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Why worry about perf

My arguments:
The “easy ride” disappeare
enjoyed in the past does noenjoyed in the past does no

Performance per watt: ThePerformance per watt: The
issues associated with larg

Even when 1W processors ep

Performance per €: There aPerformance per €: There a
associated with large scale

Even when using “commodi

Sverr3

formance?

ed: The frequency scaling we 
ot exist any longerot exist any longer

re are important thermalre are important thermal 
ge scale computing
exist!

are important cost issuesare important cost issues 
e computing
ty equipment”
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Moore’s law

We continue to double theWe continue to double the 
transistors every other yea

Latest consequenceq
Single core Multicore 

All i llAll in all:
An unbelievable “agreeme
stakeholdersstakeholders

Silicon manufacturers
System integrators
Customers

(*) But, the derivative “law” which stated

Sverr4

But, the derivative law  which stated
frequency would also double is no long

number ofnumber of 
r(*)

Manycore

ent” with all 

d that the

re Jarp - CERN

d that the 
ger true!

Adapted from WikipediaFrom Wikipedia



Real consequence of

We are being “snowed undg

More (and more complex)( p )
Hundreds of new instructio

Longer SIMD/SSE vectorsg
More hardware threading
More and more coresMore and more cores

In order to profit we need toIn order to profit we need to

Data parallelism

Sverr5

p
Task parallelism

f Moore’s law

er” by transistors:y

) execution units)
ons

s

o “think parallel”o “think parallel”

re Jarp - CERN



“Intel platform 2015” (

Today’s silicon process: 45 nm

I
t

Today s silicon process: 45 nm

Already on the roadmap:
32 nm (2009/10)32 nm (2009/10)
22 nm (2011/12)

In research:
16 nm (2013/14)
11 nm (2015/16)11 nm (2015/16)
8 nm (2017/18)

– Source: Bill Camp/Intel HPC

Each generation will push the co

Sverr6

Each generation will push the co
We are entering the many-core

(and beyond)
ncreased HW 

threads per socket

100 Many-core era

1

10

Multi-core era

2006 2007 2008 2009 2010 2011 2012 2013 2014

1

LHC data

From “Platform 2015: Intel Platform Evolution for 
the Next Decade” (S.Borkar et al./Intel Corp.)

ore count:

re Jarp - CERN

ore count:
e era (whether we like it or not) !



The holy grail: Forwa

In the ideal world, our prog
such a way that their perfor
automatically

In the worst case maybeIn the worst case, maybe 
relink

Additional hardware, be it c
would automatically be put

Scaling would be as expect
If the number of cores dou

Scaling would be 2x (or ma

Alas, reality is much more

Sverr7

And, this is why we are her

rd scalability

rams would be written in 
rmance would scale 

one would have to recompile orone would have to recompile or 

cores/threads or vectors, 
 to good use

ted:
ubled:
aybe 1.99x), but certainly not 1.05x

e complex

re Jarp - CERN
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Evolution of CERN’s 
computing capacity

During the LEP era (1989During the LEP era (1989 –
2000):

Doubling of totalDoubling of total 
computing capacity every 
year
Initiated with the move 
from mainframes to RISC 
systemssystems

At CHEP-95:
I made the first 
recommendation to move 
to PCs

Sverr8

to PCs
After a set of encouraging 
benchmark results

From L.Robertson

re Jarp - CERN



Frequency scaling

Th 7 “f t” f fThe 7 “fat” years of easy fr

The Pentium Pro in 1996: 1The Pentium Pro in 1996: 1

The Pentium 4 in 2003: 3.8 

Since then
Core 2 systems:Core 2 systems:

~3 GHz
Multi-coreMulti core

Recent CERN purchase:

Sverr9

Intel L5520 CPUs
2.26 GHz

li i HEPrequency scaling in HEP

50 MHz50 MHz

GHz (~25x)

re Jarp - CERN
From A. Nowak



The Power Wall

For example the CERN ComFor example, the CERN Com
2.9 MW of electric power

Plus 2.3 MW to remove the

Spread over a complex infra
CPU Di kCPU servers; Disk servers
Tape servers + robotic equ
Database servers
Infrastructure servers.
Network switches and route

This limit will be reached so

Sverr10

This limit will be reached so

mputer Centre can supplymputer Centre can supply 

e corresponding heat!p g

astructure:

uipment
Input Power Evolution (MW)

15
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ers
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Performance: A comp

We start with a concrete, real-l
For instance, simulate the pa
through matter

We write programs in high leve
C++, JAVA, Python, etc.

A compiler (or an interpreter) t
machine-level code

We link in external libraries

A sophisticated processor with
even more complex micro-arch

Sverr11

In most cases, we have little cl
transformation process

plicated story!

ife problem to solve
ssage of elementary particles 

el languages

transforms the high-level code to 

h a complex architecture and 
hitecture executes the code 

re Jarp - CERN

lue as to the efficiency of this 



A Complicated Story 

ProbProb
Algorithms, 

Source pSource p
Compiled cod

System arc
Instruct
μ-archit

Circu
Electr

We must avoid being fenc

Sverr12

We must avoid being fenc

(in layers!)

blemblem
abstraction

programprogram
de, libraries
chitecture
ion set
tecture
uits
rons

ced into a single layer!

re Jarp - CERN
Adapted from Y.Patt, U-Austin

ced into a single layer!



Let’s start withLet’s start with

Sverr13

h the basics!h the basics!

re Jarp - CERN



Von Neumann archite

From Wikipedia:
The von Neumann 
architecture is a computer 
design model that uses adesign model that uses a 
processing unit and a single
separate storage structure to
hold both instructions andhold both instructions and 
data.

It b i d titIt can be viewed as an entity 
into which one streams 
instructions and data in order
to produce results

Our goal is to produce results

Sverr14

as fast as possible

ecture

DataInstructions

e 
o 

r 

s 

re Jarp - CERN
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Simple processor layo

A simple processor with 
four key components:

Control LogicControl Logic
Instruction Counter
Program Status Wordg

Register File

Data Transfer Unit
Data busData bus
Address bus

Arithmetic Logic Unit
Add

Sverr15

Arithmetic Logic Unit 

out
Keeps the state of execution

R1

R0IC

R15PSW R15

Registers

PSW

Control

Data 
transfer ALU

Data

unit
dress

re Jarp - CERN



Simple server diagram

Multiple components whichMultiple components which 
interact during the execution
of a program:

Processors/cores
Caches

Instructions (I-cache)
Data (D-cache)

Memory channels
Memory

M

I/O subsystem
Network attachment

Sverr16

Disk subsystem

m

n 

C C C C

Socket 0 Socket 1

Cache

C0 C1
C2 C3

Cache

C0 C1
C2 C3

Cache
Mem-ctl

Cache
Mem-ctl

Interconnect MemoryMemory

re Jarp - CERN

I/O bus



Initial premise

To reach completion a compuTo reach completion, a compu
execution of a given number o

We typically want the processWe typically want the process 
possible time

This time corresponds to a gi

Simple example:
A program consists of 1010 inA program consists of 10 in
We measure an execution tim
running at 2.0 GHz
We can now compute a key v

Cycles per Instruction (CPI)
9 10

Sverr17

Our result: (6 * 2.0 * 109) / 1010

te job (a process) requires thete job (a process) requires the 
of (machine-level) instructions

to complete in the shortestto complete in the shortest 

ven number of machine cycles

structionsstructions
me of 6 seconds on a processor 

value:

0

re Jarp - CERN

0 = 1.2



Seven dimensions of 
First three dimensions

S lSuperscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudNext dimension is a pseud
dimension:

Hardware multithreading

Last three dimensions:
Multiple coresMultiple cores
Multiple sockets

Sverr18

Multiple compute nodes 

SIMD = Single Instruction Multiple Data

performance
s:

Pipelining

D

do”
Superscalar

do  
SIMD width

Multithreading

Sockets

Multicore

re Jarp - CERN
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Seven multiplicative d
First three dimensions

S lSuperscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudNext dimension is a pseud
dimension:

Hardware multithreading

Last three dimensions:
Multiple coresMultiple cores
Multiple sockets

Sverr19

Multiple compute nodes 

dimensions:
s:

Data parallelism
(Vectors/Scalars)

D

do”do  

Task parallelism
(Events/Tracks)

Task/process

re Jarp - CERN

Task/process 
parallelism



Concurrency in HEP

W “bl d” ith l tWe are “blessed” with lot
Entire events
P ti l t k d tiParticles, tracks and vertic
Physics processes
I/O streams (Trees, branc
Buffer handling (also com
Fitting variables
Partial sums, partial histog
and many others …..

Sverr20

Usable for both data and ta

t f itts of it:

ces

hes)
paction, etc.)

grams

re Jarp - CERN

ask parallelism!



Autoparallelization/Au

Would it not be wonderful i
the (vectorization/parallelis

Intel compiler (10.1 or later):
Autovectorization: YES, includ

– “-vec-reportN” for reports
Autoparallelization: YES withAutoparallelization: YES  with

– “-par-reportN” for reports

GNU compiler (4 3 0 or later):GNU compiler (4.3.0 or later):
Autovectorization: YES, but n

– “-ftree-vectorizer-verbose=[0
Autoparallelization support in 

I dditi b th il

Sverr21

In addition, both compilers suppo
“higher-level assembly instructio

utovectorization

f the compilers could do all 
sation) work automatically?

ded in “-O”

h “-parallel”h parallel

eeds “-ftree-vectorize”
0-7]” for reports
preparation

t i t i i

re Jarp - CERN

ort intrinsics:
ons” for explicit vectorization



Part 1: Opportunities pp
performance inside a 

Let’s look at the first three 
dimensions

The resources:
Superscalar: Fill the portsSuperscalar: Fill the ports
Pipelined: Fill the stages
SIMD Fill th t tiSIMD: Fill the computation

Best approach: data paralleBest approach: data paralle

In HEP, we probably extract
10 15% of peak execution

Sverr22

10-15% of peak execution 
capability!

for scaling g
core

Pipelining

l idth S lnal width

elism SIMD idth

Superscalar

elism

t only 
SIMD width

re Jarp - CERN



First: Superscalar arc

In this simplified design, 
instructions are decoded 
in sequence butin sequence, but 
dispatched to two ALUs.

The decoder and 
dispatcher ought to be 
able to handle two 
instructions per cycleinstructions per cycle
The ALUs can have 
identical or differentidentical or different 
execution capabilities

Sverr23

chitecture

Decode

Instruction stream

Decode

Dispatch

ALU 0 ALU 1

Port 0 Port 1

ALU 0 ALU 1

ResultsResults

re Jarp - CERN



Core 2 execution port

Intel’s Core 
microarchitecture

Port 0 Po

Integer Intmicroarchitecture 
can execute four
instructions in 

Integer
Alu

Int
Alu

Int.
Mu

Integer
Shift

parallel (across 
six ports):

Int. SIMD
Alu

x87 FP

x8
A

SS
Multiply

SSE FP
Multiply

FSS
& L

SS
A

FSS Move
& L i

QW S
DIV

SQRT

Sverr24

& Logic

QW Shuffle

ts

ort 1 Port 2 Port 3 Port 4 Port 5

teger IntegerInteger Store Storeteger
& LEA

 SIMD
ultiply

Integer
Alu

Integer
Load

Store
Address

Store
Data

FP
Load

Integer
Shift

Int. SIMD
Alu

FSS Move
& L i

87 FP
Add

SE FP

S Move
Logic

& Logic

FP Shuffle
Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

SE FP
Add

24

Shuffle
Jump Exec

Unit

re Jarp - CERN

24

Issue ports in the Core micro-architecture
(from Intel Manual No. 248966-016 or later)



Mulmul example

We can understand exactly 
needed

(for instance) in the innerm

f ( i t i 0 i < N ++i ) {for ( int i = 0; i < N; ++i ) { 
for ( int j = 0; j < N; ++j ) { 

for ( int k = 0; k < N; 
c[ i * N + j ] +c[ i * N + j ]  +

} 
} 

}}

AddStore

Sverr25

which execution units are 

most loop

++k ) { 
+= a[ i * N + k ] * b[ k * N + j ];+=   a[ i * N + k ]  *   b[ k * N + j ]; 

Mul LoadLoad

re Jarp - CERN



Next topic: Instruction

Instructions are broken up inInstructions are broken up in
With a one-cycle execution 

I-fetch I-decode Execute Wr
I-fetch I-decode E

I-fetch I-dI-fetch I-d

With a three-cycle executio

I-fetch I-decode Exec-1 Ex
I-fetch I-decode Ex

Sverr26

n pipelining

nto stagesnto stages.
latency (simplified):

rite-back
Execute Write-back
decode Execute Write-backdecode Execute Write-back

n latency:

Write-backxec-2 Exec-3
xec-1 Write-backExec-2 Exec-3

re Jarp - CERN



Real-life latencies
Most integer/logic instructio
execution latency:y

For example: ADD, AND, S
Amongst the exceptions:g p

IMUL (integer multiply): 3
IDIV (integer divide): 13 – 2

Floating-point latencies are 
FADD (3) FMUL (5)FADD (3), FMUL (5)

Same for both x87 and SIM

Exception: FABS (absoluteException: FABS (absolute

Sverr27
Latencies in the Core m
AMD processor latenc

ons have a one-cycle

SHL (shift left), ROR (rotate right)

23

typically multi-cycle

MD double-precision variants

e value): 1e value): 1 

re Jarp - CERN

micro-architecture (Intel Manual No. 248966-016 or later).
ies are similar.



Latencies and serial c
In serial programs, we 
typically pay the penalty of yp y p y p y
multi-cycle latency during 
execution:

In this example:In this example:
Statement 2 cannot be 
started before statement 1 
has finished
Statement 3 cannot be 
started before statement 2started before statement 2 
has finished 

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - EX-1

Sverr28

I-F I-D - - - -

code (1)

a double a b c d e f;double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

W-B1 EX-2 EX-3

re Jarp - CERN

W-B- - EX-1



Latencies and serial c

I F I D EX 1 EX 2 EX 3 EX 4 EX 5 WI-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W

I-F I-D - - - - EX

Observations:

I-F I-D - - -

Observations:
Even if the processor ca
instruction every cycle, it
result to be made availab

Fortunately, the result tak
stage does not cause evestage does not cause eve

The result here:
9 execution cycles are ne

Sverr29

9 execution cycles are ne
– CPI is equal to 3

code (2)

W BW-B

W-BX-1 EX-2 EX-3

- W-B- - EX-1

n fetch and decode a new 
t must wait for the previous 
ble
kes a ‘bypass’, so that the write-back 
en further delaysen further delays

eeded for three instructions!

re Jarp - CERN

eeded for three instructions!



Other causes of exec

W l d t t d th t th iWe already stated that the ai
keep instructions and data f
so that results are generatedg
optimally

First issue:First issue:
Instructions and/or data sto

Instructions are not found in 
cache
Data is not found in the D-ca

Before execution can contin
instructions and data must 
fetched from a lower level

Sverr30

fetched from a lower level

cution delays (1)

i i tim is to 
lowing, 
d 

DataInstructions

op flowing
the I-

ache

nue, 
be 

Results

re Jarp - CERN

Results



Other causes of exec

Second issue:

Instructions are not ready 
execution (Front-end stalls

Typically caused by branchTypically caused by branch
If the branch is mispredicted
stall (cycles add up, but no 
d )done)
There may be a branch inst
every 10 machine instructioy

– Or even less

Sverr31

cution delays (2)

DataInstructions

in time for 
s)
inging
d, we suffer a 
work gets 

truction in 
ons!

Results

re Jarp - CERN

Results



Memory Hierarchy

(
From CPU to 
main 
memory on a

(

L1Imemory on a 
Core 2 uni-
processor

With

(32 KB)

With 
multicore, 
memory 
bandwidth isbandwidth is 
shared 
between 
cores on the 
same bus

Sverr32

CPU
(R i t )(Registers)

L1D

32 B/c, 3 c latency

(32 KB)

L2 32 B/c, 14 c latency
(4096 KB)

~4 B/c, > 100 c latency, y

re Jarp - CERN

memory
(large) c = cycle



Cache lines (1)

When a data element or an iWhen a data element or an i
the processor, a cache line i
quantity) to Level-1q y)

requested

Cache lines are typically 64B
A 32KB level-1 cache holds

When cache lines have to be
Latency is long (>100 cycleLatency is long (>100 cycle
Memory bus stays busy (~1

Sverr33

nstruction is requested bynstruction is requested by 
is moved (as the minimum 

B (8 * double)
s 512 (64B) lines

e moved come from memory
es as already mentioned)es, as already mentioned)
16 cycles)

re Jarp - CERN



Cache lines (2)

Space locality is vitalSpace locality is vital
When only one element (4
the cache line:

A lot of bandwidth is wasted
requested

Multidimensional arrays shou
index changing fastest:

for (i = 0; i < rows; ++i)
for (j = 0; j < colum

t i

Pointer chasing (in linked lists
thrashing

mymatrix 

Sverr34

thrashing

Programming the memory hi

4B or 8B) element is used inside 

d!

ld be accessed with the last 

mns; ++j) 
[i] [j] i t

s) can easily lead to cache 
[i] [j]   += increment;

re Jarp - CERN
ierarchy is an art in itself.



Third topic: Registers

16 “XMM” registers with 128

E15 E14 E13 E12 E11 E1016 Bytes

E7 E6 E58 Words

E3 E24 DWords/Single

E1

Bit 127

2 QWords/Double

Sverr35SSE = Streaming SIMD extensions

s for SSE

8 bits each in 64-bit mode

E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

E4 E3 E2 E1 E0

2 E1 E0

E0

Bit 0

re Jarp - CERN



Four floating-point dag p

Single precision
Scalar single (SS)
Packed single (PS)

Double precision
Scalar Double (SD)
Packed Double (PD)

Note:
1) Today, “scalar” means runnin) y
2) Intel and AMD have announc
(AVX) with 256-bit registers

“scalar” will mean 1/4 or 1/8

Sverr36

scalar” will mean 1/4 or 1/8

3) even longer vectors are com

ata flavours

E3 E2 E1 E0

- - - E0

E3 E2 E1 E0

E0

E1 E0

- E0

ng at ½ or ¼ of the peak speedg p p
ced Advanced Vector eXtensions 

8 of peak!

re Jarp - CERN

8 of peak!

ming!



Scalable programminp g
for a single core

Easiest way to fill the 
execution capabilities is to 
use vectorizationuse vectorization

Either, vector syntax, à laEither, vector syntax, à la 
Fortran-90

Or, loop syntax which the 
compiler can “vectorize” 

t ti llautomatically

Sverr37

Or, explicit intrinsics
See CBM example later.

ng g

REAL U(100), V(100)

U = 0.0

U SIN(V)U = SIN(V)

U(1:50) = V(2:100:2)

float  u[100], v[100];

for (int i = 0; i<50; ++i) u[i] = 0.0;

for (i = 0; i<50; ++i) u[i] = sin(v[i]);for (i = 0; i<50; ++i) u[i] = sin(v[i]);

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];

re Jarp - CERN



HEP and vectors

Very little common groundVery little common ground
Too little?
And, practically all attemptAnd, practically all attempt

w/CRAY, 3090-VF, etc.

From time to time, we stum
One good example: Track

S th t lidSee the next slide

Other examples: Use of STLp

New development from ALI
Vc (Vector Classes)

Sverr38

Vc (Vector Classes)
http://www.kip.uni-heidelbe

ts in the past failed!ts in the past failed!

ble across a vector example
k Fitting code from ALICE trigger

L vectors; small matrices;; ;

CE (Matthias Kretz):

re Jarp - CERN

erg.de/~mkretz/Vc/



Examples of parallelisp p
CBM/ALICE track fitti

Extracted from their High 
Level Trigger (HLT) Code

Originally ported to IBM’sOriginally ported to IBM s 
Cell processor

Tracing particles in aTracing particles in a 
magnetic field 

Embarrassingly parallel g y p
code

Re-optimization on x86-64 
systems

Using vectors instead of 
scalars

Sverr39

scalars

sm:
ng

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/reco/CBM/
DOC 2007 Mar 127 1 pdfDOC-2007-Mar-127-1.pdf

re Jarp - CERN
“Compressed Baryonic Matter”



CBM/ALICE track fittiCBM/ALICE track fitti

Re-optimization on x86-64 sp
First: use SSE vectors inst

Operator overloading allows
Intrinsics (from Intel/GNU h
instructions:

– mm add ps correspon– __mm_add_ps correspon
that operates on four pac

● 128 bits in total
ClassesClasses

– P4_F32vec4 – packed sin
● F32vec4 operator +(c

return _mm_add_ps(a

Result: 4x speed increase f

Sverr40

Result: 4x speed increase f
(single precision)

ngng

systemsy
tead of scalars
s seamless change of data types
eader file): Map directly to 

nds directly to ADDPS the instructionnds directly to ADDPS, the instruction 
ked, single-precision FP numbers

ngle class with overloaded operators
const F32vec4 &a, const F32vec4 &b) { 
a,b); }

from x87 scalar to packed SSE

re Jarp - CERN

from x87 scalar to packed SSE 



Mini-example of real-life
Suffers long latencies:

if (abs(poinHigh level C++ code if (abs(poin

movsd 16(%
subsd 48(%

d d 2il0f

High level C++ code 

Machine instructions

Cycle Port 0 Port 1

andpd _2il0f
comisd 24(%
jbe ..B5.3     

Machine instructions 

1

2

3

4

Same 
instructions 
laid out 4

5

6 subsd

7

laid out 
according to 
latencies on 
the Core 2 
processor 

8

9

10 andpd

NB: Out-of-
order 
scheduling 
not taken

Sverr41

11

12 comisd

13

not taken 
into account. 

e serial code

nt[0] - origin[0]) > xhalfsz) return FALSE;nt[0] origin[0]) > xhalfsz) return FALSE;

%rsi), %xmm0
%rdi), %xmm0   // load & subtract

fl t k t 1(% i ) % 0 // d ith k

1 Port 2 Port 3 Port 4 Port 5

floatpacket.1(%rip), %xmm0 // and with a mask
%rdi), %xmm0 // load and compare

 # Prob 43% // jump if FALSE

load point[0]

load origin[0]

d load float-packet

load xhalfsz

re Jarp - CERN
jbe



Important performanc
(that can tell you if things go wrong)(that can tell you if things go wrong)

Related to what we have 
discussed:

The total cycle count (C)The total cycle count (C)
The total instruction count (I)
Derived value: CPI

Bubble/Stall count: Cycles when 
no execution occurredno execution occurred

Total number of executed 
branch instructions
Total number of mispredicted 
branches

Sverr42

ce counters
))

Plus:
Total number of (last-level) 
cache misses
Total number of cache 
accesses
BBus occupancy

The total number of SSEThe total number of SSE 
instructions
The total number (and the 
type) of computational SSEtype) of computational SSE 
instructions

re Jarp - CERN



Part 2: Parallel execu
hw-threads and cores

Next dimension is a “pseu
dimension:

H d l i h diHardware multithreading

Last three dimensions:Last three dimensions:
Multiple cores
Multiple socketsMultiple sockets
Multiple compute nodes

Multiple nodes will not be 
discussed here

O f i l bilit i

Sverr43

Our focus is scalability in
a node

ution across 
s

udo” Multithreading

Compute nodes

Sockets

id

Sockets

re Jarp - CERN
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Definition of a hardwa

Core
A complete ensemble of 
execution logic and cacheexecution logic, and cache 
storage as well as register 
files plus instruction 

t (IC) f ticounter (IC) for executing a
software process or thread

Hardware thread
Addition of a set of register
fil l ICfiles plus IC

Sverr44

are core/thread

State: Registers, IC

a Execution logic Caches,
etc.

r State: Registers, IC

re Jarp - CERN

The sharing of the execution logic can 
be coarse-grained or fine-grained.



The move to many-coy

Examples of “dispatch slots”: 
Basically what you observe 

Conservative:
Dual-socket AMD quad-core
Dual-socket Intel quad-core 
Q d k t I t l D i tQuad-socket Intel Dunningto

Aggressive:
Q d k t N h l “ tQuad-socket Nehalem “octo
Quad-socket Sun Niagara (T
threads: 

In the near future: Hundreds
And by the time new softwa

Sverr45

And, by the time new softwa

ore systemsy

Sockets * Cores * HW-threads
in “cat /proc/cpuinfo”

e (Barcelona): 2 * 4 * 1 = 8
Nehalem: 2 * 4 * 2 = 16

4 * 6 * 1 24on server: 4 * 6 * 1 = 24

” 4 * 8 * 2 64ocore”: 4 * 8 * 2 = 64
T2+) processors w/8 cores and 8 

4 * 8 * 8 = 256

s of dispatch slots
are is ready: Thousands !!

re Jarp - CERN

are is ready: Thousands !!  



Many-core graphics py g p p

Intel’s Larrabee:
Already announced at S
Based on the x86 archite
Many-core + 4-way mult

nt
ro

lle
r

Fi
xe

d
Fu

nc
tio

n

In Order, 4 
threads, SIMD-16

I$ D$ . . .. . .

M
em

or
y 

C
on

xt
ur

e
og

ic

In Order, 4 

L2 Cach

Te
x Lo

,
threads, SIMD-16

I$ D$ . . . . 

Sverr46

Not forgetting offerings fr

processorp

igGraph 2008!
ecture
tithreaded + 512-bit vector unit

I O d 4I O d 4In Order, 4 
threads, SIMD-16

nt
ro

lle
r

D
is

pl
ay

In
te

rfa
ce..

In Order, 4 
threads, SIMD-16

I$ D$

M
em

or
y 

C
on

st
em rfa

ce

he

In Order, 4

Sy
s

In
te..

In Order, 4 
threads, SIMD-16

I$ D$
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Definition of a softwar
process and thread

Process (OS process):Process (OS process):
An instance of a computer 
(sequentially). It typically ru(sequentially). It typically ru
private set of operating sys
“address space” with all the
own file descriptors with theown file descriptors with the
permissions, its own heap a

Thread:
A process may have multip
threads run in the same adthreads run in the same ad
program code, the operatin
process they belong to. Ea

Sverr47

re 

program that is being executed 
uns as a program with itsuns as a program with its 
stem resources, i.e. in its own 
e program code and data, its 
e operating systeme operating system 
and its own stack.

ple threads of execution. These 
dress space share the samedress space, share the same 

ng system resources as the 
ch thread gets its own stack.

re Jarp - CERN
Adapted from Wikipedia



HEP programming pap g g p

Event-level parallelism has bEvent-level parallelism has b
Compute one event after th

Advantage:
Large jobs can be split into

ibl f iresponsible for processing 
Built-in scalability

Disadvantage:
Memory must be made ava

With 2 – 4 GB per process
A dual-socket server with Q

Sverr48

– Needs 16 – 32 GB (or mor

aradigmg

been used for decadesbeen used for decades
he other in a single process

o N efficient processes, each 
M tM events

ailable to each process

uad-core processors

re Jarp - CERN
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What are the options?p

There is currently a discussThere is currently a discuss
the best way forward (in a m

1) Stay with event-level para
processes)

A th t thAssume that the necessar
Or rely on tools, such as K

2) R l f ki2) Rely on forking:
Start the first process
Fork N othersFork N others
Rely on the OS to do “copy 

3) Move to a fully multi threa

Sverr49

3) Move to a fully multi-threa
Using coarse-grained (eve

?

ion in the community aboution in the community about 
many-core world):

allelism (and independent 

i ff d blry memory remains affordable
KSM, to help share pages

on write”, in case pages are modified

aded paradigm

re Jarp - CERN

aded paradigm
ent-level?) parallelism



Programming strateg

As I see them:
Get memory usage (per process

To allow higher multiprogram

Introduce coarse-grained softwa
To allow further scaling with

D i b fit f hDraw maximum benefit from har

A topic on its own:p
Revisit data parallel constructs a

Gain performance inside ea

In all cases, use appropriate
To monitor detailed program be

Sverr50

To monitor detailed program be
Both correctness and perfor

ies/priorities

s) under control
mming level per server

are multithreading
 large core counts

d th dirdware threading

at the very base
ch core

e tools:
haviour

re Jarp - CERN

haviour
rmance



Achieving efficient me
Core 0 Core Core 0 Core 1As follows:

Event-
specific

data

Event
specif

data

Event
specific

data

Event
specif

data

Global
data

Globa
data

Physics
processes

Physic
processp

Magnetic
field

Magne
field

Non-
reentrant

Non-
reentra

Sverr51

ee t a t
code code

emory footprint 
1 Core 2 Core 31 Core 2 Core 3

t-
fic

Event-
specific

data

Event-
specific

data

t-
ic

Event-
specific

data

Event-
specific

data

al Global
data

Global
data

Global
data

cs
ses

Physics
processes

Physics
processes

Physics
processes

Multithreaded 

tic Magnetic
field

Magnetic
field

Magnetic
field

Geant4 prototype 
developed at 
Northeastern 

Non-
reentrant

Non-
reentrant

-
ant
Reentrant

code

University
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HEP and Symmetric 
Because we have “thin” instru
profit from SMT, provided thep , p

It would seem that we could 
threads!

Cycle Port 0 Port 1 P

1 load

2 load
Cycle Port 0 Port 1

1Unfortunately 3

4

5

6 subsd loa

1

2

3

4

5

Unfortunately, 
on Xeon 5500,
we currently 
get max 20% p

7

8 load

9

5

6 subsd

7

8

get max 20% 
from the 
second 
hardware 10 andpd

11

12 comisd

13

9

10 andpd

11

12 comisd

hardware 
thread !
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12 comisd

13

SMT (Symmetric Multi-Threading)

Multi-Threading
uction streams, we ought to 

e memory issue is under controly
easily tolerate up to 4 hardware 

Port 2 Port 3 Port 4 Port 5

d point[0]

 origin[0]
1 Port 2 Port 3 Port 4 Port 5

load point[0]

ad float-
k t

load point[0]

load origin[0]

packet

d xhalfsz

d load float-
packet

load xhalfsz

jbe
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Let’s look more clo

Sverr53

osely at parallelism
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Definition of concurre

Concurrent programming:
Expression of a total algor
independent parts (indepe

Parallel execution
Independent parts of a prop p p

Sverr54

ency/parallelismy p

ithmic problem in logically 
ndent control flows)

ogram execute simultaneouslyg y

re Jarp - CERN



From Concurrency toy
Parallel Execution

Multiple steps must be
Concurrency
Decomposition
Communication
Synchronization
Mapping
Execution

K i A d hl’ lKeeping Amdahl’s law

p nS =max )(

Sverr55

pp −1
)(

o 

e kept in mind:

f d i i dw for max speedup in mind

p
1 where:

p (parallel portion)

re Jarp - CERN

n
pp+

p (parallel portion)
s (serial portion)
p + s = 1.0



Foster’s Design Methg

Four Steps:Four Steps:
Partitioning

Dividing coDividing co

Communica
Sh i dSharing da

Agglomera
Grouping ta

MappingMapping
Assigning t

Sverr56

hodologygy

g
omputation and dataomputation and data

ation
b iata between computations

tion
asks to improve performance

tasks to processors/threads

re Jarp - CERN



Designing Threaded P
Partition

Divide problem intoDivide problem into 
tasks

C i tCommunicate
Determine amount 
and pattern of a d pa e o
communication

AgglomerateAgglomerate
Combine tasks

Map
Assign 
agglomerated tasks

Sverr57

agglomerated tasks 
to created threads

Programs

TheThe
Problem

Initial tasks

Communication

Combined  Tasks

re Jarp - CERN
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More on decompositio

Divide the total work into smDivide the total work into sm
Which can be executed co

Some techniques:
Data decomposition

P titi th d t d iPartition the data domain

Task/functional decompos
S lit di t “l i l” tSplit according to “logical” t

Recursive decomposition
Di ide and conq er strategDivide-and-conquer strateg

Exploratory decomposition
Search for a configuration s

Sverr58

Search for a configuration s
– Not guaranteed to reduce 

on

maller parts,maller parts,
oncurrently

ition
k /f tiasks/functions

y

n
space for a solution

re Jarp - CERN

space for a solution
amount of work



C++ parallelization su

Parallelization is not defineParallelization is not define

Large selection of low-leve
Native: pthreads/Window
OpenMP
Intel Threading Building B
OpenCL (www.khronos.o
CILK++ (www.cilk.com)
RapidMind (www.rapidmip ( p
TOP-C (from NE Univers
Ct (in preparation from In

Sverr59

Ct (in preparation from In
MPI, etc.

upport

ed inside the language itselfed inside the language itself

el tools:
ws threads

Blocks (TBB)
org/opencl)

ind.com))
sity)
ntel)

re Jarp - CERN
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Examples of parallelisp p
CBM/ALICE track fitti

Re-optimization on x86-64 syRe-optimization on x86-64 sy
Part1: Data parallelism usin
Part 2: use TBB (or OpenMPart 2: use TBB (or OpenM

10

Cell S

icc/wo

gcc4.
gcc3.4

icc/clo

1

Sverr60
1 2 4

0.1

Graphs shows time spent against cores (Logarith

sm:
ng
ystemsystems
ng SIMD instructions

MP) to scale across coresMP) to scale across cores

SPE (approx)

oodcrest@3.0

1.2/clovertown@2.4
4.6/clovertown@2.4

overtown@2.4

re Jarp - CERN
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Examples of parallelis

ParGeant4 (Gene CoopermaParGeant4 (Gene Cooperma
implemented event-level pa
events across remote node

New prototype re-implement
parallelism inside a multi-coparallelism inside a multi co

Done by NEU PhD student X
Required change of lots of e

– Especially global, “extrn”, a
First, the geometry was con
Then the physics tablesThen, the physics tables

Additional memory: Only 22

Sverr61

y y

sm: GEANT4

an/NEU)an/NEU)
arallelism to simulate separate 
es.

ts thread-safe event-level 
ore nodeore node
Xin Dong: Using FullCMS example
existing classes:
and static declarations
verted

MB/thread (!)

re Jarp - CERN
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MTG4/FullCMS meas

Using aUsing a 
8-core 
Nehalem 

tsystem 
w/SMT:

Now 
waiting for 
a 32-core 
server forserver for 
further 
tests

Sverr62 More work is needed, but e

surements

re Jarp - CERNextremely interesting first step!
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Multithreaded ALICE 

Another very interestingAnother very interesting 
prototype

Track level parallelism

Simulation of a Pb-Pb 
event (no output)

65k primary tracks (!)
5 h CPU time (!)

With G4-VMC/Example03
3.92x speedupp p
w/4 core AMD system
35MB additional per 

Sverr63

p
thread

simulation 

critical sections

re Jarp - CERN
From M.Tadel/ALICE



Example: ROOT minimi

Minuit parallelization is indepen

Log-likelihood parallelization (s
more demanding on thread s

E l bi d fit ith 20Example: unbinned fit with 20 pa

Can have combination on bothCan have combination on both
parallelization via multi-threa
multiple process in a distribu

Sverr64
Code is now available as of

ization and fitting

ndent of user code

splitting the sum) is more efficient
safety of provided code 

tarameters

complex BaBar 
fitting provided 
by  A. Lazzaro
and parallelized p
using MPI

ading in a multi-core CPU 
ted computing environment

re Jarp - CERN
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Back to our Complica
In these lectures, we tried t

Avoiding being “boxed in”Avoiding being boxed in

Proble
Algorithms, ab

Source prop

System arch
Compiled code

System arch
Instructio
μ architecμ-architec

Circuit
El t

Sverr65

Electro

ated Story
to move across several layers
” ! !

em
bstraction
ogramg

hitecture
e, libraries
hitecture
on set
cturecture
ts

re Jarp - CERN
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If you think that all of y

Please read:Please read:

“Optimizing matrix multipp g p
SIMD architecture – CELL

J.Kurzak, W.Alvaro, J.Don
Parallel Computing 35 (200

In this paper, single-precision m
are presented implementing the
th C C A B ti fthe C = C – A x B operation for 
elements. For the latter case, th
Gflop/s is reported, or 99.80% o

Sverr66

p p
5.9 kB of storage for code and a

this is “crazy”y

plication for a short-vector p
L processor”

garra
09) 138–150

matrix multiplication kernels 
e C = C – A x BT operation and 

t i f i 64 64matrices of size 64x64 
he performance of 25.55 
of the peak, using as little as 

re Jarp - CERN

p g
auxiliary data structures.



Concluding remarks

The aim of these lectures wa
Changes in modern compu
Impact on our programming
Keeping in mind that there 
reach (all of) the available p
programming communityprogramming community.

In most HEP programming d
processing will (continue to)

Provided we get the memo

Will you be ready for 100+ co

It helps to know the seven h

Sverr67

It helps to know the seven h

as to help understand:
uter architecture
g methodologies
is not always a straight path to 
performance by our 

domains event-level 
) dominate

ory requirements under control

ores and long vectors?

hardware dimensions!
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Further reading:
“Designing and Building Parallel Pro
1995

“Foundations of Multithreaded, Para
Andrews, Addison-Wesley, 1999

“Computer Architecture: A Quantita
Patterson, 3rd ed., Morgan Kaufmann

“Patterns for Parallel Programming”Patterns for Parallel Programming

“Principles of Concurrent and Distri
edition, Addison Wesley, 2006

“The Software Vectorization Handbo

“The Software Optimization CookboThe Software Optimization Cookbo
and X. Tian; Intel Press, 2nd edition, 

“Intel Threading Building Blocks: Ou
P ll li ” J R i d O’R ill 1

Sverr68

Parallelism”, J. Reinders, O’Reilly, 1

“Inside the Machine”, J. Stokes, Ars

ograms”, I. Foster, Addison-Wesley, 

allel and Distributed Programming”, G.R. 

ative Approach”, J. Hennessy and D. 
n, 2002

” T G Mattson Addison Wesley 2004, T.G. Mattson, Addison Wesley, 2004

ibuted Programming”, M. Ben-Ari, 2nd

ook”, A.J.C. Bik, Intel Press, 2006

ook”, R. Gerber, A.J.C. Bik, K.B. Smithook , R. Gerber, A.J.C. Bik, K.B. Smith 
2006

utfitting C++ for Multi-core Processor 
st diti 2007
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st edition, 2007

s Technica Library, 2007



ThankThank 
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you!you!
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BACKBACK
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KUPKUP
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Items not covered tod

S t ti t i hSystematic tuning approach

Performance tuning versus g
FP accuracy and reproduci

A d hl’ l (i d t il)Amdahl’s law (in detail)
Also: Gustafson’s law

Emerging parallel programm

Detailed compiler “control”Detailed compiler “control”
Including regression avoida

Sverr71

dayy

hh

correctness
ibility

ming languages

ance

re Jarp - CERN



OpenMP overviewp

De-facto standard for writingDe-facto standard for writing
shared-memory parallel 
applications in C, C++ or 
FORTRANFORTRAN

Consists of:
Compiler directives
Run-time routines
Environmental variables

http://www.openmp.org/
Current version: 3.0

Sverr72

Still in active development

g # f \g #pragma omp parallel for \
shared (n, a, b, c) \
private(i)

f (i 0 i < i++) [i] [i] + b[i]for (i = 0; i < n; i++) c[i] = a[i] + b[i];

gcc –fopenmp –O –oaprog aprog.cgcc fopenmp O oaprog aprog.c
setenv OMP_NUM_THREADS 4
./aprog

Master thread

Worker
threads

Synchronization

re Jarp - CERN
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MPI overview

MPI Message Passing InteMPI – Message Passing Inte
A language independent co
Point to point message pasPoint-to-point message pas
No shared memory concep
MPI-2 (v. 2.1) introduces n

Limited shared memory con
Parallel I/OParallel I/O
Dynamic management
Remote memory supportRemote memory support

Numerous implementations
Including the combination of

Sverr73

– Including the combination of

rfacerface
ommunications API
ssing and global operationsssing and global operations
pt in MPI-1 (v 1.2)
umerous enhancements

ncept

s exist
f OpenMP and MPI
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Intel TBB 2.0 overview

Key features:Key features:
Open source extension to C
Task patterns instead of thTask patterns instead of th

Focus on the work, not the w

Designed for scalable perfoDesigned for scalable perfo
Automatic scaling to use ava

ComponentsComponents
Generic parallel algorithms: pa
Low-level synchronisation primy p
Concurrent containers: concurr
Task scheduler

Sverr74

Memory allocation: cache_align
Timing

w
#include "tbb/task_scheduler_init.h"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

C++ (GPL)
reads

using namespace tbb;
//
task_scheduler_init init;

tasks = atoi( argv[1] );
//

ll l f (bl k d i t (0reads
workers

ormance

parallel_for(blocked_range<int>(0, 
NTracksV, NTracksV / tasks), 
ApplyFit(TracksV, vStations, NStations));

ormance
ailable resources

rallel_for, parallel_reduce, etc.
mitives: atomic, mutex, etc., ,
rent_vector, concurrent_hash_map, etc.

re Jarp - CERN

ned_allocator
More features in preparation



Ct 
Language

Effort by Intel to extend C++ for T

See: CERN/IT s
Programming C

Effort by Intel to extend C++ for T

Features:
Addition of new data types (paraAddition of new data types (para

NeSL/SASAL-inspired: irregula

Abstracting away architectural d
Vector width/Core count/Memo

– Forward-scaling (Future-proo
Nested data parallelism and deNested data parallelism and de

Incremental adoption path:
D di t d Ct bl d lib iDedicated Ct-enabled libraries
Rewritten “kernels” in Ct
Pervasive use of Ct
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Pervasive use of Ct

Throughput Computing

seminar on 11/10/2007 by A.Ghuloum/Intel:
Challenges for Manycore Computing

Throughput Computing

allel vectors) & operatorsallel vectors) & operators
arly nested and sparse/indexed vectors

details
ory Model: Virtual Intel Platform
f!)

eterministic task parallelismeterministic task parallelism

1 2 50 1 2 4 51
0
0
0

0

0

2

4

5

3

0
0
0 6

0

7

1 2 4 5
3 6

7
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TOP-C Overview

Task-oriented Parallel C/C++

htt

Task-oriented Parallel C/C++
Runs on top of most UNIX/
Its programming model is bIts programming model is b

tasks in the context of a mas
global shared data with lazyg y
actions to be taken after eac

Provides a single API to suProvides a single API to su
models:

distributed memory
shared memory
sequential memory

a single sequential non pa

Sverr76

– a single sequential, non-pa

+

tp://www.ccs.neu.edu/home/gene/topc.html

+
/Linux flavours
based on three key concepts:based on three key concepts: 
ster/slave architecture 

y updatesy p
ch task

upport three primary memoryupport three primary memory 

arallel process

re Jarp - CERN
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Intel CPU parametersp
Core 2 processor (Clovertow

Caches/TLB Size
(total / line)

A
(c

L1I 32 KB / 64 B
L1D 32 KB / 64 B
L2 (semi-shared) 2 * 4 MB / 64 B
ITLB0 entries 128
DTLB0 entries 16DTLB0 entries 16
DTLB1 (4K pages) 256

Instruction issue 4 * 
CPU speed 3

Sverr77

Bus speed 133

s
wn)

Access 
cycles)

Porting Associativity
(N-ways)( y )

- 8-way
3 dual 8-way
14 16-way
- -

4 way- 4-way
2 4-way

4 μ-ops
3.0 GHz

L2

P0 P1

L2

P2 P3

re Jarp - CERN

33 * 8 B
L2 L2

Socket



AMD micro-architectu

Execution units in the BarceExecution units in the Barce

D

Inst

INT Decode & Ren

Addr. Gen.LD/ST

8 entry
scheduler

8 entry
scheduler

8 
sch

Addr. Gen. AddLD/ST
Unit

Integer
Alu

U1 (64b) Unit

Integer
Alu

In

U2(128b)
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INT
Multiply

ure

elona processor:elona processor:

Decode (3 m-ops)

ruction Control Unit

name FLP Decode & Rename

80b FP

entry
heduler

12 entry
scheduler

12 entry
scheduler

12 entry
scheduler

dr. Gen. 80b FP 128b 
Add

128b FP
Add

Unit

nteger
Alu

Mul

128b FP
Mul

FMISC
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AMD CPU parameter

Caches/TLB Size A

Barcelona processor:
Caches/TLB Size

(total / line)
A
(

L1I 64 KB /64B
L1D 64 KB
L2 512 KB
L3 (shared) 2 MBL3 (shared) 2 MB
L1-ITLB entries 48
L2-ITLB entries 512
L1-DTLB entries 48
L2-DTLB entries 512

Instruction issue
CPU speed
Bus speed 2 *

Sverr79

Bus speed 2  
HyperTransport 2

rs

Access Porting AssociativityAccess 
(cycles)

Porting Associativity
(N-ways)

2-way
3 dual 2-way
12 16-way

<38 32-way38 32 way
fully

-
fully

P0 P1 P2 P34 * 3 μ-ops 
2.0 GHz

8 * 667 MB/s

L3
P0 P1 P2 P3

System Req. Q
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8  667 MB/s
2 * 8 * 2 GB/s

y q
Crossbar

H-T Mem-C


