
Andrew Hanushevsky:

Sendfile()

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Goals

• Brief introduction to socket (network) I/O

• Using sendfile() to improve performance

• Avoiding performance issues

– Short packets

10/17/2009 Andrew Hanushevsky 2

TCP Network I/O

• Ethernet interface is usually a socket

– Sockets are blocking devices

• Sometimes ready sometimes not

– When not ready can return 0 to <requested bytes

» Need to continue I/O until all bytes read or written

• Can be opened O_NONBLOCK (non-blocking)

– When not ready returns EWOULDBLOCK

» Retry request until all bytes read or written

– Generally, O_NONBLOCK & threads make little sense

• Use poll() to wait until device is ready

– Normally for reads and rarely for writes (blocking)

10/17/2009 3Andrew Hanushevsky

TCP Network I/O (input)

• Many API’s to read from socket

– Most standard interfaces work

• read() and readv() (pread() is not valid)

– Socket oriented API’s also available

• recv(), recvmsg(), and recvfrom() but only for UDP

– Consult man pages for appropriate usage

• Very difficult to increase efficiency

– Due to data copying requirements

– So, program the obvious way

10/17/2009 4Andrew Hanushevsky

TCP Network I/O (output)

• Many API’s to write to socket

– Most standard interfaces work

• write() and writev() (pwrite() is not valid)

– Socket oriented API’s also available

• send(), sendmsg(), and sendto() but only for UDP

– Consult man pages for appropriate usage

• Many ways to increase efficiency

– Goal is to minimize data copying

• Typically for transfers of data from disk to socket

– Of great concern for web and file servers

– This section explores the primary mechanism

10/17/2009 5Andrew Hanushevsky

The Performance Issue

Kernel

Application Process

User Space

read()

1

4
2

3

Request

Disk I/O

Copy

Complete

send()
Net

5

Request

8

Complete

6
Copy

To mbuffs

7
Send

mbuffs

10/17/2009 6Andrew Hanushevsky

Performance
Issue

The Performance Solution

Kernel

Application Process

User Space

sendfile()

1

4
2

3

Request

Disk I/O Complete

Net Copy

To mbuffs5
Send

mbuffs

10/17/2009 7Andrew Hanushevsky

Generic implementation detail; actual implementation is OS specific

Why Not Memory Mapped I/O?

• Actually, some implementations use mmap()

– On some platforms no performance difference

• Linux implementation uses splice() syscall

– Change in 2.6.17 kernel

• sendfile() is available in practically all OS’s

– So, generally more portable

10/17/2009 Andrew Hanushevsky 8

sendfile() API

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd,

off_t *offset, size_t count);

– out_fd is a socket file descriptor

– in_fd is a file descriptor for a regular file

– offset offset in the file to start transfer

– count number of bytes to send

• Returns number of bytes sent or -1 on error

10/17/2009 Andrew Hanushevsky 9

What About Framing Data?

• Usually, one needs to send a data header

– Sometimes trailer data as well

• Easy using writev() for memory mapped files

• But how with sendfile()?

– No portable solution here

– Typically issue write() followed by sendfile()

– And now we have a new performance problem

10/17/2009 Andrew Hanushevsky 10

The Short Packet Problem I

• Data is sent in discreet packets

– Maximum size called MTU (see netstat cmd)

• Typically, ||data|| + ||TCP/IP headers|| <= 1500

– Usually leaves about 1460 bytes for application data

• Kernel minimizes sending short packets

– Maximizes network utilization

– Minimizes interrupts for sender and receiver

10/17/2009 11Andrew Hanushevsky

The Short Packet Problem II

• Kernel waits for packets to fill

– Short packet can be delayed up to 500ms

• Typically, 200ms in Linux

• Known as the Nagle algorithm

• Kernel hopes more data will arrive

– Kernel doesn’t know if …

• This is the only packet

• This is the last of a series of packets

– This introduces Request/Response latency

10/17/2009 12Andrew Hanushevsky

Nagle →→→→ Bad Performance

• Assume majority sends < 1460 bytes

– Responsiveness bounded by Nagle delay

• Typically, 200-300ms which is not speedy at all!

• Many applications turn Nagle delay off

– TCP_NODELAY setsockopt() option

– Packets are sent immediately after write()

• Even if they have one byte of data in them!

– Solves last packet problem

• Which is usually short but needed by receiver

10/17/2009 13Andrew Hanushevsky

No Nagle →→→→ Bad Performance

• Assume majority sends < 1460 bytes

– Net utilization bounded by TCP/IP overhead

• Overhead includes TCP and IP header bytes

• Ranges from 2.5% to 97% (if average is 50% this is bad)

• Turning Nagle off can be very bad

• Recall that sendfile() runs into this problem

– Short header immediately sent when written

• This would make sendfile() perform badly

10/17/2009 14Andrew Hanushevsky

Is There A Solution?

• Yes and no!

– There are many non-portable solutions

– Each OS has a mechanism dealing with this

• Linux: TCP_CORK setsockopt() option or

MSG_MORE send() option

• MacOS: sendfile() plus header/trailer iovecs

• Solaris: sendfilev()

– The only portable solution is writev()

• But does not solve the short last packet problem

10/17/2009 15Andrew Hanushevsky

TCP_CORK in Linux

• Allows you to temporarily turn on Nagle

– Implemented in Linux 2.4+

– Socket needs to have TCP_NODELAY set

• Only possible after Linux 2.5.71

– Needed other mind-bending games prior to this time

– Useful for sending header or trailers

• I.e., Framing data in front or back of disk data

10/17/2009 16Andrew Hanushevsky

TCP_CORK Example

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/sendfile.h>

const int Off = 0, On = 1;

// For expediency we don’t use getprotoent() but yo u should!
//
if (setsockop(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&On, sizeof(On))

{ handle error}

if (setsockopt(fd, SOL_TCP, TCP_CORK, (char *)&On, sizeof(On))
{ handle error}

// For easy reading no errors or partial writes are handled!
//
send(fd, hdr, hdrlen, 0);
sendfile(fd, dfd, &offset, numbytes);

if (setsockopt(fd, SOL_TCP, TCP_CORK, (char *)&Off, sizeof(Off))
{ handle error}

10/17/2009 17Andrew Hanushevsky

MSG_MORE in Linux

• Allows you to temporarily turn on Nagle

– Implemented in Linux 2.4.4

– Socket needs to have TCP_NODELAY set

– Useful for sending headers not trailers

• I.e., Framing data in front of disk data

– Simpler alternative to TCP_CORK

• TCP_CORK persists until cleared (3 syscalls!)

• MSG_MORE applies only to the call at hand

– Cleared on last byte of sendfile() or send() w/o option

– Note: you cannot efficiently send a trailer with sendfile()

10/17/2009 18Andrew Hanushevsky

MSG_MORE Example

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/sendfile.h>

const int On = 1;

// For expediency we don’t use getprotoent() but yo u should!
//
if (setsockop(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&On, sizeof(On))

{ handle error}

// For easy reading no errors or partial writes are handled!
//
send(fd, hdr, hdrlen, MSG_MORE);
sendfile(fd, dfd, &offset, numbytes);

10/17/2009 19Andrew Hanushevsky

Other Considerations

• Solving short packet problem only one aspect

of network performance

• For WAN’s TCP window size another one

– See SO_RCVBUF and SO_SNDBUF options of

getsockopt() and setsockopt()

• Displaced by auto-tuned TCP stacks in some kernels

• High performance TCP tricks outside the

scope of this lecture

10/17/2009 Andrew Hanushevsky 20

Conclusion

• The overall easiest and most performant way to

send file data across the network

– Memory mapped files can be equally good

• But more difficult to deal with

• However…

– Only useful for servers and network copy programs

• Something few people actually implement

10/17/2009 Andrew Hanushevsky 21

