First INFN International School on Architectures, tools and methodologies for /j
w developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009 L/

Designing Architectures and
Frameworks for HEP

Pere Mato (CERN)

£8209
Outline

» HEP [LHC] Data processing Overview
» Software project scale

» Architectural Design
<break>

» Software Frameworks
» Example: GAUDI
» Software integrating elements

P. Mato/CERN 10/12/2009

£5209
LHC computing characteristics

» Large number of physicists and engineers
participating actively in the data analysis and
for extended period of time

» Widely distributed computing environment

» Huge quantity of data that has to be
distributed and shared by all members of
each experiment

P. Mato/CERN 10/12/2009

8009

Data Flow and Processing stages

8009
LHC software requirements

» Design should take into account the >15 years
lifetime of the LHC

- Resilient designs, technology choices will evolve over time

» The standard language for physics applications
software in all four LHC experiments is C++

- language choice may change in the future or multi-language
could be introduced

» Operate seamlessly in a distributed environment
and also be functional in ‘disconnected’ local
environments

» Modularity of components with well-defined
interfaces and interchangeability of implementations

A\ \‘\\.\ >

P. Mato/CERN 10/12/2009

8009
LHC software requirements (2)

» Integrate well in a coherent software framework
and other tools

» Favor software re-use. Use of existing software
should be consistent with the architecture

» The software quality of the framework should be at
least as good than the internal software of any of
the sub-detectors

» Multi-Platforms. Software should be written in a
portable manner and conformant to the language
standards

P. Mato/CERN 10/12/2009

8009
Software Scale

» Small problems can be solved with simple
techniques

» For large problems you need
to use different techniques
that are in general more =
complex and with a up front

-.’-‘._)

cost

P. Mato/CERN 10/12/2009

&0
Architecting a dog house

» Can be built by one
person

» Requires
> Minimal modeling
> Simple process
> Simple tools

» Little risk

P. Mato/CERN 10/12/2009

£5009
Architecting a house

» Built most
efficiently and
timely by a
team

» Requires

- Modeling

o Well-defined
process

- Power tools

P. Mato/CERN 10/12/2009

£5009
Architecting a high rise

» Built by many companies. Requires:
- Modeling

> Simple plans, evolving to blueprints

> Scale models

> Engineering plans

- Well-defined process

> Architectural team

> Political planning

> Infrastructure planning

> Time-tabling and schedu
> Selling space

- Heavy equipment

Major risks

AR
N o\
W\ N\
N\
\ \\
W\
A\ \

P. Mato/CERN 10/12/2009 10

£5209
Tools for large projects

» To make communication possible to you need to
share a vocabulary
- Standards for languages, design patterns, architecture, etc.
» To work together you need to control the integrity
of source code
- Tools for code versioning (e.g. CVS, SubVersion)

» To build, test and release a large system can be
difficult

- Tools for creating releases (e.g. CMT, SCRAM), tracking
problems

> But individual effort is still important
> Good tools and methods can help to do a better job

P. Mato/CERN 10/12/2009

11

&§009
Performance

» “More computing sins are committed in the name
of efficiency (without necessarily achieving it) than
for any other single reason - including blind
stupidity’, William Wulf (AT&T Professor)

» Overall efficiency is what really matters

- The cost of the improving the code (people are expensive)
should be included

» Perceived performance is what really matters
> |s the system getting the job done or not?

» Reminder: Performance assumes correcthess

- A fast program delivering [sometimes] wrong results is not
helpful

P. Mato/CERN 10/12/2009

12

5009
Importance of Reuse

» Put extra effort into building high quality components
» Be more efficient by re-using these components

» Many obstacles to overcome

> too broad functionality / lack of flexibility in components

> organisational - reuse requires a broad overview to ensure
unified approach

- we tend to split into domains each independently managed
> cultural

- don’t trust others to deliver what we need
- fear of dependency on others

- fail to share information with others

- developers fear loss of creativity

Reuse IS a management activity

P. Mato/CERN 10/12/2009 13

£5209
Application Domains

» Event Processing Applications

> Trigger, Simulation, Reconstruction,
Selection programs

» Data Analysis

- Event/Detector display, data
presentation programs

» Detector calibration

- Calibration and Alignment
programs

» Job configuration, submission,
monitoring and control

o Grid awareness

Mainly batch oriented.
Interactive for development
& debugging. Real-time.

Mainly interactive

Batch and interactive

Mainly interactive

P. Mato/CERN 10/12/2009 14

£5209
No Disjoint Domains

» For example, the LHCb requirements for
interactive analysis:

- Better [than PAW] integration with experiment
framework

- consistent with the analysis batch environment, use
the same toolkits and experiment algorithms/tools

- access the experiment data objects and allow browsing
- integrated with event display
- allow interactive reconstruction and simulation

P. Mato/CERN 10/12/2009

15

&509

Software Design

» System Architecture
» Component design
» Class design

1]
Architectural Design
Scope: Processors, Node Package
packages, tasks
Mechanistic Design Class

Scope: Groups of
collaborating classes

Detailed Design

Scope: Classes

Class
attribute

operation

P. Mato/CERN

10/12/2009

16

8009
Architectural Design

» Capture major interfaces between subsystems and
packages early

» Be able to visualize and reason about the design in
a commohn notation
- Common vocabulary, running scenarios

» Be able to break the work into smaller pieces that
can be developed concurrently by different teams

» Acquire an understanding of non-functional
constrains

> Programming languages, concurrency, database, GUI,
component re-use

P. Mato/CERN 10/12/2009

17

&§009
Architecture Defined

» Definition of [software] architecture [1]
- Set or significant decisions about the organization
of the software system

> Selection of the structural elements and their
interfaces which compose the system

- Their behavior -- collaboration among the
structural elements

- Composition of these structural and behavioral
elements into progressively larger subsystems

- The architectural style that guides this organization
» The architecture is the blue-print
(architecture description document)

N jJacobson, et al. “The Unified Software development Process”, Addison Wesley 1999

P. Mato/CERN 10/12/2009 18

£5009

Mary Shaw, CMU
Grady Booch,
Philippe Kruchten,
Rich Reitman

Architecture defined (continued) =

» Software architecture also involves

o

usage

- functionality

0]

(0]

(0]

o

performance
resilience

reuse
comprehensibility

economic and technology constraints and tradeoffs
aesthetic concerns

P. Mato/CERN 10/12/2009 19

£5009

Architectural Design Qualities

» A well designed architecture has certain

qualities:

> layered subsystems

> low inter-subsystem coupling
> robust, resilient and scalable

- high degree of reusable
components

- clear interfaces

- driven by most important and
risky use cases

> easy to understand

P. Mato/CERN

10/12/2009

20

5009

Models

» Models are the language of designer, in many

disc
» Moo
be-

iplines
els are representations of the system to-
ouilt or as-built

» Mog

els are vehicle for communications with

various stakeholders
» Visual models, blueprints
» Scale

» Models allow reasoning about some
characteristic of the real system

P. Mato/CERN 10/12/2009 21

£5009
Many stakeholders, many views

» Architecture is many things to many different
interested parties
> end-user
> customer
° project manager
c system engineer
- developer
> architect
° maintainer
- other developers

» Multidimensional reality

» MuItiBIe stakeholders
7 multiple views, multiple blueprints

P. Mato/CERN 10/12/2009 22

£5009
Architectural design workflow

» Select scenarios: criticality and risk
» ldentify main classes and their responsibility

» Distribute behavior on classes
» Structure in subsystems, layers, "

define interfaces
» Define distribution and concurrency
|
» Implement architectural prototype
» Derive tests from use cases
» Evaluate architecture

> |terate

P. Mato/CERN 10/12/2009 23

5009 . .
Scenario-based evaluation

» Scenario is a brief description of an interaction of a
stakeholder with a system

£5209
Scenarios evaluation examples

» User scenarios
- What if | want to run a new track fit algorithm?
- What if | need to use the newest calibration?

» Deployment engineer
- What if we need to port the software to the Solaris
platform?
- What if we embed the software in real-time systems

» Manager
- What if we need to support some standard data
formats

- What if we integrate a commercial GUI system

P. Mato/CERN 10/12/2009 25

Sources of architecture

Theft Method Method

“ Intuition Theft\ Intuition

Classical system Unprecedented system

P. Mato/CERN 10/12/2009

26

Mary Shaw, CMU

8009
Architectural style

» An architecture style defines a family of
systems in terms of a pattern of structural
organization.

» An architectural style defines
- a vocabulary of components and connector types
- a set of constraints on how they can be combined

> one or more semantic models that specify how a
system’s overall properties can be determined from
the properties of its parts

P. Mato/CERN 10/12/2009 27

5009
Architectural styles

» General categorization of systems [1]

user-centric focus on the direct
visualization

and manipulation of the
objects

that define a certain domain

data-centric focus upon preserving the
integrity of the persistent

objectsin a system
computation-centric focus is on the transformation
of objectstlratatedinterestingy 19
to the system

P. Mato/CERN 10/12/2009 28

£5209
Different style in different domains

* The applications in the
different domains may
have different

data-
centric

user-
centric

emphasis in: User Interface Object store
Interactivity [« » Database
o |nteractivity Scripting Data Integrity

« Database \ /

« Computation Algorithms
- Elements of all three Sl
are present in all
\ _/

applications e

computation-centric

P. Mato/CERN 10/12/2009 29

£5009
Computation-centric: GAUDI

» Framework adequate for “all” event processing
applications

» Algorithms process “event data” with the help of
“services” and using “detector data’.

Application

Manager | > Event /. (3 Event h Converter H
Selector =03 Anal
. L] AwPartCandidates
e 7 EventData | | e, | [Persistency| B pata
Service \ / Service - MCvertices Service Files
{1 Raw
: 4 Transient

JobOptions

Service | Algorithm —H _Event Store)
- 4] N\

Particle P / Transient . -
Service Service Store Service Files
Other p N
Servi Transient : -

rvices i Persistenc
Service Store Service Files
\ J
P. Mato/CERN 10/12/2009

30

UML

» Unified Modeling Language (UML) is a standardized
general-purpose modeling language

» Includes a set of graphical notation techniques to
create visual models of software-intensive systems

» Is an open standard
» Supports the entire software development lifecycle
» Supports diverse applications areas

» |Is based on experience and needs of the user
community

» Supported by many tools

P. Mato/CERN 10/12/2009

31

£5009
UML Diagrams

» Structure diagrams =
> Class F~7;"'“»w¢\

- Component = — WS B BSE I e

[e]

Deployment N\ %) T fﬂ”w'}ﬁif = == g
Object oSlics 418wy 10

(e]

» Behavior diagrams L i] Bl T RS A

- Activity S _Reg el P
- State machine | = : i "

» Interaction dlag rams |Gt £ 1 =
- Communication | & ool | e iilw-kﬁ /
> Interaction | B8 __JI° g <HRY |
> Sequence

P. Mato/CERN 10/12/2009 32

£8209

Use Case Diagram

» Captures system functionality

>

as seen by users

Built in early stages
of development

- Specify the context of a
system

- Validate a system’s

O

Cellular
network

- Capture the requirements("b
O

architecture

> Drive implementation and
generate test cases

User
association

» Developed by analysts and

domain experts

Receive
phone call

Use
scheduler

» Place
J conference call

Receive
additional call

use case

system boundary /

Cellular Telephone

P. Mato/CERN

10/12/2009 33

£5009
Class Diagram

» Captures the vocabulary 1 ﬁr;:_ﬁ/g
of a system -
. . * 1_* e multiplicity 1 /
» Built and refined Department | | o Office &
N " - address : Strin
throughout development, "] e tumer
o C e+ .
Name and model concepts e P = %_g/u
in the system K —
. . member | 1..* 1| manager Headquarters
- Specify collaborations Person
- Specify logical database gﬁ,";ﬁ,s;t;‘_'jg?.mege, b
itle : String operations
SChe mas getPhoto(p: Photo) /;; acting "
tSoundBit I ontactinformanon
4 Deve I O pEd by dan aIYStS y gztcgtjltactln?grmation() -~ - > address : String
getPersonalRecords() -

designers, and
implementers

T interface
[A PersonnelRecord !

dependency | 1@xID , >
employmentHistory

sala)
b ISecurelnformation

P. Mato/CERN 10/12/2009 34

£5009
Object Diagram

» Shows instances and links

» Built during c: Company
analysis and

d es |g N d1 : Department d2 : Department

o |llustrate data/ name = “Sales” o ename = “R&D"
. n
object structures &
- Specify snapshots | PR ——
» Developed by object "~ hame = “US Sales’

attrbute value

analysts, |
d €s I g ners, an d manager (anonymous object
i m p I ementers name :P:::m ‘f/ : Contactinformation

employeelD = 4362 address = “1472 Miller St.”
title = “VP of Sales”

P. Mato/CERN 10/12/2009 35

£5009

Sequence Diagram

» Captures dynamic
behavior (time-

oriented)

» Purpose

- Model flow of
control

> |llustrate
typical
scenarios

| .
object nteraction
K—- t: Thread : Toolkit
al:run(3) o lifeline
1
(fffﬁ. run() ' callbackLoop()
sequence /' J ‘/,, creation
label
message ! create ‘
call ——————Pp» p:Peer
focus of control —_| hﬂ”meap“ﬂeg '.
e recursion —_|
\,*____.“_‘::—-—{—return
«destroy» o ; '(

: destruction

P. Mato/CERN 10/12/2009 36

€3llaboration Diagram

» Captures dynamic
behavior (message-
oriented)

- Model flow of control

- Illustrate coordination of &= collaboration diagram
object structure and | 1: «create»
link — e | 2:setActions(a, d, 0)
control 3: «destroy»
«|ocal» message
i Transaction | «global> p : ODBDProxy
{transient}

object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CQO")

P. Mato/CERN 10/12/2009 37

£5009
Statechart Diagram

» Captures dynamic behavior (event-oriented)
» Purpose

- Model object lifecycle

- Model reactive objects (user interfaces, devices, etc.)

State Machine

state

h\ off / transition nested state
uard
— / RN

Idle
ready(3) [signalOK]
event) (

initial state

Working

internal transition
offHook / reclaimConnection()

keepAlive / check()
Connected
N action
\ \ P. Mato/CERN 10/12/2009

38

£5009
The Architect

» ExXperience
> In software development
> In the domain

» Pro-active, goal oriented
» Leadership, authority

» Architecture team

- Balance between technologists, domain experts,
users

P. Mato/CERN 10/12/2009 39

£5009
The Architect

» Not just a top level designer
- Need to ensure feasibility

» Not the project manager
- But “joined at the hip”

» Not a technology expert
 Purpose of the system, “fit”,

» Not a lone scientist
- Communicator

P. Mato/CERN 10/12/2009 40

£5209
Software architecture team charter

» Defining the architecture of the software

» Maintaining the architectural integrity of the
software

» Assessing technical risks related to the software
design

» Proposing the order and contents of the successive
iterations

» Consulting services
» Assisting marketing for future product definition
» Facilitating communications between project teams

P. Mato/CERN 10/12/2009

41

&509

Architecture is making decisions

The life of a software architect is a long
(and sometimes painful) succession of
suboptimal decisions made partly in the
dark.

P. Mato/CERN 10/12/2009 42

Frameworks

8009
Software Framework

» A software framework is an abstraction in which
common code providing generic functionality can
be selectively overridden or specialized by user
code providing specific functionality.

» A software framework is similar to software
libraries in that they are reusable abstractions of
code wrapped in a well-defined API

- Typically the framework “calls” the user provided
adaptations for specific functionality

» Is the realization of a software architecture and
facilitates software re-use

P. Mato/CERN 10/12/2009

44

£5009
Frameworks in Practice

» A skeleton of an application into which developers
plug in their code and provides most of the common
functionality

P. Mato/CERN 10/12/2009 45

£5209
Not a Single Framework

» A single Framework does for fit everywhere

» Each software domain provides its specialized
framework

- E.g. a GUI framework based on signal-slot can be
used to build GUI application

» Real complex applications are made typically
with a collaboration of frameworks

P. Mato/CERN 10/12/2009

46

£5209
Software Structure

/ Applications are built on top of frameworks

Applications and implementing the required algorithms
Det : :
Event Desc Calib. Every experiment has a framework for

basic services and various specialized
Exoeriment Eramework frameworks: event model, detector
P i description, visualization, persistency,

interactivity, simulation, calibrarion, etc.

Data Distrib.

Simulation Mngmt.|| Analysis —— Specialized domains that are common
among the experiments
Core Libraries T——__ Core libraries and services that are widely
used and provide basic functionality
non-HEP specific
software packages ——— General purpose non-HEP libraries

P. Mato/CERN 10/12/2009 47

8009
What is a Framework?

» Framework Definition [1,2]

- A architectural pattern that codifies a particular
domain. It provides the suitable knobs, slots and
tabs that permit clients to use and adapt to specific
applications within a given range of behavior.

» In practice

- A skeleton of an application into which developers
plug in their code and provides most of the
common functionality.

[1] G. Booch, "Object Solutions”, Addison-Wesley 1996
[2] E. Gamma, et al., "Design Patterns”, Addison-Wesley 1995

P. Mato/CERN 10/12/2009 48

£5209
Framework Benefits

- Common vocabulary, better specifications of what
needs to be done, better understanding of the
system.

> Low coupling between concurrent developments.
Smooth integration. Organization of the
development.

- Robustness, resilient to change (change-tolerant).

- Fostering code re-use

P. Mato/CERN 10/12/2009

49

Gaudi Architecture and
Framework

An Example of Framework for HEP
Applications

8009
Principal Design Choices

» Separation between “data” and “algorithms”

» Three basic categories of “data”
- event data, detector data, statistical data

» Separation between “transient” and
“persistent” representations of data

» Data store-centered (“blackboard”)
architectural style

» “User code” encapsulated in few specific
places

» Well defined component “interfaces” with
plug-in capabilities

P. Mato/CERN 10/12/2009

51

Al
Gaudi Object Diagram

I
|
Application
Manager | Event @'Evem N Converter JJ
- Selector 2 s
RS ¢] AsPatCandidates
..... R N EH:I Mc t t /T\ -
Message |& Y Event Data | | S chaee Persistency Fpatq
Service / Service D? MCVerticss Service iles
; Transient
JobOptions
Service <~ Algorithm _H \Even’r Store)
Particle P / (Transient) : £ A
arsiele Fref, \< Detec. Data| | Detector Persistency Epataq
Service Service Store Service N
. J
Oth . g D
Ser'ji'::es Transient ;
| Histogram Histogram Persistency Epata
[Service Store Service iles

P. Mato/CERN 10/12/2009 52

£5209
Definition of Terms

> Algorithm
- Atomic data processing unit (visible & controlled
by framework)
> Algorithm Tool

- Class called by the Algorithm or another Tool to
perform a specific function (private and public)

- Data Object

- Atomic data unit (visible and managed by
transient data store)

o Transient Data Store

- Central service and repository for data objects
(data location, life cycle, load on demand, ...)

P. Mato/CERN 10/12/2009

£5009
Definition of Terms (2)

> Services

- Globally available software components providing
framework functionality

- Data Converter

- Provides explicit/implicit conversion from/to
persistent data format to/from transient data

> Properties

- Control and data parameters for Algorithms and
Services

P. Mato/CERN 10/12/2009

54

50

o9
Algorithm

IAlgorithm » Users write Concrete
'”'t'a"ig Algorithms
execu
finalize() » Itis called once per
~o— physics event
Algorit
40— AT » Implements three
Pronery t methods in addition to
setProperty() E— the constructor and
getProperty() Algorithm dEStI'UICt(z)I')
- initialize(), execute(),
finalize()

P. Mato/CERN 10/12/2009 55

8009
Interfaces

— ISvclocator
ApplicationMgr Q\
IDataProviderSvc
EventDataSvc Os—_|
IDataProviderSvc
DetectorDataSvc O<—

HistogramSvc

MessageSvc

IHisTogramSvé/

7,

ParticlePropertySvc

Algorithm

\ %
O O
\ IAlgorithm| IProperty
T~
Concrete

70

Obj_A

Obj_B

IMessageSvc O /
O

IParticlePropertySvc

P. Mato/CERN

10/12/2009

56

£5209
VCR Interface Model

IRfInput IEuroConnector

TV set

» Each interface is specialized ina
domain.

* Interfaces are independent of
concrete implementations.

* You can mix devices from
several constructors.

- Application built by composing.

» Standardizing on the interfaces
gives us big leverage.

IUserInterface IInfraredInput

P. Mato/CERN 10/12/2009 57

£5009
Interfaces in Practice
IMylInterace.h

class IMylInterface {
void doSomething(int a, double b) = 0;

ClientAlgorihtm.cpp

#include “IMyInterface.h”

ClientAlgotihm: :myMethod () {

// Declare the interface

IMyInterface* myinterface;

// Get the interface from somewhere

service ("MyServiceProvider”, myinterface);
// Use the interface
myinterface->doSomething(10, 100.5);

P. Mato/CERN

10/12/2009

58

£5009
Plug-ins

» Program extensions to provide a certain, usually
very specific function "on demand”

» Applications/frameworks support plug-ins for
many reasons (in HEP)

> to enable third-party developers to create capabilities to
extend an application

> to support features yet Hosthppliestion
unforeseen mertece lugn

> to reduce the size of the L _i{ ___________
basic application 7 T

1

Plugin __{-f-~~
Manager

Plug-in
Interface

P. Mato/CERN 10/12/2009

&§009
Reflex Plug-in Service

. . class MyClass : public ICommon ({
» Coding the plugin/component| wyciass(int, 1sve*);
> No pre.deflned mod.el } MyClass.h
- Declaring factory with
. PLUGINSVC_FACTORY (MyClass, ICommon* (int, ISvc*)) ;
Slgnature /* implementation */
» Creating the rootmap file MyClass.cpp
- Text file listing all plugins
and the associated dynamic Library.MyClass: MyLibrary.so
| | b ra ry Library.AnotherClass: MyLibrary.so
- Created with the genmap tool rootmap
» Instantiating the plugin
o Library loaded if needed [
> Strong argument ISve* sve = ...
. ICommon* myc;
type ChECklng myc = PluginSvc::create<ICommon*>(“MyClass”,10, svc);
i . . if (myc) {
No implementation myc->doSomething () ;
dependency } b
. rogram.cpp

P. Mato/CERN 10/12/2009 60

£5009

Algorithm & Transient Store

Transient
Event
Data Store

Data T1

Data T1

) Data T2, T3

Algorithm

Data T2

) Data T4

Apparent dataflow

Real dataflow
P R—

P. Mato/CERN 10/12/2009

61

£5009
Loading Transient Store

Algorithm @ JEvent Data © JPersistency

(client) retrieve Service | load Service
object request

@ Search dispatch @
: : 1
/E'D Event \ register '

g .:.Illr'léaEE::nr‘tlt q Conversion

=] RawEvent I SerVICe
@ E||:| Ecal
{1 EcalDigits(1) create object \@

Direct {1 EcalDigits[2]

reference ~_ {1 EcalDigits(3)

——{_¥calDigits[4] @
SES |9 el Converter

{1 OTrack
{27 Rich read @

(0 Vet *
{7 RecEvent

kEvent Data Store/

P. Mato/CERN 10/12/2009

o9
Complex Control Sequences

» Concept of sequences
of Algorithms to allow
processing based on
physics signature

> Avoid re-calling same
algorithm on same event

- Different instances of the
same algorithm possible

» Event filtering

> Avoid passing all the Evem ’ it z Single
events through all the InputiOutpus” AGorn Decnsnor' lnstances
processing chain

P. Mato/CERN 63

£5009
Data Object Description

» Definition of objects on a

higher level

- Easy language for defining objects o

> Ability to derive several il J
implementations ?igg’
from this source oy [Parser

- Uniform layout of objects 7 — |, BE?]%k ‘ Rg;‘ij

> Easily extensible

» Produce C++ headers and %
Reflex dictionaries Back J
automatically

» Global optimization possible (e.g.
memory pools)

P. Mato/CERN 10/12/2009 64

&§009
Auditors

» The Auditor Service provides a set of auditors
that can be used to provide monitoring of
various characteristics of the execution of
Algorithms
o ChronoAuditor, MemoryAuditor, etc.

» Each auditor is called immediately before and

after each call to each Algorithm instance
> Tracks some resource usage of the Algorithm

=»Built-in performance monitoring is essential
I

P. Mato/CERN 10/12/2009 65

£5009
Auditors

List of
Auditors
jobOptions
7
[Algorith . -
gorlOm_ Algorithm IAuditorSve] AuditorSvce
——(O—

MyAlg J; Audifor 1

P. Mato/CERN

10/12/2009

66

&§009
Incidents

» The Incident Service provides synchronization
facilities to components in a Gaudi
application

» Incidents are named software events that are
generated by software components and that
are delivered to other components that have
requested to be informed when that incident
happens

- A number of predefined /ncidents such as
‘beginRun’, ‘endEvent’, ‘openFile’

P. Mato/CERN 10/12/2009 67

&009

Incident Service

lIncide

ntS

ISﬁsvice IPE?perty
vie

)
S

fire /

Add/rem

ove

Incident
Svc

l[IncidentListener

P. Mato/CERN

10/12/2009

68

8009
Data On Demand

» Typically the execution of Algorithms are
explicitly specified by the initial sequence and
and sub-sequences
- Avoid too-late loading of components (HTL)

- Easier to debug

» For some use-cases it is necessary to trigger
the execution of a given Algorithm by
accessing an Object in the Transient Store

- The DataOnDemand Service is can be configured to
provide this functionality

P. Mato/CERN 10/12/2009 69

£5009
Other Gaudi Services

- JobOptions Service

- Message Service

> Particle Properties Service

- Event Data Service

> Histogram Service

> N-tuple Service

- Detector Data Service

- Magnetic Field Service

> Tracking Material Service

- Random Number Generator
> Chrono Service

> (Persistency Services)

- (User Interface & Visualization Services)
> (Geant4 Services)

P. Mato/CERN 10/12/2009 70

£5009
Configuring the Application

» Each Framework
component can be

configured by a set of Gaudi,LHCb] genconf lmypackagecw_w
‘properties’ (hame/ value Crr code _
palrS) import

+ In total thousands of “i;liiili?fiifiﬁiiiiﬁ,J,
parameters need to be [Libraries] v = 100)
specified to fully configure Lond i
a complex HEP application 1

» Using Python to facilitate | aofeaon [gaudirunpy
the task J

> Build-in type checking

P. Mato/CERN 10/12/2009 71

£5209
Interactivity and scripting

» Interactivity and scripting are essential use cases
for any HEP framework
> Scripts for rapid prototyping and trying new ideas
- Testing frameworks
> GUI applications

» A convenient way to achieve it is to provide
bindings to a scripting language such as Python (or
a C++ interpreter)
> Once this is done the rest comes automatically

P. Mato/CERN 10/12/2009

72

*ByROOT: Mode d’emploi

» From class definitions
(.h files) a “dictionary”
select.xml library is produced

- Description of the
|

MyClass.h class |
p MyClassDict.so | stub” functions to

class methods

» Absolutely non-
|) intrusive
E[PyROOT » The PyROOT module
i +—— does the adaptation
. bgtween Pyélthon
: Python objects and C++
MySeript.pyy---o-o-o-- i %nfgrpremp objects in a generic
way
> |t works for any
dictionary

H H
load

MyClass.so k="~

P. Mato/CERN 73

5009
Summary: Frameworks

» All experiments have developed Software
Frameworks
- General architecture of any event processing applications
(simulation, trigger, reconstruction, analysis, etc.)
- To achieve coherency and to facilitate software re-use
> Hide technical details to the end-user Physicists
> Help the Physicists to focus on their physics algorithms

» Applications are developed by customizing
the Framework

> By the “composition” of elemental Algorithms to form
complete applications

> Using third-party components wherever possible and
configuring them

» ALICE: AliROOT; ATLAS+LHCb: Athena/Gaudi; CMS: CMSSW

P. Mato/CERN 10/12/2009

74

Integrating Technologies

Software Re-use

5009

-

" When Frameworks are not Possible

» At occasions you need to a build software
system/application made of independently
developed components
> Using existing class libraries
- They cannot be re-done using a single ‘framework’

> Building adaptation layers are not always possible
and effective

» Examples

> Integrating MC generators in ROOT
- Performing ROOT I/0O on Geant4 Applications

P. Mato/CERN 10/12/2009 76

£5209
Software Integration Elements

» Dictionaries

- Dictionaries provide meta data information (reflection) to
allow introspection and interaction of objects in a generic
manner

» Scripting languages
- Interpreted languages are ideal for rapid prototyping

- They allow integration of independently developed software
modules (software bus)

- Standardizing on CINT and Python scripting languages

» Component model and plugin management

- Modeling the application as components with well defined
interfaces

- Loading the required functionality at runtime

P. Mato/CERN 10/12/2009

77

£5009

Strategic role of C++ reflexion

Python CINT « Object I/0
 Scripting
Eot meta C++ (CINT, Python)
§ * Plug-in
—— management
. etc.
ROOT Reflex
DS 7

rootcint -cint

r

rootcint -reflex

.

rootcint -gccxml

P. Mato/CERN 10/12/2009 78

£5009

-

Python <-> C++ Interoperation

» The bulk of code for the new HEP experiments
IS written in C++

> Still some portions of FORTRAN with plans to
migrate

> Java and other languages almost non-existent

» Need Python bindings to C++ code
- Hand-written (C-API) or generated
- Requires taking care of:
- Object, parameter conversions
- Memory management
- C++ function overloading
- C++ templates
* Inheritance and function callbacks

P. Mato/CERN 10/12/2009 79

£5009
Python as Software “Bus”

Very rich set specialized

eneric modules
LHC modules g !) Several GUI

_ A ~ - ~ toolkits
_ EDG API|| PVSS XML Database
g I | | I GUI
S Python -
§ % , . 1 [, shell
¢ 2 { TPE PYROOT | [baudiPythor] [
(0D}
= £
] @ H_j
O &= Java ROOT Gaudi :

o cl = K Very rich set of
asses asses PAMEWOrK| python standard
modules

P. Mato/CERN 10/12/2009

8009
Summary

Introduced the main concepts of software
architecture

- Why it is needed, what it means, modeling concepts and
languages (UML), etc.

- The role of architect

Introduced software frameworks and their
hierarchy

Used GAUDI framework as an example of HEP event

data processing framework

> The main design criteria
> Introduction to few of the main concepts and functionalities

Software integration elements

v

v

v

>

P. Mato/CERN 10/12/2009 81

£5209
References

» Grady Booch, Object Solutions, Addison-Wesley, 1995,

» Eric Gamma, John Vlissides, Richard Helm, Ralph Johnson,
Design Patterns, Addison-Wesley 1995.

» Rational Unified Process 5.0, Rational, Cupertino, CA, 1998

» Len Bass, Paul Clements & Rick Kazman, Software
Architecture in Practice, Addison-Wesley, 1998

P. Mato/CERN 10/12/2009

82

