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Outline 
Need of High-Speed Links in HEP applications: 

2 Use Cases. 

High speed data-link technologies in HEP: 
Commodity links; 

10 Gb/s links. 

Bottlenecks in moving data through High-Speed Links.  

Optimization: Network workload sharing among CPU 
cores: 

The Linux network layer: 
Transmission and reception. 

Process-to-CPU affinity; 

IRQ-to CPU affinity; 

Performances of transmission through 10 Gb/s Ethernet: 
UDP transfer; 

TCP transfer: 
Nagle’s algorithm; 

Zero copy; 
TCP hardware offload. 
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High Speed Network Links  
Fastest available network link technology in the 
market (e.g. 10-GbE at present) usually employed in 
LAN backbones:  

Connecting network devices together: 
E.g.: connecting together network switches in a LAN. 

Data flow managed by Switch Firmware. 
Switch manufacturer will care avoiding bottlenecks; 

We only need to test the device… 

Front-end (PC, custom electronics) usually 
connected to lower speed devices. 

10-GbE 

1-GbE 1-GbE 

October 12, 2009 Domenico Galli 3 



Front-end Access to High Speed Network 
HEP applications sometimes need High speed 
network links directly connected to the front-end: 

PCs; 
Custom electronic boards. 

Data Flow managed by OS or FPGA software. 
Need to check bottlenecks which could limit the 
throughput. 

Use case 1: On-line data path: 
Data Acquisition – Event Building – High Level Trigger. 

Use case 2: Network Distributed Storage: 
Offline computing centers (Tier-1). 

10-GbE 10-GbE 

PC Custom Board 
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Use case 1: The On-Line Data Path 
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Use case 1: The On-Line Data Path (II) 
Trend in data packet rate and size. 
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Use Case 2: Network Storage in a SAN 
File servers in a Storage Area Network (SAN) 

which exports data to client nodes via Ethernet. 

Common situation in 
case of large 

computing farms: 

Computing nodes 

access the mass 
storage through 

a pool of Parallel File 

System disk-servers: 

E.g.: GPFS or Lustre. 

SAN Controller 

SAN Fabric 

Ethernet  

2 x 4 Gb/s Fiber Channel 

File Servers 

HBA 

Worker Nodes mounting a Parallel File System 

NIC 

4 Gb/s Fiber Channel 

10 Gb/s Ethernet 

1 Gb/s Ethernet 
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High Speed Data Link Technology 
Trend toward COTS technologies: 

HERA-B: 

Shark link (proprietary, by Analog Devices) until level 2, than Fast Ethernet. 

BaBar: 

Fast Ethernet. 

DØ:  

Fast Ethernet / Gigabit Ethernet.  

CDF:  

ATM / SCRAMnet (proprietary, by Systran, low latency replicated non-
coherent shared memory network). 

CMS:  

Myrinet (proprietary, Myricom) / Gigabit Ethernet. 

Atlas / LHCb / Alice:  

Gigabit Ethernet. 

Possible new experiments:  

10-Gigabit Ethernet (soon also on copper),  16-48-Gigabit infiniBand, 100-
Gigabit Ethernet. 
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Commodity Links 

More and more often used in HEP for DAQ, Event Building 
and High Level Trigger Systems: 

Limited costs; 

Maintainability; 

Upgradability. 

Demand of data throughput in HEP is increasing following: 
Physical event rate; 

Number of electronic channels; 

Reduction of the on-line event filter (trigger) stages. 

Industry has moved on since the design of the DAQ for the 
LHC experiments: 

10 Gigabit/s Ethernet well established; 

48 Gigabit/s InfiniBand available; 

96 Gigabit/s InfiniBand is being actively worked on; 

100 Gigabit/s Ethernet is being actively worked on. 
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10 Gb/s Technologies 
Ethernet: 

10 Gb/s well established  

Various optical standards, short range copper (CX4), long range copper over UTP 
CAT6A standardised), widely used as aggregation technology. 

Begins to conquer MAN and WAN market (succeeding SONET). 

Large market share, vendor independent IEEE standard (802.3x). 

Very active R&D on 100 Gigabit/s and 40 Gigabit/s (will probably die). 

Myrinet: 

Popular cluster-interconnect technology, low latency. 

10 Gb/s standard (optical and copper (CX4) exist) 

Single vendor (Myricom). 

InfiniBand: 

Cluster interconnect technology, low latency. 

8 Gb/s and 16 Gb/s standards (optical and copper). 

Open industry standard, several vendors (OEMs) but very few chipmakers 

(Mellanox). 

Powerful protocol/software stack (reliable/unreliable datagrams, QoS, out-of-band 

messages etc…). 
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InfiniBand 

3456 port switch 
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10 Gb/s Technologies (II) 

Ethernet 

1260 port switch 



Bottlenecks 
Direct access to a high-speed 
network from a device can incur 
in 3 major system bottlenecks: 

The peripheral bus bandwidth: 
PCI, PCI-X, PCI-e. 

The memory bus bandwidth: 
Front Side Bus, AMD HyperTransport, 
Intel QuickPath Interconnect. 

The CPU utilization. 

“Fast network, slow host” 
scenario: 

Moore’s law: “Every 18-24 months, 
computing power doubles…”; 

Gilder’s law: “Every 12 months, 
optical fiber bandwidth doubles…”. 
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Nomenclature 
Frame: Ethernet Data Packet: 

Standard Frames: 46 B – 1500 B payload size; 

Jumbo Frames: 46 B – 9000 B payload size. 

Datagram: IP/UDP Data Packet: 

20 B – 64 KiB (65535 B) total size. 

Fragment: fragment of IP Datagram which 

fits into an Ethernet frame. 

Segment: TCP Data Packet: 

Usually fits into the maximum Ethernet payload 
size (1500/9000 B). 
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1-Gigabit Ethernet UDP Bit-Transfer Rate 
Year 2005, bus PCI-X (bottleneck). 
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 UDP header 
 IP header 

 Ethernet Preamble 
 Ethernet Start Frame Delimiter 

 Ethernet Header 
 Ethernet Frame Check Sequence 
 Ethernet Inter Packet Gap   

1500  20  8 = 1472 
1500 2  20 2  8 = 2952 

1500 3  20 3  8 = 4432 
1500 4  20 4  8 = 5912 

……………………….. 



1-Gigabit Ethernet Frame Transfer Rate 
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10-GbE Network I/O 
“Fast network, slow host” scenario. 

Bottlenecks in I/O performance: 
The PCI-X bus bandwidth (peak throughput 8.5 
Gbit/s in 133 MHz flavor): 

Substituted by the PCI-E, (20 Gbit/s peak throughput in 
x8 flavor). 

The memory bandwidth: 
FSB has increased the clock from 533 MHz to 1600 
MHz. 

New Memory Architectures: 

AMD HyperTransport; 

Intel QuickPath Interconnect. 

The CPU utilization: 
Multi-core architectures. 
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Sharing Workload among CPU Cores 
To take advantage of the multiple cores of 
recent CPUs, workload should be shared 
among different cores. 

The Linux Kernel splits the process of sending/
receiving data packets into different tasks: 

Differently scheduled and accounted;  

Can be partially distributed over several CPU cores. 

Statistics of kernel accounting partitions 
accessible through the /proc/stat pseudo-
file: 

Data relative to each CPU core; 

Partitions relevant to network processing: User, 
System, IRQ and SoftIRQ; 

Number of jiffies (1/1000th of a second) spent by 
CPU core in each different mode. 

17 October 12, 2009 Domenico Galli 



Linux Kernel Accounting 
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User System IRQ SoftIRQ 

top 

cat /proc/stat 

jiffies
i

jiffies
j

j=us,sy,ni,id,wa,hi,si



Linux Kernel Accounting (II) 
User: User applications which send/receive data 
packets are typically ordinary processes which 
run in user mode: 

Non-privileged execution mode; 
No access to portions of memory allocated by the 
kernel or by other processes. 

System: to access a network device, the 
applications execute system calls, where the 
execution is switched to kernel mode: 

Privileged execution mode (code assumed to be fully 
trusted); 

Any instruction can be executed and any memory 
address can be referenced; 

The portion of the kernel which is responsible of the 
required service is actually executed. 
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Linux Kernel Accounting (III) 
IRQ: Transmission/reception code executed 
out of the logical execution flow of the 
applications: 

Driven by the motion of data packets through 
the network. 

E.g.: when new data packets reach the Network 
Interface Card (NIC) of a PC through a network cable, a 
procedure must be executed in order to process the 
received data and forward them to the appropriate user 
application which is waiting for data. 

To this aim the kernel provides hardware 
interrupt handlers, which are software routines 
executed upon the reception of hardware 
interrupt signals, in our case raised by the NIC. 
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Linux Kernel Accounting (IV) 
SoftIRQ: Code executed out of interrupt 
context (interrupt reception enabled), 
scheduled by hardware interrupt handlers: 

While the kernel is processing hardware interrupts 
(interrupt context), the interrupt reception is disabled, 
hence interrupts received in the meantime are lost. 

To avoid such a situation, the hardware interrupt 
handlers perform only the work which must be 
accomplished immediately (top half), so limiting to 
the minimum the amount of time spent with 
interrupts disabled.  

The real work is instead deferred to the execution of 
so-called software interrupt handlers (bottom half), 
which are usually scheduled by hardware interrupt 
handlers; 

Always executed on the same CPU where they were 
originally raised. 
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Packet Transmission 
Packet sent from IP layer to Queue Discipline (qdisc). 
Any appropriate Quality of Service (QoS) in qdisc: 

pfifo_fast (packet fifo); 
RED (Random Early Drop); 
CBQ (Class Based Queuing). 

qdisc notifies network driver when it’s time to send: it 
calls hard_start_xmit(): 

Place all ready sk_buff pointers in tx_ring; 
Notifies NIC that packets are ready to send. 
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Packet Transmission (II) 
If immediate sending is not possible: 

The driver stops the queuing of packets by calling netif_tx_stop_queue(): 
No more calls to hard_start_xmit() allowed. 

Until the queue is woken up by a call to netif_tx_wake_queue(). 

A SoftIRQ is scheduled and the packet transmission “over the wire” is deferred 
to a later time. 

Could happen if the device is running out of resources. 

System could in principle generate packets for transmission faster than 
the device can handle. 
Using recent PCs and NICs, in practice, this never happens: 

NICs are faster than PCs. 
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Packet Transmission (III) 
The NIC signals the kernel (via interrupt) when packets 
are successfully transmitted: 

Highly variable on when interrupt is sent! 

Interrupt handler enqueues transmitted packets for 
deallocation (completion_queue); 
At next softirq, all packets in the 
completion_queue are deallocated: 

Meta-data contained in the sk_buff struct; 
Packet data not needed anymore. 
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Packet Reception 
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NIC accumulates a bunch of frames in an internal buffer. 
NIC start a bus-mastered DMA transfer from the buffer to a reserved 
space in the kernel memory. 

Packet descriptors (metadata, sk_buff) pointing to data are stored in a circular 
ring (rx-ring). 

As soon as the DMA transfer has terminated, the NIC notifies the 
kernel of the new available packets: 

By means of an interrupt signal raised on a dedicated IRQ line. 

The Interrupt Controller issues an interrupt to the dedicated 
processor pin. 



Packet Reception (II) 
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The kernel reacts to the IRQ by executing a hardware interrupt 
handler. 
The handler leaves the packets in the rx_ring and enables polling 
mode for the originating NIC: 

By disabling the IRQ reception for that NIC and putting a reference to the NIC 
in a poll-list attached to the interrupted CPU, and finally schedules a SoftIRQ.  

The SoftIRQ handler polls all the NICs registered in the poll-list to draw 
packets from the rx_ring (in order to process them) until a 
configurable number of packets at maximum, known as quota and 
controlled by the parameter netdev_max_backlog, is reached. 



Packet Reception (III) 
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If the quota is reached, but the NIC has still 
packets to offer: 

Then the NIC is put at the end of the poll-list.  

If the quota is reached, but the NIC has no 
more packets to offer: 

The NIC is deleted from the poll-list and the IRQ 
reception for that NIC is enabled again. 



Packet Reception (IV) 
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Reception mechanism, known as NAPI (New Network 
Application Program Interface): 

Introduced in the 2.6 kernel series.  

Main feature: 
Converge to an interrupt-driven mechanism under light network 
traffic: 

Reducing both latency and CPU load. 

Converge to to a poll mechanism under high network traffic: 
Avoiding live-lock conditions: 

Packets are accepted only as fast as the system is able process them. 



Setting the Process-to-CPU Affinity 
Library calls: 
#include <sched.h> 

int sched_setaffinity (pid_t tgid, unsigned 
int cpusetsize, cpu_set_t *mask) 
int sched_getaffinity (pid_t tgid, unsigned 
int cpusetsize, cpu_set_t *mask) 

Macro to set/get the CPU mask: 
void CPU_CLR(int cpu, cpu_set_t *mask) 
int CPU_ISSET(int cpu, cpu_set_t *mask) 
void CPU_SET(int cpu, cpu_set_t *mask) 
void CPU_ZERO(cpu_set_t *mask) 

Parameters: 
tgid: thread group identifier (was pid); 

cpusetsize:  length (in bytes) of the data pointed to by 
mask.  Normally: sizeof(cpu_set_t). 

mask: CPU mask (structure). 
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Setting the Process-to-CPU Affinity 
Shell commands: 
taskset [mask] -- [command] [arguments] 

taskset -p [tgid] 

taskset -p [mask] [tgid] 

Parameters: 
tgid: thread group identifier (was pid); 

mask: bitmask, with the lowest order bit corresponding 
to the first logical CPU and the highest  order  bit 
corresponding  to  the  last logical CPU: 

0x00000001 is processor #0; 

0x00000002 is processor #1; 

0x00000003 is processors #0 and #1; 

0x0000000f is processor #0 through #3; 

0x000000f0 is processors #4 through #7; 

0xffffffff is all processors (#0 through #31). 
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Setting the Interrupt-to-CPU Affinity 
Usually irqbalance daemon running in 
Linux distributions: 
irqbalance automatically distributes 
interrupts over the processors and cores; 

Design goal of irqbalance: find a balance 
between power savings and optimal 
performance. 

To manually optimize network workload 
distribution among CPU core irqbalance 
has to be switched off: 
service irqbalance status 

service irqbalance stop 
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Setting the Interrupt-to-CPU Affinity (II) 
To find IRQ #: 

cat /proc/interrupts 

To set CPU Affinity for the handler of IRQ N: 

echo mask  >/proc/irq/ N /smp_affinity 
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10-GbE Point-to-Point Throughput 
In real operating condition, maximum transfer rate 
limited not only by the capacity of the link itself, but 
also: 

By the capacity of the data busses (PCI and FSB); 

By the ability of the CPUs and of the OS to handle packet 
processing and interrupt rates raised by the network 
interface cards in due time. 

Data throughput & CPU load measures reported: 
NIC mounted on the PCI-E bus of commodity PCs as 
transmitters and receivers. 

10GBase-SR 
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CPU Affinity Settings 

10-GbE Receiver 

Core L2 Cache Task 

0 
0 

(IRQ + softIRQ) from Ethernet NIC 

1 Receiver process 
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IRQ + 

SoftIRQ 

Receiver 

process 
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CPU Affinity Settings (II) 
10-GbE Sender 

Core L2 Cache Task 

0 
0 

(IRQ + softIRQ) from Ethernet NIC 

1 

2 
1 

Sender process 

3 Second sender process [2 sender tests] 
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Sender 1 

process 

IRQ + 

SoftIRQ 

Sender 2 

process 
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Test Platform 
Motherboard IBM X3650 

Processor type Intel Xeon E5335 

Procesors x cores x clock (GHz) 2 x 4 x 2.00 

L2 cache (MiB) 8 

L2 speed (GHz) 2.00 

FSB speed (MHz) 1333 

Chipset Intel 5000P 

RAM 4 GiB 

NIC Myricom 10G-PCIE-8A-S 

NIC DMA Speed (Gbit/s) ro / wo /rw 10.44 / 14.54 / 19.07 
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Settings 

net.core.rmem_max (B) 16777216 

net.core.wmem_max (B) 16777216 

net.ipv4.tcp_rmem (B) 4096 / 87380 / 16777216 

net.ipv4.tcp_wmem (B) 4096 / 65536 / 16777216 

net.core.netdev_max_backlog 250000 

Interrupt Coalescence ( s) 25 

PCI-E speed (Gbit/s) 2.5 

PCI-E width x8 

Write Combining enabled 

Interrupt Type MSI 
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UDP Data Transfer 
User Datagram Protocol: 

Connectionless,  unreliable  messages 
(datagrams) of a fixed maximum length of 64 KiB. 

What does UDP do: 

Simple interface to IP protocol (fragmentation, routing, 

etc.); 

Demultiplexing multiple processes using the ports. 

What does not UDP do: 

Retransmission upon receipt of a bad packet; 

Flow control; 

Error control; 

Congestion control. 
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Why UDP? 
TCP is optimized for accurate delivery rather 
than for timely delivery: 

Relatively long delays (in the order of seconds) 
while waiting for out-of-order messages or 
retransmissions of lost messages. 

TCP not particularly suitable for real-time 
applications: 

In time-sensitive applications, dropping packets 
is sometimes preferable to waiting for delayed 
or retransmitted packets. 

UDP/RTP (Real-time Transport Protocol) 
preferred: 

e.g. Voice over IP. 
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Why UDP in DAQ Chain? 
High link occupancy is desirable:  

To maximize the physical event rate. 

The data flow is driven by accelerator/detector 
rates (time-sensitive application): 

Independent on the PC which process data. 

Mechanisms which slow down data transmission 
are not appreciated: 

E.g. in TCP: slow start, congestion avoidance, flow 
control. 

Mechanisms for reliability (retransmission) can be 
useless due to latency limits. 

Retransmission requires additional bandwidth, 
which is stolen from the event bandwidth: 

If the available bandwidth is limited, retransmission will 
probably trigger a throttling system which discards physical 
events in any case. 
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UDP – Standard Frames 
1500 B MTU (Maximum Transfer Unit). 
UDP datagrams sent as fast as they can be sent. 
Bottleneck: sender CPU core 2 (sender process 100 % system load). 
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UDP – Jumbo Frames 
9000 B MTU. 
Sensible enhancement with respect to 1500 MTU. 
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Additional dummy ps, bound to the same core of the tx ps (CPU 

2), wasting CPU resources. 

CPU available for tx process trimmed using relative priority. 

The perfect linearity confirms that the system CPU load @ 

sender side was actually the main bottleneck. 

2 GHz  3 GHz CPU (same 
architecture): 

Potential increase of 50% in the 

maximum throughput: 
Provided that bottlenecks of other kinds 
do not show up before such increase 
is reached. 

UDP – Jumbo Frames (II) 
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UDP – Jumbo Frames – 2 Senders 

Doubled availability of CPU cycles to the sender PC. 

10GbE fully saturated. 

Receiver (playing against 2 senders) not yet saturated. 
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TCP Data Transfer 
Transmission Control Protocol: 

Provides a reliable end-to-end byte stream over an unreliable 
network. 
Designed to dynamically adapt to properties of the internetwork 
and to be robust in the face of many kinds of failures. 

TCP breaks outgoing data streams into pieces 
(segments) which usually fit in a single network frame and 
which are sent as separate IP datagrams. 
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TCP Data Transfer (II) 
TCP key feature: 

Ordered data transfer: 

The destination host rearranges segments according to sequence 
number. 

Retransmission of lost packets: 

Any cumulative stream not acknowledged will be retransmitted. 

Discarding duplicate packets. 

Error-free data transfer: 

Checksum. 

Flow control (sliding windows): 

Limits the rate a sender transfers data to guarantee reliable delivery;  

The receiver specifies in the receive window field the amount of 
additional received data (in bytes) that it is willing to buffer for the 
connection; 

When the receiving host's buffer fills, the next acknowledgement 
contains a 0 in the window size, to stop transfer and allow the data in 
the buffer to be processed. 

Congestion avoidance: 

Avoid congestion collapse. 

October 12, 2009 Domenico Galli 46 



TCP Data Transfer (III) 
TCP provides many additional control 
mechanisms: 

Selective  acknowledgments; 
Allows the receiver to acknowledge discontiguous blocks of 
packets that were received correctly. 

Nagle’s algorithm: 
To cope with the small packet problem. 

Clark’s solution: 
To cope with the silly window sindrome. 

Slow-start, congestion avoidance, fast retransmit, 
and fast recovery: 

Which cooperate to congestion control. 

Retransmission timeout: 
Karn's algorithm, TCP timestamps, Jacobson's algorithm 
for evaluating round-trip time. 
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TCP – Standard Frames 

1500 B MTU (Maximum Transfer Unit). 

TCP segments sent as fast as they can be sent. 

Bottleneck: sender CPU core 

2 (sender process, 100% 

system load). 

100% 
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IRQ 
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TCP – Jumbo Frames 

9000 B MTU. 

Enhancement with respect to 1500 MTU (6  7 Gb/s). 

Bottleneck: sender CPU core 

2 (sender process, 100% 

system load). 

User 
System 
IRQ 

Soft IRQ 
Total 

~ 7 Gb/s 100% 
(bottleneck) 

fake 
softIRQ 

softIRQ 
(<15%) 

system 
(<45%) 
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Nagle’s Algorithm 
Nagle’s algorithm active by default when using TCP-
streamed transfers. 

Introduced in the TCP/IP stack (RFC 896) in order to solve 
the so called small packet problem. 

An application repeatedly emits data in small chunks, frequently 
only 1 byte in size. Since TCP packets have a 40 byte header (20 
bytes for TCP, 20 bytes for IPv4), this results in a 41 byte packet 
for 1 byte of useful information, a huge overhead.  
This situation often occurs in telnet sessions, where most key-
presses generate a single byte of data which is transmitted 
immediately.  

Worse, over slow links, many such packets can be in transit at the same 
time, potentially leading to congestion collapse. 

The Nagle’s algorithm automatically concatenates a 
number of small data packets in order to increase the 
efficiency of a network application system, i.e. reducing 
the number of physical packets that must be sent. 
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Nagle’s Algorithm (II) 
When there are few bytes to send, but not a 

full packet’s worth, and there are some 

unacknowledged data in flight: 

Then the Nagle’s algorithm waits, keeping data 

buffered, until: 

Either the application provides more data: 

Enough to make another full-sized TCP segment or half 

of the TCP window size; 

Or the other end acknowledges all the outstanding 

data, so that there are no longer any data in flight. 

October 12, 2009 Domenico Galli 51 



Linux Settings on Nagle’s Algorithm 
The Linux operating system provides two options to 
disable the Nagle’s algorithm in two opposite ways, 
which can be set by means of the setsockopt() system 
call: 

TCP_NODELAY 
The OS always send segments as soon as possible: 

Even if there is only a small amount of data.  

The behavior of TCP transfers is expected to match more 
closely that of UDP ones: 

Since no small packet aggregation at the sender side is 
performed.  

TCP_CORK 
The OS does not send out partial frames at all until the 
application provides more data: 

 Even if the other end acknowledges all the outstanding data. 

Only full frames can be sent out: 
If an application does not fill the last frame of a transmission, the 
system will delay sending the last packet forever. 
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Linux Settings on Nagle’s Algorithm (II) 
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TCP – Jumbo – TCP_NODELAY 
Nagle’s algorithm disabled. Segments are always sent as soon as 
possible, even if there is only a small amount of data. 
Small data packets no longer concatenated. 

Discontinuities of the UDP tests. 

UDP throughput not reached, 
due to the latency overhead of 
the TCP protocol. 
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TCP – Jumbo – TCP_CORK 
User 
System 
IRQ 

Soft IRQ 
Total 

Nagle’s algorithm disabled. OS does not send out partial 

frames at all until the application provides more data, even if the 

other end acknowledges 

all the outstanding data. 

No relevant differences. 

100% 
(bottleneck) 

fake 
softIRQ 

softIRQ 
(<15%) 

system 
(<45%) 

~ 7 Gb/s 
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TCP – Zero Copy 
The send() system call is used to send data 

stored in a buffer in the user space to the 

network through a TCP socket.  

This requires the copy of the data from the user 
space to the kernel space on transmission. 

The sendfile() system call allows to send 

data read from a file descriptor to the 

network through a TCP socket.  

Since both the network and the file are 
accessible from kernel mode, any time-

expensive copy from user space to kernel space 

can be avoided. 
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TCP – Zero Copy (II) 
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read()+send() sendfile() 

#include <sys/sendfile.h> 
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, 
size_t count); 

out_fd: file descriptor of the output socket; 
in_fd: file descriptor of the open file; 
offset: start position in file; 
count: number of Bytes to be copied. 



TCP – Standard – Zero Copy  

1500 B MTU. 

Significant increase 
in throughput 

with respect to send(). 

User 
System 
IRQ 

Soft IRQ 
Total 

~ 8.2 Gb/s 

100% 
(bottleneck) 

~5 KiB 
no more CPU bottleneck 

softIRQ 
(5-50%) 

system 
(10-55%) 

softIRQ 
(10-30%) 

IRQ 
(1-10%) 
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TCP – Jumbo – Zero Copy 
sendfile() system call. 
Improvement with respect to send() more significant. 
For send size > 2.5 KiB: 

Throughput = 10 Gbit/s  
Sender CPU 2 load < 100%: 

down to 30%. 

Only test able to saturate 
10-GbE with a single ps. 
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system 
(10-60%) 

30% 
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TCP Hardware Offload 
Modern network adapters usually implement 

various kinds of hardware offload 

functionalities: 

The kernel can delegate heavy parts of its tasks 
to the adapter. 

This is one of the most effective means available 
to improve the performance and reduce the CPU 

utilization.  
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Setting the Hardware Offload 
Print offload functionalities: 
ethtool –k ethX  

Set offload functionalities: 
ethtool –K ethX [rx on|off] 
[tx on|off] [sg on|off] [tso on|off] 
[ufo on|off] [gso on|off] 
[gro on|off] [lro on|off] 
rx: receiving checksumming; 
tx: transmitting checksumming; 

sg: scatter-gather I/O; 

tso: TCP segmentation offload; 

ufo: UDP fragmentation offload; 

gso: generic segmentation offload; 
gro: generic receive offload; 

lro: large receive offload. 
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TCP Segmentation Offload (TSO) 
When a data packet larger than the MTU is 
sent by the kernel to the network adapter, the 
data must first be sub-divided into MTU-
sized packets (segmentation).  

With old adapters, this task was commonly 
performed at the kernel level, by the TCP 
layer of the TCP/IP stack.  

In contrast, when TSO is supported and 
active, the host CPU is offloaded from such 
a segmentation task, and it can pass 
segments larger than one MTU (up to 64 
KiB) to the NIC in a single transmit request. 

October 12, 2009 Domenico Galli 62 



TCP – Jumbo – Zero Copy – No TSO 
TSO (TCP Segmentation Offload) switched off. 

No differences in throughput: 

10-GbE link already saturated 
(size > 2.5 KiB). 

CPU load reduced by TSO 
(size > 2.5 KiB). 
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Large Receive Offload (LRO) 
Assists the receiving host in processing 

incoming TCP packets: 

By aggregating them at the NIC level into fewer 
larger packets; 

It may reduce considerably the number of 
physical packets actually processed by the kernel; 

Hence offloading it in a significant way. 
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TCP – Jumbo – Zero Copy – No LRO 
LRO (Large Receive Offload) switched off. 

The performance (sizes > 2.5 KiB)  
slightly worse; 

Total load of the CPU 1 
receiver sensibly 
increased, up to 100%. 
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Scatter-Gather I/O (SG) 
The process of creating a segment ready to be 
transmitted through the network, starting from the 
transmission requests coming from the TCP layer, 
in general requires data buffering: 

In order to assemble packets of optimal size, to evaluate 
checksums and to add the TCP, IP and Ethernet headers. 

This procedure can require a fair amount of data 
copying into a new buffer: 

To make the final linear packet, stored in contiguous 
memory locations.  

However, if the NIC that has to transmit the packet 
can perform SG I/O, the packet does not need to 
be assembled into a single linear chunk: 

Since the NIC is able to retrieve through DMA the 
fragments stored in non-contiguous memory locations. 

This hardware optimization offloads the kernel from such 
a linearization duty, hence improving performance. 
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TCP – Jumbo – Zero Copy – No SG 

Scatter-gather I/O switched off. 

Performance significantly improved 
by SG I/O. 
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~ 7.4 Gb/s 
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(5-15%) 
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Checksum Offload (CO) 
IP/TCP/UDP checksum is performed to 

make sure that the packet is correctly 

transferred: 

by comparing, at the receiver side, the value of 
the checksum field in the packet header (set by 

the sender) with the value calculated by the 

receiver from the packet payload. 

The task of evaluating the TCP checksum 

can be offloaded to the NIC thanks to the 

so-called Checksum Offload. 
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TCP – Jumbo – Zero Copy – No CO 
Checksum offload switched off. 

Performance is significantly improved.  

However, when the checksum 
offload is off, all the other 
offload functionalities of 
the are also switched off 
(SG, TSO, LRO, etc.). 
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100% 
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~ 6.9 Gb/s 
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(5-25%) 
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(10-50%) 
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Summary 
Main bottleneck: 

CPU utilization at the sender side: 
System load of the transmitter process. 

Optimization: 
CPU workload can be distributed among 2 CPU cores by separating the 
sender/receiver process from the IRQ/SoftIRQ handlers. 

Jumbo frames in fact mandatory for 10-GbE. 
In TCP transmission: 

Improvement can be obtained by zero-copy (sendfile()); 

Scatter-Gather functionality sensibly improves the performance; 

The TSO functionality helps the sender CPU. 
The LRO functionality helps the receiver CPU. 

Performances: review of data transfer via 10-GbE links at full speed: 
Using either the UDP or the TCP protocol; 
By varying the MTU and the packet send size; 
2 UDP sender needed to saturate the link: 

1 receiver can play against 2 senders; 

Using TCP+zero-copy+offload, 1 sender is enough to saturate the link; 

Packet size crucial: 
Using 10-GbE you could transfer data at 200 Mb/s maximum! 
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More Details 
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Inaccuracy in SoftIRQ Accounting 
Inaccuracy in the kernel accounting (2.6.9-78.0.1, SLC 4.7) 
can lead to a wrong assignment of jiffy counts to the 
SoftIRQ partition. 

The CPU tick is accredited to SoftIRQ if the softirq_count() 
macro returns a value 0. 

This value is incremented by __local_bh_disable() 
function: 

Usually called by the __do_softirq() function, i.e. the one 
which actually executes the SoftIRQ code.  

Problem: __local_bh_disable() also called by 
local_bh_disable(): 

In turn called by other functions in the kernel. 

If a timer interrupt employed for accumulating kernel 
accounting statistics happens when the kernel is executing a 
function where local_bh_disable() has been called, the 
tick is incorrectly accredited to SoftIRQ time, while it was 
indeed a synchronous code and had to be accounted to 
System. 
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