
Pere Mato (CERN)

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

 HEP [LHC] Data processing Overview

 Software project scale

 Architectural Design
<break>

 Software Frameworks

 Example: GAUDI

 Software integrating elements

10/12/2009P. Mato/CERN 2

 Large number of physicists and engineers
participating actively in the data analysis and
for extended period of time

 Widely distributed computing environment

 Huge quantity of data that has to be
distributed and shared by all members of
each experiment

10/12/2009P. Mato/CERN 3

10/12/2009P. Mato/CERN 4

 Design should take into account the >15 years
lifetime of the LHC
◦ Resilient designs, technology choices will evolve over time

 The standard language for physics applications
software in all four LHC experiments is C++
◦ language choice may change in the future or multi-language

could be introduced

 Operate seamlessly in a distributed environment
and also be functional in „disconnected‟ local
environments

 Modularity of components with well-defined
interfaces and interchangeability of implementations

10/12/2009P. Mato/CERN 5

 Integrate well in a coherent software framework
and other tools

 Favor software re-use. Use of existing software
should be consistent with the architecture

 The software quality of the framework should be at
least as good than the internal software of any of
the sub-detectors

 Multi-Platforms. Software should be written in a
portable manner and conformant to the language
standards

10/12/2009P. Mato/CERN 6

 Small problems can be solved with simple
techniques

 For large problems you need
to use different techniques
that are in general more
complex and with a up front
cost

10/12/2009P. Mato/CERN 7

 Can be built by one
person

 Requires
◦ Minimal modeling

◦ Simple process

◦ Simple tools

 Little risk

10/12/2009P. Mato/CERN 8

 Built most
efficiently and
timely by a
team

 Requires
◦ Modeling

◦ Well-defined
process

◦ Power tools

10/12/2009P. Mato/CERN 9

 Built by many companies. Requires:
◦ Modeling

◦ Simple plans, evolving to blueprints

◦ Scale models

◦ Engineering plans

◦ Well-defined process

◦ Architectural team

◦ Political planning

◦ Infrastructure planning

◦ Time-tabling and scheduling

◦ Selling space

◦ Heavy equipment

 Major risks

10/12/2009P. Mato/CERN 10

 To make communication possible to you need to
share a vocabulary
◦ Standards for languages, design patterns, architecture, etc.

 To work together you need to control the integrity
of source code
◦ Tools for code versioning (e.g. CVS, SubVersion)

 To build, test and release a large system can be
difficult
◦ Tools for creating releases (e.g. CMT, SCRAM), tracking

problems

But individual effort is still important
◦ Good tools and methods can help to do a better job

10/12/2009P. Mato/CERN 11

 “More computing sins are committed in the name
of efficiency (without necessarily achieving it) than
for any other single reason - including blind
stupidity”, William Wulf (AT&T Professor)

 Overall efficiency is what really matters
◦ The cost of the improving the code (people are expensive)

should be included

 Perceived performance is what really matters
◦ Is the system getting the job done or not?

 Reminder: Performance assumes correctness
◦ A fast program delivering [sometimes] wrong results is not

helpful

10/12/2009P. Mato/CERN 12

 Put extra effort into building high quality components

 Be more efficient by re-using these components

 Many obstacles to overcome
◦ too broad functionality / lack of flexibility in components

◦ organisational - reuse requires a broad overview to ensure
unified approach

 we tend to split into domains each independently managed

◦ cultural

 don‟t trust others to deliver what we need

 fear of dependency on others

 fail to share information with others

 developers fear loss of creativity

Reuse is a management activity

10/12/2009P. Mato/CERN 13

10/12/2009P. Mato/CERN 14

 Event Processing Applications

◦ Trigger, Simulation, Reconstruction,
Selection programs

 Data Analysis

◦ Event/Detector display, data
presentation programs

 Detector calibration

◦ Calibration and Alignment
programs

 Job configuration, submission,
monitoring and control

◦ Grid awareness

Mainly batch oriented.

Interactive for development

& debugging. Real-time.

Mainly interactive

Mainly interactive

Batch and interactive

 For example, the LHCb requirements for
interactive analysis:
◦ Better [than PAW] integration with experiment

framework

 consistent with the analysis batch environment, use
the same toolkits and experiment algorithms/tools

 access the experiment data objects and allow browsing

 integrated with event display

 allow interactive reconstruction and simulation

10/12/2009P. Mato/CERN 15

 System Architecture

 Component design

 Class design

10/12/2009P. Mato/CERN 16

 Capture major interfaces between subsystems and
packages early

 Be able to visualize and reason about the design in
a common notation
◦ Common vocabulary, running scenarios

 Be able to break the work into smaller pieces that
can be developed concurrently by different teams

 Acquire an understanding of non-functional
constrains
◦ Programming languages, concurrency, database, GUI,

component re-use

10/12/2009P. Mato/CERN 17

10/12/2009P. Mato/CERN 18

 Definition of [software] architecture [1]
◦ Set or significant decisions about the organization

of the software system

◦ Selection of the structural elements and their
interfaces which compose the system

◦ Their behavior -- collaboration among the
structural elements

◦ Composition of these structural and behavioral
elements into progressively larger subsystems

◦ The architectural style that guides this organization

 The architecture is the blue-print
(architecture description document)

[1] I. Jacobson, et al. “The Unified Software development Process”, Addison Wesley 1999

 Software architecture also involves
◦ usage

◦ functionality

◦ performance

◦ resilience

◦ reuse

◦ comprehensibility

◦ economic and technology constraints and tradeoffs

◦ aesthetic concerns

Mary Shaw, CMU

Grady Booch,

Philippe Kruchten,

Rich Reitman

Kurt Bittner, Rational

10/12/2009 19P. Mato/CERN

 A well designed architecture has certain
qualities:
◦ layered subsystems

◦ low inter-subsystem coupling

◦ robust, resilient and scalable

◦ high degree of reusable
components

◦ clear interfaces

◦ driven by most important and
risky use cases

◦ easy to understand

10/12/2009P. Mato/CERN 20

 Models are the language of designer, in many
disciplines

 Models are representations of the system to-
be-built or as-built

 Models are vehicle for communications with
various stakeholders

 Visual models, blueprints
 Scale
 Models allow reasoning about some

characteristic of the real system

10/12/2009 21P. Mato/CERN

 Architecture is many things to many different
interested parties
◦ end-user

◦ customer

◦ project manager

◦ system engineer

◦ developer

◦ architect

◦ maintainer

◦ other developers

 Multidimensional reality

 Multiple stakeholders
◦ multiple views, multiple blueprints

10/12/2009 22P. Mato/CERN

 Select scenarios: criticality and risk

 Identify main classes and their responsibility

 Distribute behavior on classes

 Structure in subsystems, layers,
define interfaces

 Define distribution and concurrency

 Implement architectural prototype

 Derive tests from use cases

 Evaluate architecture
◦ Iterate

Use case view

Logical view

Deployment view

Implementation view

Process view

10/12/2009 23P. Mato/CERN

 Scenario is a brief description of an interaction of a
stakeholder with a system

System

What

if…

What

if…

What

if…What

if…

What

if…

 User scenarios
◦ What if I want to run a new track fit algorithm?

◦ What if I need to use the newest calibration?

 Deployment engineer
◦ What if we need to port the software to the Solaris

platform?

◦ What if we embed the software in real-time systems

 Manager
◦ What if we need to support some standard data

formats

◦ What if we integrate a commercial GUI system

10/12/2009 25P. Mato/CERN

Theft
Method

Intuition

Classical system Unprecedented system

Theft

Method

Intuition

10/12/2009 26P. Mato/CERN

 An architecture style defines a family of
systems in terms of a pattern of structural
organization.

 An architectural style defines
◦ a vocabulary of components and connector types

◦ a set of constraints on how they can be combined

◦ one or more semantic models that specify how a
system‟s overall properties can be determined from
the properties of its parts

Mary Shaw, CMU

10/12/2009 27P. Mato/CERN

10/12/2009P. Mato/CERN 28

 General categorization of systems [1]

user-centric focus on the direct
visualization

and manipulation of the
objects

that define a certain domain

data-centric focus upon preserving the
integrity of the persistent

objectsin a system

computation-centric focus is on the transformation
of objectsthat are interesting
to the system

[1] G. Booch, “Object Solutions”, Addison-Wesley 1996

10/12/2009P. Mato/CERN 29

User Interface

Interactivity

Scripting

Object store

Database

Data Integrity

Algorithms

Computation

computation-centric

data-

centric
user-

centric

• The applications in the

different domains may

have different

emphasis in:

• Interactivity

• Database

• Computation

• Elements of all three

are present in all

applications

10/12/2009P. Mato/CERN 30

 Framework adequate for “all” event processing
applications

 Algorithms process “event data” with the help of
“services” and using “detector data”.

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

Converter
ConverterEvent

Selector

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

Converter
ConverterEvent

Selector

 Unified Modeling Language (UML) is a standardized
general-purpose modeling language

 Includes a set of graphical notation techniques to
create visual models of software-intensive systems

 Is an open standard

 Supports the entire software development lifecycle

 Supports diverse applications areas

 Is based on experience and needs of the user
community

 Supported by many tools

10/12/2009P. Mato/CERN 31

10/12/2009P. Mato/CERN 32

 Structure diagrams

◦ Class

◦ Component

◦ Deployment

◦ Object

◦ Package

 Behavior diagrams

◦ Activity

◦ State machine

◦ Use case

 Interaction diagrams

◦ Communication

◦ Interaction

◦ Sequence

 Captures system functionality
as seen by users

 Built in early stages
of development
◦ Specify the context of a

system

◦ Capture the requirements of a s

◦ Validate a system‟s
architecture

◦ Drive implementation and
generate test cases

 Developed by analysts and
domain experts

10/12/2009 33P. Mato/CERN

 Captures the vocabulary
of a system

 Built and refined
throughout development
◦ Name and model concepts

in the system

◦ Specify collaborations

◦ Specify logical database
schemas

 Developed by analysts,
designers, and
implementers

10/12/2009 34P. Mato/CERN

 Shows instances and links

 Built during
analysis and
design
◦ Illustrate data/

object structures

◦ Specify snapshots

 Developed by
analysts,
designers, and
implementers

10/12/2009 35P. Mato/CERN

 Captures dynamic
behavior (time-
oriented)

 Purpose
◦ Model flow of

control

◦ Illustrate
typical
scenarios

10/12/2009 36P. Mato/CERN

 Captures dynamic
behavior (message-
oriented)
◦ Model flow of control

◦ Illustrate coordination of
object structure and
control

10/12/2009 37P. Mato/CERN

 Captures dynamic behavior (event-oriented)

 Purpose
◦ Model object lifecycle

◦ Model reactive objects (user interfaces, devices, etc.)

10/12/2009 38P. Mato/CERN

 Experience
◦ In software development

◦ In the domain

 Pro-active, goal oriented

 Leadership, authority

 Architecture team
◦ Balance between technologists, domain experts,

users

10/12/2009 39P. Mato/CERN

 Not just a top level designer
 Need to ensure feasibility

 Not the project manager
 But “joined at the hip”

 Not a technology expert
 Purpose of the system, “fit”,

 Not a lone scientist
 Communicator

10/12/2009 40P. Mato/CERN

 Defining the architecture of the software

 Maintaining the architectural integrity of the
software

 Assessing technical risks related to the software
design

 Proposing the order and contents of the successive
iterations

 Consulting services

 Assisting marketing for future product definition

 Facilitating communications between project teams

10/12/2009 41P. Mato/CERN

The life of a software architect is a long

(and sometimes painful) succession of

suboptimal decisions made partly in the

dark.

10/12/2009 42P. Mato/CERN

 A software framework is an abstraction in which
common code providing generic functionality can
be selectively overridden or specialized by user
code providing specific functionality.

 A software framework is similar to software
libraries in that they are reusable abstractions of
code wrapped in a well-defined API
◦ Typically the framework “calls” the user provided

adaptations for specific functionality

 Is the realization of a software architecture and
facilitates software re-use

10/12/2009P. Mato/CERN 44

 A skeleton of an application into which developers
plug in their code and provides most of the common
functionality

10/12/2009P. Mato/CERN 45

 A single Framework does for fit everywhere

 Each software domain provides its specialized
framework
◦ E.g. a GUI framework based on signal-slot can be

used to build GUI application

 Real complex applications are made typically
with a collaboration of frameworks

10/12/2009P. Mato/CERN 46

P. Mato/CERN 47

non-HEP specific

software packages

Experiment Framework

Event
Det

Desc.
Calib.

Applications

Core Libraries

Simulation
Data

Mngmt.

Distrib.

Analysis

Every experiment has a framework for

basic services and various specialized

frameworks: event model, detector

description, visualization, persistency,

interactivity, simulation, calibrarion, etc.

General purpose non-HEP libraries

Applications are built on top of frameworks

and implementing the required algorithms

Core libraries and services that are widely

used and provide basic functionality

Specialized domains that are common

among the experiments

10/12/2009

 Framework Definition [1,2]
◦ A architectural pattern that codifies a particular

domain. It provides the suitable knobs, slots and
tabs that permit clients to use and adapt to specific
applications within a given range of behavior.

 In practice
◦ A skeleton of an application into which developers

plug in their code and provides most of the
common functionality.

[1] G. Booch, “Object Solutions”, Addison-Wesley 1996

[2] E. Gamma, et al., “Design Patterns”, Addison-Wesley 1995

10/12/2009 48P. Mato/CERN

◦ Common vocabulary, better specifications of what
needs to be done, better understanding of the
system.

◦ Low coupling between concurrent developments.
Smooth integration. Organization of the
development.

◦ Robustness, resilient to change (change-tolerant).

◦ Fostering code re-use

10/12/2009 49P. Mato/CERN

An Example of Framework for HEP
Applications

 Separation between “data” and “algorithms”

 Three basic categories of “data”
◦ event data, detector data, statistical data

 Separation between “transient” and
“persistent” representations of data

 Data store-centered (“blackboard”)
architectural style

 “User code” encapsulated in few specific
places

 Well defined component “interfaces” with
plug-in capabilities

10/12/2009P. Mato/CERN 51

Transient
Event Store

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services Histogram

Service

Persistency
Service

Data
Files

Transient
Histogram
Store

Application
Manager

ConverterConverterEvent
Selector

10/12/2009 52P. Mato/CERN

◦ Algorithm

 Atomic data processing unit (visible & controlled
by framework)

◦ Algorithm Tool

 Class called by the Algorithm or another Tool to
perform a specific function (private and public)

◦ Data Object

 Atomic data unit (visible and managed by
transient data store)

◦ Transient Data Store

 Central service and repository for data objects
(data location, life cycle, load on demand, …)

10/12/2009 53P. Mato/CERN

◦ Services

 Globally available software components providing
framework functionality

◦ Data Converter

 Provides explicit/implicit conversion from/to
persistent data format to/from transient data

◦ Properties

 Control and data parameters for Algorithms and
Services

10/12/2009 54P. Mato/CERN

 Users write Concrete
Algorithms

 It is called once per
physics event

 Implements three
methods in addition to
the constructor and
destructor
◦ initialize(), execute(),

finalize()

IAlgorithm

• initialize()

• execute()

• finalize()

Algorithm

Concrete
Algorithm

IProperty

• setProperty()

• getProperty()

10/12/2009 55P. Mato/CERN

Concrete
Algorithm

EventDataSvc
IDataProviderSvc

IDataProviderSvc

IHistogramSvc

IMessageSvc

IAlgorithm IProperty

Obj_B

DetectorDataSvc

HistogramSvc

MessageSvc

ParticlePropertySvc
IParticlePropertySvc

ApplicationMgr
ISvcLocator

Obj_A

10/12/2009 56P. Mato/CERN

VCR

IEuroConnectorIRfInput

IUserInterface IInfraredInput

TV set

• Each interface is specialized in a
domain.

• Interfaces are independent of
concrete implementations.

• You can mix devices from
several constructors.

• Application built by composing.

• Standardizing on the interfaces
gives us big leverage.

10/12/2009 57P. Mato/CERN

class IMyInterface {

void doSomething(int a, double b) = 0;

}

IMyInterace.h

#include “IMyInterface.h”

ClientAlgotihm::myMethod() {

// Declare the interface

IMyInterface* myinterface;

// Get the interface from somewhere

service(“MyServiceProvider”, myinterface);

// Use the interface

myinterface->doSomething(10, 100.5);

}

ClientAlgorihtm.cpp

10/12/2009 58P. Mato/CERN

 Program extensions to provide a certain, usually
very specific function "on demand”

 Applications/frameworks support plug-ins for
many reasons (in HEP)
◦ to enable third-party developers to create capabilities to

extend an application

◦ to support features yet
unforeseen

◦ to reduce the size of the
basic application

10/12/2009P. Mato/CERN 59

 Coding the plugin/component

◦ No predefined model

◦ Declaring factory with
signature

 Creating the rootmap file

◦ Text file listing all plugins
and the associated dynamic
library

◦ Created with the genmap tool

 Instantiating the plugin

◦ Library loaded if needed

◦ Strong argument
type checking

◦ No implementation
dependency

10/12/2009P. Mato/CERN 60

PLUGINSVC_FACTORY(MyClass,ICommon*(int,ISvc*));

/* implementation */

Library.MyClass: MyLibrary.so

Library.AnotherClass: MyLibrary.so

MyClass.cpp

class MyClass : public ICommon {

MyClass(int, ISvc*);

...

}; MyClass.h

rootmap

...

ISvc* svc = ...

ICommon* myc;

myc = PluginSvc::create<ICommon*>(“MyClass”,10, svc);

if (myc) {

myc->doSomething();

}
Program.cpp

Algorithm
A

Algorithm
B

Algorithm
C

Transient
Event

Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1Data T1

Data T5

Real dataflow

Apparent dataflow

10/12/2009 61P. Mato/CERN

Event Data Store

Event Data

Service

Persistency

Service

Algorithm

(client)

Direct

reference

retrieve

object

Search

1

2

3

Conversion

Service

load

request

4dispatch

Conversion

Service

Converter

5create object

6read

7 new

8

register

9

10/12/2009 62P. Mato/CERN

10/12/2009 P. Mato/CERN 63

 Concept of sequences
of Algorithms to allow
processing based on
physics signature
◦ Avoid re-calling same

algorithm on same event

◦ Different instances of the
same algorithm possible

 Event filtering
◦ Avoid passing all the

events through all the
processing chain

Event

Input/Output
Algorithm

Filter

Decision

Single

Instances

 Definition of objects on a
higher level
◦ Easy language for defining objects

◦ Ability to derive several
implementations
from this source

◦ Uniform layout of objects

◦ Easily extensible

 Produce C++ headers and
Reflex dictionaries
automatically
 Global optimization possible (e.g.

memory pools)

10/12/2009P. Mato/CERN 64

GOD

files

(xml)
Parser

Back

End

C++

.h

Back

End

Exp.

Policies

Reflex

Dict

Back

End
…

 The Auditor Service provides a set of auditors
that can be used to provide monitoring of
various characteristics of the execution of
Algorithms
◦ ChronoAuditor, MemoryAuditor, etc.

 Each auditor is called immediately before and
after each call to each Algorithm instance
◦ Tracks some resource usage of the Algorithm

Built-in performance monitoring is essential
!!

10/12/2009P. Mato/CERN 65

Algorithm AuditorSvc

AuditorAuditorAuditor_1MyAlg

IAuditorSvc
IAlgorithm

List of

Auditors

jobOptions

10/12/2009 66P. Mato/CERN

 The Incident Service provides synchronization
facilities to components in a Gaudi
application

 Incidents are named software events that are
generated by software components and that
are delivered to other components that have
requested to be informed when that incident
happens
◦ A number of predefined incidents such as

„beginRun‟, „endEvent‟, „openFile‟

10/12/2009P. Mato/CERN 67

Incident

Svc

Client

Object

IService IProperty

IIncidentListener

IIncidentSvc

Add/remove

Originator
fire

Client

Object
Listener

Object

10/12/2009 68P. Mato/CERN

 Typically the execution of Algorithms are
explicitly specified by the initial sequence and
and sub-sequences
◦ Avoid too-late loading of components (HTL)

◦ Easier to debug

 For some use-cases it is necessary to trigger
the execution of a given Algorithm by
accessing an Object in the Transient Store
◦ The DataOnDemand Service is can be configured to

provide this functionality

10/12/2009P. Mato/CERN 69

◦ JobOptions Service

◦ Message Service

◦ Particle Properties Service

◦ Event Data Service

◦ Histogram Service

◦ N-tuple Service

◦ Detector Data Service

◦ Magnetic Field Service

◦ Tracking Material Service

◦ Random Number Generator

◦ Chrono Service

◦ (Persistency Services)

◦ (User Interface & Visualization Services)

◦ (Geant4 Services)

10/12/2009 70P. Mato/CERN

 Each Framework
component can be
configured by a set of
„properties‟ (name/ value
pairs)

 In total thousands of
parameters need to be
specified to fully configure
a complex HEP application

 Using Python to facilitate
the task
◦ Build-in type checking

10/12/2009P. Mato/CERN 71

 Interactivity and scripting are essential use cases
for any HEP framework
◦ Scripts for rapid prototyping and trying new ideas

◦ Testing frameworks

◦ GUI applications

 A convenient way to achieve it is to provide
bindings to a scripting language such as Python (or
a C++ interpreter)
◦ Once this is done the rest comes automatically

10/12/2009P. Mato/CERN 72

 From class definitions
(.h files) a “dictionary”
library is produced
◦ Description of the

class
◦ “stub” functions to

class methods
 Absolutely non-

intrusive
 The PyROOT module

does the adaptation
between Python
objects and C++
objects in a generic
way
◦ It works for any

dictionary

MyClass.h
MyClassDict.so

select.xml

genreflex

Python
interpreter

loadMyClass.so

MyScript.py

PyROOT

10/12/2009 73P. Mato/CERN

 All experiments have developed Software
Frameworks
◦ General architecture of any event processing applications

(simulation, trigger, reconstruction, analysis, etc.)
◦ To achieve coherency and to facilitate software re-use
◦ Hide technical details to the end-user Physicists
◦ Help the Physicists to focus on their physics algorithms

 Applications are developed by customizing
the Framework
◦ By the “composition” of elemental Algorithms to form

complete applications
◦ Using third-party components wherever possible and

configuring them

 ALICE: AliROOT; ATLAS+LHCb: Athena/Gaudi; CMS: CMSSW

10/12/2009P. Mato/CERN 74

Software Re-use

 At occasions you need to a build software
system/application made of independently
developed components
◦ Using existing class libraries

◦ They cannot be re-done using a single „framework‟

◦ Building adaptation layers are not always possible
and effective

 Examples
◦ Integrating MC generators in ROOT

◦ Performing ROOT I/O on Geant4 Applications

10/12/2009P. Mato/CERN 76

10/12/2009P. Mato/CERN 77

 Dictionaries
◦ Dictionaries provide meta data information (reflection) to

allow introspection and interaction of objects in a generic
manner

 Scripting languages
◦ Interpreted languages are ideal for rapid prototyping

◦ They allow integration of independently developed software
modules (software bus)

◦ Standardizing on CINT and Python scripting languages

 Component model and plugin management
◦ Modeling the application as components with well defined

interfaces

◦ Loading the required functionality at runtime

10/12/2009P. Mato/CERN 78

X.h

Reflex

DS

rootcint -cint

rootcint -reflexXDictcint.so

ReflexROOT

Root meta C++

CINTPython

rootcint -gccxml

• Object I/O

• Scripting

(CINT, Python)

• Plug-in

management

• etc.

10/12/2009P. Mato/CERN 79

 The bulk of code for the new HEP experiments
is written in C++
◦ Still some portions of FORTRAN with plans to

migrate
◦ Java and other languages almost non-existent

 Need Python bindings to C++ code
◦ Hand-written (C-API) or generated
◦ Requires taking care of:
 Object, parameter conversions

 Memory management

 C++ function overloading

 C++ templates

 Inheritance and function callbacks

10/12/2009P. Mato/CERN 80

GUI
Python

mathmath

shell
GaudiPython

DatabaseEDG API

GUI

Very rich set of

Python standard

modules

Several GUI

toolkits

XML

Very rich set specialized

generic modules

Gaudi
Framework

PyROOT

ROOT
Classes

PVSS

JPE

Java
Classes

LHC modules

G
a

te
w

a
y
s
 t
o

 o
th

e
r

fr
a

m
e

w
o

rk
s

 Introduced the main concepts of software
architecture
◦ Why it is needed, what it means, modeling concepts and

languages (UML), etc.

◦ The role of architect

 Introduced software frameworks and their
hierarchy

 Used GAUDI framework as an example of HEP event
data processing framework
◦ The main design criteria

◦ Introduction to few of the main concepts and functionalities

 Software integration elements

10/12/2009P. Mato/CERN 81

 Grady Booch, Object Solutions, Addison-Wesley, 1995.

 Eric Gamma, John Vlissides, Richard Helm, Ralph Johnson,
Design Patterns, Addison-Wesley 1995.

 Rational Unified Process 5.0, Rational, Cupertino, CA, 1998

 Len Bass, Paul Clements & Rick Kazman, Software
Architecture in Practice, Addison-Wesley, 1998

10/12/2009 82P. Mato/CERN

