 pages

> cache size
of 6 pages



Contrived Example?

• Yes, memory caches are very large today
– Typically, 1,048,576 pages (4GB)

• Works great if your application is alone
– Not true for multi-core batch nodes

• Can shrink to 131,072 pages (500MB) for 8 cores
– Effective size per running job

– Definitely not true for file servers
• They serve thousands of simultaneous clients

10/16/2009 Andrew Hanushevsky 13



Advising The File System

• Can use posix_fadvise()
– Tells file system how the app will access data

• Starting at an offset for some number of bytes
• Allows file system to better manage the memory cache

– Few OS’s support this API
• Not present in MacOS X 10.3, FreeBSD 6.0, NetBSD 3.0, 

OpenBSD 3.8, AIX 5.1, HP-UX 11, IRIX 6.5, OSF/1 5.1, 
Solaris 10, Cygwin 1.5.x, mingw, Interix 3.5, BeOS. 

• Present in others but ignored (e.g.,OpenSolaris)

– So, for now, consider it Linux specific
• Or using HP/UX 11.31

10/16/2009 14Andrew Hanushevsky



posix_fadvise() Details
#include <fcntl.h>
int posix_fadvise(int fd, off_t offset, off_t len, int advice);

Advice:
POSIX_FADV_NORMAL

Standard processing
POSIX_FADV_SEQUENTIAL

Doubles the read-ahead size for entire file
POSIX_FADV_RANDOM

Disables read-ahead for entire file
POSIX_FADV_WILLNEED

Initiates block read for specified byte range (also see readahead())
POSIX_FADV_DONTNEED

Discards cached file pages in specified byte range
POSIX_FADV_NOREUSE

Data will not be used again
Problematic, some OS’s support this, some ignore it (e.g., Linux)

10/16/2009 15Andrew Hanushevsky



If It Were So Simple. . .

• Application data framework complications
– Databases like mySQL

– Persistency frameworks like root

• Most HEP applications use one or more
– Actual disk device is hidden
– Hard if not impossible to directly apply advice

• What to do?

10/16/2009 Andrew Hanushevsky 16



Databases & Performance

• Translate advice to schema development
– Avoid wide tables when not needed

• Increases payload of only some data wanted

– Use indices for sparsely accessed rows
• Allows database to optimize access

– Normalize the tables within reason
• Keep related data together

10/16/2009 Andrew Hanushevsky 17



Frameworks & Performance

• Know how framework lays out data
– This is the most difficult part

• Consult framework experts

– Carefully construct your data objects
• Keep useful payload as large as possible

– Be cognizant of any compression done by framework

– Cluster related payloads as much as possible
– Avoid scattered references

• This reduces widely spaced random reads

10/16/2009 Andrew Hanushevsky 18



Conclusions

• Be aware you’re dealing with mechanics
– Disks are slow and unwieldy devices

• Overlap I/O and CPU as much as possible
– Choose algorithms that make this possible

• This also requires deft multi-threading

• Carefully layout your data
– Keep in mind the database and framework

• Use the advice in this section

10/16/2009 Andrew Hanushevsky 19


