
High Throughput Data Transmission
Through Network Links

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Domenico Galli

Outline
Need of High-Speed Links in HEP applications:

2 Use Cases.

High speed data-link technologies in HEP:
Commodity links;

10 Gb/s links.

Bottlenecks in moving data through High-Speed Links.

Optimization: Network workload sharing among CPU
cores:

The Linux network layer:
Transmission and reception.

Process-to-CPU affinity;

IRQ-to CPU affinity;

Performances of transmission through 10 Gb/s Ethernet:
UDP transfer;

TCP transfer:
Nagle’s algorithm;

Zero copy;
TCP hardware offload.

October 12, 2009 Domenico Galli 2

High Speed Network Links
Fastest available network link technology in the
market (e.g. 10-GbE at present) usually employed in
LAN backbones:

Connecting network devices together:
E.g.: connecting together network switches in a LAN.

Data flow managed by Switch Firmware.
Switch manufacturer will care avoiding bottlenecks;

We only need to test the device…

Front-end (PC, custom electronics) usually
connected to lower speed devices.

10-GbE

1-GbE 1-GbE

October 12, 2009 Domenico Galli 3

Front-end Access to High Speed Network
HEP applications sometimes need High speed
network links directly connected to the front-end:

PCs;
Custom electronic boards.

Data Flow managed by OS or FPGA software.
Need to check bottlenecks which could limit the
throughput.

Use case 1: On-line data path:
Data Acquisition – Event Building – High Level Trigger.

Use case 2: Network Distributed Storage:
Offline computing centers (Tier-1).

10-GbE 10-GbE

PC Custom Board

October 12, 2009 Domenico Galli 4

Use case 1: The On-Line Data Path

October 12, 2009 Domenico Galli 5

Use case 1: The On-Line Data Path (II)
Trend in data packet rate and size.

October 12, 2009 Domenico Galli 6

Use Case 2: Network Storage in a SAN
File servers in a Storage Area Network (SAN)

which exports data to client nodes via Ethernet.

Common situation in
case of large

computing farms:

Computing nodes

access the mass
storage through

a pool of Parallel File

System disk-servers:

E.g.: GPFS or Lustre.

SAN Controller

SAN Fabric

Ethernet

2 x 4 Gb/s Fiber Channel

File Servers

HBA

Worker Nodes mounting a Parallel File System

NIC

4 Gb/s Fiber Channel

10 Gb/s Ethernet

1 Gb/s Ethernet

October 12, 2009 Domenico Galli 7

High Speed Data Link Technology
Trend toward COTS technologies:

HERA-B:

Shark link (proprietary, by Analog Devices) until level 2, than Fast Ethernet.

BaBar:

Fast Ethernet.

DØ:

Fast Ethernet / Gigabit Ethernet.

CDF:

ATM / SCRAMnet (proprietary, by Systran, low latency replicated non-
coherent shared memory network).

CMS:

Myrinet (proprietary, Myricom) / Gigabit Ethernet.

Atlas / LHCb / Alice:

Gigabit Ethernet.

Possible new experiments:

10-Gigabit Ethernet (soon also on copper), 16-48-Gigabit infiniBand, 100-
Gigabit Ethernet.

October 12, 2009 Domenico Galli 8

Commodity Links

More and more often used in HEP for DAQ, Event Building
and High Level Trigger Systems:

Limited costs;

Maintainability;

Upgradability.

Demand of data throughput in HEP is increasing following:
Physical event rate;

Number of electronic channels;

Reduction of the on-line event filter (trigger) stages.

Industry has moved on since the design of the DAQ for the
LHC experiments:

10 Gigabit/s Ethernet well established;

48 Gigabit/s InfiniBand available;

96 Gigabit/s InfiniBand is being actively worked on;

100 Gigabit/s Ethernet is being actively worked on.

October 12, 2009 Domenico Galli 9

10 Gb/s Technologies
Ethernet:

10 Gb/s well established

Various optical standards, short range copper (CX4), long range copper over UTP
CAT6A standardised), widely used as aggregation technology.

Begins to conquer MAN and WAN market (succeeding SONET).

Large market share, vendor independent IEEE standard (802.3x).

Very active R&D on 100 Gigabit/s and 40 Gigabit/s (will probably die).

Myrinet:

Popular cluster-interconnect technology, low latency.

10 Gb/s standard (optical and copper (CX4) exist)

Single vendor (Myricom).

InfiniBand:

Cluster interconnect technology, low latency.

8 Gb/s and 16 Gb/s standards (optical and copper).

Open industry standard, several vendors (OEMs) but very few chipmakers

(Mellanox).

Powerful protocol/software stack (reliable/unreliable datagrams, QoS, out-of-band

messages etc…).

October 12, 2009 Domenico Galli 10

InfiniBand

3456 port switch

October 12, 2009 Domenico Galli 11

10 Gb/s Technologies (II)

Ethernet

1260 port switch

Bottlenecks
Direct access to a high-speed
network from a device can incur
in 3 major system bottlenecks:

The peripheral bus bandwidth:
PCI, PCI-X, PCI-e.

The memory bus bandwidth:
Front Side Bus, AMD HyperTransport,
Intel QuickPath Interconnect.

The CPU utilization.

“Fast network, slow host”
scenario:

Moore’s law: “Every 18-24 months,
computing power doubles…”;

Gilder’s law: “Every 12 months,
optical fiber bandwidth doubles…”.

October 12, 2009 Domenico Galli 12

Nomenclature
Frame: Ethernet Data Packet:

Standard Frames: 46 B – 1500 B payload size;

Jumbo Frames: 46 B – 9000 B payload size.

Datagram: IP/UDP Data Packet:

20 B – 64 KiB (65535 B) total size.

Fragment: fragment of IP Datagram which

fits into an Ethernet frame.

Segment: TCP Data Packet:

Usually fits into the maximum Ethernet payload
size (1500/9000 B).

October 12, 2009 Domenico Galli 13

1-Gigabit Ethernet UDP Bit-Transfer Rate
Year 2005, bus PCI-X (bottleneck).

102 103 104

datagram size (B)

padding up to 64 B

additional frame

1 frame

total rate
UDP payload rate

kernel 2.6.0-test11
point-to-point
flow control on

1000 Mb/s

0
100
200
300
400
500
600
700
800
900

1000

2 3 4

October 12, 2009 Domenico Galli 14

 UDP header
 IP header

 Ethernet Preamble
 Ethernet Start Frame Delimiter

 Ethernet Header
 Ethernet Frame Check Sequence
 Ethernet Inter Packet Gap

1500 20 8 = 1472
1500 2 20 2 8 = 2952

1500 3 20 3 8 = 4432
1500 4 20 4 8 = 5912

………………………..

1-Gigabit Ethernet Frame Transfer Rate

0

500

1000

1500

2000

2500

3000

3500

102 103 104

80000 frames/s

279000 frames/s

datagram size (B)

 102

kernel 2.6.0-test11
point-to-point
flow control on

1 frame 2 3 4

Year 2005, bus PCI-X (bottleneck).

October 12, 2009 Domenico Galli 15

10-GbE Network I/O
“Fast network, slow host” scenario.

Bottlenecks in I/O performance:
The PCI-X bus bandwidth (peak throughput 8.5
Gbit/s in 133 MHz flavor):

Substituted by the PCI-E, (20 Gbit/s peak throughput in
x8 flavor).

The memory bandwidth:
FSB has increased the clock from 533 MHz to 1600
MHz.

New Memory Architectures:

AMD HyperTransport;

Intel QuickPath Interconnect.

The CPU utilization:
Multi-core architectures.

October 12, 2009 Domenico Galli 16

Sharing Workload among CPU Cores
To take advantage of the multiple cores of
recent CPUs, workload should be shared
among different cores.

The Linux Kernel splits the process of sending/
receiving data packets into different tasks:

Differently scheduled and accounted;

Can be partially distributed over several CPU cores.

Statistics of kernel accounting partitions
accessible through the /proc/stat pseudo-
file:

Data relative to each CPU core;

Partitions relevant to network processing: User,
System, IRQ and SoftIRQ;

Number of jiffies (1/1000th of a second) spent by
CPU core in each different mode.

17 October 12, 2009 Domenico Galli

Linux Kernel Accounting

October 12, 2009 Domenico Galli 18

User System IRQ SoftIRQ

top

cat /proc/stat

jiffies
i

jiffies
j

j=us,sy,ni,id,wa,hi,si

Linux Kernel Accounting (II)
User: User applications which send/receive data
packets are typically ordinary processes which
run in user mode:

Non-privileged execution mode;
No access to portions of memory allocated by the
kernel or by other processes.

System: to access a network device, the
applications execute system calls, where the
execution is switched to kernel mode:

Privileged execution mode (code assumed to be fully
trusted);

Any instruction can be executed and any memory
address can be referenced;

The portion of the kernel which is responsible of the
required service is actually executed.

October 12, 2009 Domenico Galli 19

Linux Kernel Accounting (III)
IRQ: Transmission/reception code executed
out of the logical execution flow of the
applications:

Driven by the motion of data packets through
the network.

E.g.: when new data packets reach the Network
Interface Card (NIC) of a PC through a network cable, a
procedure must be executed in order to process the
received data and forward them to the appropriate user
application which is waiting for data.

To this aim the kernel provides hardware
interrupt handlers, which are software routines
executed upon the reception of hardware
interrupt signals, in our case raised by the NIC.

October 12, 2009 Domenico Galli 20

Linux Kernel Accounting (IV)
SoftIRQ: Code executed out of interrupt
context (interrupt reception enabled),
scheduled by hardware interrupt handlers:

While the kernel is processing hardware interrupts
(interrupt context), the interrupt reception is disabled,
hence interrupts received in the meantime are lost.

To avoid such a situation, the hardware interrupt
handlers perform only the work which must be
accomplished immediately (top half), so limiting to
the minimum the amount of time spent with
interrupts disabled.

The real work is instead deferred to the execution of
so-called software interrupt handlers (bottom half),
which are usually scheduled by hardware interrupt
handlers;

Always executed on the same CPU where they were
originally raised.

October 12, 2009 Domenico Galli 21

Packet Transmission
Packet sent from IP layer to Queue Discipline (qdisc).
Any appropriate Quality of Service (QoS) in qdisc:

pfifo_fast (packet fifo);
RED (Random Early Drop);
CBQ (Class Based Queuing).

qdisc notifies network driver when it’s time to send: it
calls hard_start_xmit():

Place all ready sk_buff pointers in tx_ring;
Notifies NIC that packets are ready to send.

October 12, 2009 Domenico Galli 22

Packet Transmission (II)
If immediate sending is not possible:

The driver stops the queuing of packets by calling netif_tx_stop_queue():
No more calls to hard_start_xmit() allowed.

Until the queue is woken up by a call to netif_tx_wake_queue().

A SoftIRQ is scheduled and the packet transmission “over the wire” is deferred
to a later time.

Could happen if the device is running out of resources.

System could in principle generate packets for transmission faster than
the device can handle.
Using recent PCs and NICs, in practice, this never happens:

NICs are faster than PCs.

October 12, 2009 Domenico Galli 23

Packet Transmission (III)
The NIC signals the kernel (via interrupt) when packets
are successfully transmitted:

Highly variable on when interrupt is sent!

Interrupt handler enqueues transmitted packets for
deallocation (completion_queue);
At next softirq, all packets in the
completion_queue are deallocated:

Meta-data contained in the sk_buff struct;
Packet data not needed anymore.

October 12, 2009 Domenico Galli 24

Packet Reception

October 12, 2009 Domenico Galli 25

NIC accumulates a bunch of frames in an internal buffer.
NIC start a bus-mastered DMA transfer from the buffer to a reserved
space in the kernel memory.

Packet descriptors (metadata, sk_buff) pointing to data are stored in a circular
ring (rx-ring).

As soon as the DMA transfer has terminated, the NIC notifies the
kernel of the new available packets:

By means of an interrupt signal raised on a dedicated IRQ line.

The Interrupt Controller issues an interrupt to the dedicated
processor pin.

Packet Reception (II)

October 12, 2009 Domenico Galli 26

The kernel reacts to the IRQ by executing a hardware interrupt
handler.
The handler leaves the packets in the rx_ring and enables polling
mode for the originating NIC:

By disabling the IRQ reception for that NIC and putting a reference to the NIC
in a poll-list attached to the interrupted CPU, and finally schedules a SoftIRQ.

The SoftIRQ handler polls all the NICs registered in the poll-list to draw
packets from the rx_ring (in order to process them) until a
configurable number of packets at maximum, known as quota and
controlled by the parameter netdev_max_backlog, is reached.

Packet Reception (III)

October 12, 2009 Domenico Galli 27

If the quota is reached, but the NIC has still
packets to offer:

Then the NIC is put at the end of the poll-list.

If the quota is reached, but the NIC has no
more packets to offer:

The NIC is deleted from the poll-list and the IRQ
reception for that NIC is enabled again.

Packet Reception (IV)

October 12, 2009 Domenico Galli 28

Reception mechanism, known as NAPI (New Network
Application Program Interface):

Introduced in the 2.6 kernel series.

Main feature:
Converge to an interrupt-driven mechanism under light network
traffic:

Reducing both latency and CPU load.

Converge to to a poll mechanism under high network traffic:
Avoiding live-lock conditions:

Packets are accepted only as fast as the system is able process them.

Setting the Process-to-CPU Affinity
Library calls:
#include <sched.h>

int sched_setaffinity (pid_t tgid, unsigned
int cpusetsize, cpu_set_t *mask)
int sched_getaffinity (pid_t tgid, unsigned
int cpusetsize, cpu_set_t *mask)

Macro to set/get the CPU mask:
void CPU_CLR(int cpu, cpu_set_t *mask)
int CPU_ISSET(int cpu, cpu_set_t *mask)
void CPU_SET(int cpu, cpu_set_t *mask)
void CPU_ZERO(cpu_set_t *mask)

Parameters:
tgid: thread group identifier (was pid);

cpusetsize: length (in bytes) of the data pointed to by
mask. Normally: sizeof(cpu_set_t).

mask: CPU mask (structure).

29 October 12, 2009 Domenico Galli

Setting the Process-to-CPU Affinity
Shell commands:
taskset [mask] -- [command] [arguments]

taskset -p [tgid]

taskset -p [mask] [tgid]

Parameters:
tgid: thread group identifier (was pid);

mask: bitmask, with the lowest order bit corresponding
to the first logical CPU and the highest order bit
corresponding to the last logical CPU:

0x00000001 is processor #0;

0x00000002 is processor #1;

0x00000003 is processors #0 and #1;

0x0000000f is processor #0 through #3;

0x000000f0 is processors #4 through #7;

0xffffffff is all processors (#0 through #31).

30 October 12, 2009 Domenico Galli

Setting the Interrupt-to-CPU Affinity
Usually irqbalance daemon running in
Linux distributions:
irqbalance automatically distributes
interrupts over the processors and cores;

Design goal of irqbalance: find a balance
between power savings and optimal
performance.

To manually optimize network workload
distribution among CPU core irqbalance
has to be switched off:
service irqbalance status

service irqbalance stop

31 October 12, 2009 Domenico Galli

Setting the Interrupt-to-CPU Affinity (II)
To find IRQ #:

cat /proc/interrupts

To set CPU Affinity for the handler of IRQ N:

echo mask >/proc/irq/ N /smp_affinity

32 October 12, 2009 Domenico Galli

10-GbE Point-to-Point Throughput
In real operating condition, maximum transfer rate
limited not only by the capacity of the link itself, but
also:

By the capacity of the data busses (PCI and FSB);

By the ability of the CPUs and of the OS to handle packet
processing and interrupt rates raised by the network
interface cards in due time.

Data throughput & CPU load measures reported:
NIC mounted on the PCI-E bus of commodity PCs as
transmitters and receivers.

10GBase-SR

October 12, 2009 Domenico Galli 33

CPU Affinity Settings

10-GbE Receiver

Core L2 Cache Task

0
0

(IRQ + softIRQ) from Ethernet NIC

1 Receiver process

Domenico Galli 34

IRQ +

SoftIRQ

Receiver

process

October 12, 2009

CPU Affinity Settings (II)
10-GbE Sender

Core L2 Cache Task

0
0

(IRQ + softIRQ) from Ethernet NIC

1

2
1

Sender process

3 Second sender process [2 sender tests]

Domenico Galli 35

Sender 1

process

IRQ +

SoftIRQ

Sender 2

process

October 12, 2009

Test Platform
Motherboard IBM X3650

Processor type Intel Xeon E5335

Procesors x cores x clock (GHz) 2 x 4 x 2.00

L2 cache (MiB) 8

L2 speed (GHz) 2.00

FSB speed (MHz) 1333

Chipset Intel 5000P

RAM 4 GiB

NIC Myricom 10G-PCIE-8A-S

NIC DMA Speed (Gbit/s) ro / wo /rw 10.44 / 14.54 / 19.07

October 12, 2009 Domenico Galli 36

Settings

net.core.rmem_max (B) 16777216

net.core.wmem_max (B) 16777216

net.ipv4.tcp_rmem (B) 4096 / 87380 / 16777216

net.ipv4.tcp_wmem (B) 4096 / 65536 / 16777216

net.core.netdev_max_backlog 250000

Interrupt Coalescence (s) 25

PCI-E speed (Gbit/s) 2.5

PCI-E width x8

Write Combining enabled

Interrupt Type MSI

Domenico Galli 37 October 12, 2009

UDP Data Transfer
User Datagram Protocol:

Connectionless, unreliable messages
(datagrams) of a fixed maximum length of 64 KiB.

What does UDP do:

Simple interface to IP protocol (fragmentation, routing,

etc.);

Demultiplexing multiple processes using the ports.

What does not UDP do:

Retransmission upon receipt of a bad packet;

Flow control;

Error control;

Congestion control.

October 12, 2009 Domenico Galli 38

Why UDP?
TCP is optimized for accurate delivery rather
than for timely delivery:

Relatively long delays (in the order of seconds)
while waiting for out-of-order messages or
retransmissions of lost messages.

TCP not particularly suitable for real-time
applications:

In time-sensitive applications, dropping packets
is sometimes preferable to waiting for delayed
or retransmitted packets.

UDP/RTP (Real-time Transport Protocol)
preferred:

e.g. Voice over IP.

October 12, 2009 Domenico Galli 39

Why UDP in DAQ Chain?
High link occupancy is desirable:

To maximize the physical event rate.

The data flow is driven by accelerator/detector
rates (time-sensitive application):

Independent on the PC which process data.

Mechanisms which slow down data transmission
are not appreciated:

E.g. in TCP: slow start, congestion avoidance, flow
control.

Mechanisms for reliability (retransmission) can be
useless due to latency limits.

Retransmission requires additional bandwidth,
which is stolen from the event bandwidth:

If the available bandwidth is limited, retransmission will
probably trigger a throttling system which discards physical
events in any case.

October 12, 2009 Domenico Galli 40

UDP – Standard Frames
1500 B MTU (Maximum Transfer Unit).
UDP datagrams sent as fast as they can be sent.
Bottleneck: sender CPU core 2 (sender process 100 % system load).

~ 4.8 Gb/s

~ 440 kHz

2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

User
System
IRQ

Soft IRQ
Total

100%
(bottleneck)

fake softIRQ

softIRQ
(4/5)

IRQ
(1/5)

softIRQ
(~50%)

system
(~50%)

October 12, 2009 Domenico Galli 41

UDP – Jumbo Frames
9000 B MTU.
Sensible enhancement with respect to 1500 MTU.

~ 9.7 Gb/s

~ 440 kHz

2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

2
 P

C
I-

E

fr
a
m

e
s

2
 P

C
I-

E

fr
a
m

e
s

3 PCI-E
frames

3 PCI-E
frames

100%
(bottleneck)

fake softIRQ

softIRQ
(4/5)

IRQ
(1/5)

softIRQ
(~50%)

system
(~50%)

User
System
IRQ

Soft IRQ
Total

Domenico Galli 42 October 12, 2009

Additional dummy ps, bound to the same core of the tx ps (CPU

2), wasting CPU resources.

CPU available for tx process trimmed using relative priority.

The perfect linearity confirms that the system CPU load @

sender side was actually the main bottleneck.

2 GHz 3 GHz CPU (same
architecture):

Potential increase of 50% in the

maximum throughput:
Provided that bottlenecks of other kinds
do not show up before such increase
is reached.

UDP – Jumbo Frames (II)

Domenico Galli 43 October 12, 2009

UDP – Jumbo Frames – 2 Senders

Doubled availability of CPU cycles to the sender PC.

10GbE fully saturated.

Receiver (playing against 2 senders) not yet saturated.

200%
(bottleneck)

fake
softIRQ

softIRQ
(4/5)

IRQ
(1/5)

softIRQ
(25-75%)

system
(75-90%)

~5 KiB
no more CPU bottleneck

User
System
IRQ

Soft IRQ
Total

~ 10 Gb/s

~ 600 kHz

2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

~
3
 K

iB

~
3
 K

iB

Domenico Galli 44 October 12, 2009

TCP Data Transfer
Transmission Control Protocol:

Provides a reliable end-to-end byte stream over an unreliable
network.
Designed to dynamically adapt to properties of the internetwork
and to be robust in the face of many kinds of failures.

TCP breaks outgoing data streams into pieces
(segments) which usually fit in a single network frame and
which are sent as separate IP datagrams.

October 12, 2009 Domenico Galli 45

TCP Data Transfer (II)
TCP key feature:

Ordered data transfer:

The destination host rearranges segments according to sequence
number.

Retransmission of lost packets:

Any cumulative stream not acknowledged will be retransmitted.

Discarding duplicate packets.

Error-free data transfer:

Checksum.

Flow control (sliding windows):

Limits the rate a sender transfers data to guarantee reliable delivery;

The receiver specifies in the receive window field the amount of
additional received data (in bytes) that it is willing to buffer for the
connection;

When the receiving host's buffer fills, the next acknowledgement
contains a 0 in the window size, to stop transfer and allow the data in
the buffer to be processed.

Congestion avoidance:

Avoid congestion collapse.

October 12, 2009 Domenico Galli 46

TCP Data Transfer (III)
TCP provides many additional control
mechanisms:

Selective acknowledgments;
Allows the receiver to acknowledge discontiguous blocks of
packets that were received correctly.

Nagle’s algorithm:
To cope with the small packet problem.

Clark’s solution:
To cope with the silly window sindrome.

Slow-start, congestion avoidance, fast retransmit,
and fast recovery:

Which cooperate to congestion control.

Retransmission timeout:
Karn's algorithm, TCP timestamps, Jacobson's algorithm
for evaluating round-trip time.

October 12, 2009 Domenico Galli 47

TCP – Standard Frames

1500 B MTU (Maximum Transfer Unit).

TCP segments sent as fast as they can be sent.

Bottleneck: sender CPU core

2 (sender process, 100%

system load).

100%
(bottleneck)

fake
softIRQ

softIRQ
(2/3)

IRQ
(1/3)

softIRQ
(<35%)

system
(<40%)

~ 5.8 Gb/s

User
System
IRQ

Soft IRQ
Total

Domenico Galli 48 October 12, 2009

TCP – Jumbo Frames

9000 B MTU.

Enhancement with respect to 1500 MTU (6 7 Gb/s).

Bottleneck: sender CPU core

2 (sender process, 100%

system load).

User
System
IRQ

Soft IRQ
Total

~ 7 Gb/s 100%
(bottleneck)

fake
softIRQ

softIRQ
(<15%)

system
(<45%)

Domenico Galli 49 October 12, 2009

Nagle’s Algorithm
Nagle’s algorithm active by default when using TCP-
streamed transfers.

Introduced in the TCP/IP stack (RFC 896) in order to solve
the so called small packet problem.

An application repeatedly emits data in small chunks, frequently
only 1 byte in size. Since TCP packets have a 40 byte header (20
bytes for TCP, 20 bytes for IPv4), this results in a 41 byte packet
for 1 byte of useful information, a huge overhead.
This situation often occurs in telnet sessions, where most key-
presses generate a single byte of data which is transmitted
immediately.

Worse, over slow links, many such packets can be in transit at the same
time, potentially leading to congestion collapse.

The Nagle’s algorithm automatically concatenates a
number of small data packets in order to increase the
efficiency of a network application system, i.e. reducing
the number of physical packets that must be sent.

October 12, 2009 Domenico Galli 50

Nagle’s Algorithm (II)
When there are few bytes to send, but not a

full packet’s worth, and there are some

unacknowledged data in flight:

Then the Nagle’s algorithm waits, keeping data

buffered, until:

Either the application provides more data:

Enough to make another full-sized TCP segment or half

of the TCP window size;

Or the other end acknowledges all the outstanding

data, so that there are no longer any data in flight.

October 12, 2009 Domenico Galli 51

Linux Settings on Nagle’s Algorithm
The Linux operating system provides two options to
disable the Nagle’s algorithm in two opposite ways,
which can be set by means of the setsockopt() system
call:

TCP_NODELAY
The OS always send segments as soon as possible:

Even if there is only a small amount of data.

The behavior of TCP transfers is expected to match more
closely that of UDP ones:

Since no small packet aggregation at the sender side is
performed.

TCP_CORK
The OS does not send out partial frames at all until the
application provides more data:

 Even if the other end acknowledges all the outstanding data.

Only full frames can be sent out:
If an application does not fill the last frame of a transmission, the
system will delay sending the last packet forever.

October 12, 2009 Domenico Galli 52

Linux Settings on Nagle’s Algorithm (II)

October 12, 2009 Domenico Galli 53

TCP – Jumbo – TCP_NODELAY
Nagle’s algorithm disabled. Segments are always sent as soon as
possible, even if there is only a small amount of data.
Small data packets no longer concatenated.

Discontinuities of the UDP tests.

UDP throughput not reached,
due to the latency overhead of
the TCP protocol.

User
System
IRQ

Soft IRQ
Total

100%
(bottleneck)

fake
softIRQ

softIRQ
(<15%)

system
(<45%)

~ 7.2 Gb/s
2
 f

ra
m

e
s

3
 f

ra
m

e
s

4
 f

ra
m

e
s

Domenico Galli 54 October 12, 2009

TCP – Jumbo – TCP_CORK
User
System
IRQ

Soft IRQ
Total

Nagle’s algorithm disabled. OS does not send out partial

frames at all until the application provides more data, even if the

other end acknowledges

all the outstanding data.

No relevant differences.

100%
(bottleneck)

fake
softIRQ

softIRQ
(<15%)

system
(<45%)

~ 7 Gb/s

Domenico Galli 55 October 12, 2009

TCP – Zero Copy
The send() system call is used to send data

stored in a buffer in the user space to the

network through a TCP socket.

This requires the copy of the data from the user
space to the kernel space on transmission.

The sendfile() system call allows to send

data read from a file descriptor to the

network through a TCP socket.

Since both the network and the file are
accessible from kernel mode, any time-

expensive copy from user space to kernel space

can be avoided.

October 12, 2009 Domenico Galli 56

TCP – Zero Copy (II)

October 12, 2009 Domenico Galli 57

read()+send() sendfile()

#include <sys/sendfile.h>
ssize_t sendfile(int out_fd, int in_fd, off_t *offset,
size_t count);

out_fd: file descriptor of the output socket;
in_fd: file descriptor of the open file;
offset: start position in file;
count: number of Bytes to be copied.

TCP – Standard – Zero Copy

1500 B MTU.

Significant increase
in throughput

with respect to send().

User
System
IRQ

Soft IRQ
Total

~ 8.2 Gb/s

100%
(bottleneck)

~5 KiB
no more CPU bottleneck

softIRQ
(5-50%)

system
(10-55%)

softIRQ
(10-30%)

IRQ
(1-10%)

Domenico Galli 58 October 12, 2009

TCP – Jumbo – Zero Copy
sendfile() system call.
Improvement with respect to send() more significant.
For send size > 2.5 KiB:

Throughput = 10 Gbit/s
Sender CPU 2 load < 100%:

down to 30%.

Only test able to saturate
10-GbE with a single ps.

User
System
IRQ

Soft IRQ
Total

~ 10 Gb/s

2
.5

 K
iB

1
 K

iB

100%
(bottleneck)

~2.5 KiB
no more CPU bottleneck

softIRQ
(10-30%)

IRQ
(1-10%)

softIRQ
(5-20%)

system
(10-60%)

30%

Domenico Galli 59 October 12, 2009

TCP Hardware Offload
Modern network adapters usually implement

various kinds of hardware offload

functionalities:

The kernel can delegate heavy parts of its tasks
to the adapter.

This is one of the most effective means available
to improve the performance and reduce the CPU

utilization.

October 12, 2009 Domenico Galli 60

Setting the Hardware Offload
Print offload functionalities:
ethtool –k ethX

Set offload functionalities:
ethtool –K ethX [rx on|off]
[tx on|off] [sg on|off] [tso on|off]
[ufo on|off] [gso on|off]
[gro on|off] [lro on|off]
rx: receiving checksumming;
tx: transmitting checksumming;

sg: scatter-gather I/O;

tso: TCP segmentation offload;

ufo: UDP fragmentation offload;

gso: generic segmentation offload;
gro: generic receive offload;

lro: large receive offload.

October 12, 2009 Domenico Galli 61

TCP Segmentation Offload (TSO)
When a data packet larger than the MTU is
sent by the kernel to the network adapter, the
data must first be sub-divided into MTU-
sized packets (segmentation).

With old adapters, this task was commonly
performed at the kernel level, by the TCP
layer of the TCP/IP stack.

In contrast, when TSO is supported and
active, the host CPU is offloaded from such
a segmentation task, and it can pass
segments larger than one MTU (up to 64
KiB) to the NIC in a single transmit request.

October 12, 2009 Domenico Galli 62

TCP – Jumbo – Zero Copy – No TSO
TSO (TCP Segmentation Offload) switched off.

No differences in throughput:

10-GbE link already saturated
(size > 2.5 KiB).

CPU load reduced by TSO
(size > 2.5 KiB).

User
System
IRQ

Soft IRQ
Total

~ 10 Gb/s

2
.5

 K
iB

1
 K

iB

100%
(bottleneck)

~2.5 KiB
no more CPU bottleneck

softIRQ
(10-35%)

IRQ
(1-10%)

softIRQ
(5-20%)

system
(10-60%)

50%

Domenico Galli 63 October 12, 2009

Large Receive Offload (LRO)
Assists the receiving host in processing

incoming TCP packets:

By aggregating them at the NIC level into fewer
larger packets;

It may reduce considerably the number of
physical packets actually processed by the kernel;

Hence offloading it in a significant way.

October 12, 2009 Domenico Galli 64

TCP – Jumbo – Zero Copy – No LRO
LRO (Large Receive Offload) switched off.

The performance (sizes > 2.5 KiB)
slightly worse;

Total load of the CPU 1
receiver sensibly
increased, up to 100%.

User
System
IRQ

Soft IRQ
Total

~ 10 Gb/s

2
.5

 K
iB

1
 K

iB

100%
(bottleneck)

~2.5 KiB
no more CPU bottleneck

softIRQ
(10-30%)

IRQ
(1-10%)

softIRQ
(10-40%)

system
(15-100%)

100%
(bottleneck)

Domenico Galli 65 October 12, 2009

Scatter-Gather I/O (SG)
The process of creating a segment ready to be
transmitted through the network, starting from the
transmission requests coming from the TCP layer,
in general requires data buffering:

In order to assemble packets of optimal size, to evaluate
checksums and to add the TCP, IP and Ethernet headers.

This procedure can require a fair amount of data
copying into a new buffer:

To make the final linear packet, stored in contiguous
memory locations.

However, if the NIC that has to transmit the packet
can perform SG I/O, the packet does not need to
be assembled into a single linear chunk:

Since the NIC is able to retrieve through DMA the
fragments stored in non-contiguous memory locations.

This hardware optimization offloads the kernel from such
a linearization duty, hence improving performance.

October 12, 2009 Domenico Galli 66

TCP – Jumbo – Zero Copy – No SG

Scatter-gather I/O switched off.

Performance significantly improved
by SG I/O.

User
System
IRQ

Soft IRQ
Total

~ 7.4 Gb/s
100%
(bottleneck)

softIRQ
(5-15%)

system
(10-45%)

Domenico Galli 67 October 12, 2009

Checksum Offload (CO)
IP/TCP/UDP checksum is performed to

make sure that the packet is correctly

transferred:

by comparing, at the receiver side, the value of
the checksum field in the packet header (set by

the sender) with the value calculated by the

receiver from the packet payload.

The task of evaluating the TCP checksum

can be offloaded to the NIC thanks to the

so-called Checksum Offload.

October 12, 2009 Domenico Galli 68

TCP – Jumbo – Zero Copy – No CO
Checksum offload switched off.

Performance is significantly improved.

However, when the checksum
offload is off, all the other
offload functionalities of
the are also switched off
(SG, TSO, LRO, etc.).

User
System
IRQ

Soft IRQ
Total

100%
(bottleneck)

~ 6.9 Gb/s

softIRQ
(5-25%)

system
(10-50%)

Domenico Galli 69 October 12, 2009

Summary
Main bottleneck:

CPU utilization at the sender side:
System load of the transmitter process.

Optimization:
CPU workload can be distributed among 2 CPU cores by separating the
sender/receiver process from the IRQ/SoftIRQ handlers.

Jumbo frames in fact mandatory for 10-GbE.
In TCP transmission:

Improvement can be obtained by zero-copy (sendfile());

Scatter-Gather functionality sensibly improves the performance;

The TSO functionality helps the sender CPU.
The LRO functionality helps the receiver CPU.

Performances: review of data transfer via 10-GbE links at full speed:
Using either the UDP or the TCP protocol;
By varying the MTU and the packet send size;
2 UDP sender needed to saturate the link:

1 receiver can play against 2 senders;

Using TCP+zero-copy+offload, 1 sender is enough to saturate the link;

Packet size crucial:
Using 10-GbE you could transfer data at 200 Mb/s maximum!

October 12, 2009 Domenico Galli 70

More Details

October 12, 2009 Domenico Galli 71

Inaccuracy in SoftIRQ Accounting
Inaccuracy in the kernel accounting (2.6.9-78.0.1, SLC 4.7)
can lead to a wrong assignment of jiffy counts to the
SoftIRQ partition.

The CPU tick is accredited to SoftIRQ if the softirq_count()
macro returns a value 0.

This value is incremented by __local_bh_disable()
function:

Usually called by the __do_softirq() function, i.e. the one
which actually executes the SoftIRQ code.

Problem: __local_bh_disable() also called by
local_bh_disable():

In turn called by other functions in the kernel.

If a timer interrupt employed for accumulating kernel
accounting statistics happens when the kernel is executing a
function where local_bh_disable() has been called, the
tick is incorrectly accredited to SoftIRQ time, while it was
indeed a synchronous code and had to be accounted to
System.

October 12, 2009 Domenico Galli 72

		2009-10-15T09:11:21+0200
	Domenico Galli

