
Andrew Hanushevsky:

Asynchronous I/O

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Goals

• Explain the usefulness of asynchronous I/O

– Indicate where is should and should not b used

• Explain AIO API’s

– Provide common examples

– Explain how to do I/O to multiple devices

• Provide reasonable AIO alternatives

10/16/2009 Andrew Hanushevsky 2

Asynchronous I/O

• I/O that occurs in “parallel” with the requestor

– Set of OS interfaces similar to synchronous I/O

• Read, write, sync

– Set of OS interfaces to manage I/O & test completion

• No synchronous counterparts

– Not all OS’s implement interface

• Linux 2.6 does

– Conforms to POSIX.1-2001

• GNU C defines the interface

– Conforms to ISO/IEC 9945-1:1996

10/16/2009 3Andrew Hanushevsky

Synchronous vs Asynchronous

• Synchronous I/O is deterministic

– Thread is suspended from the time an I/O request

is issued to the time it completes.

• Asynchronous I/O is non-deterministic

– Thread continues to run after the I/O request

• Kernel does the I/O in parallel to process execution

– Thread is responsible for checking completion

• Can ask the kernel for a signal when I/O completes

10/16/2009 4Andrew Hanushevsky

Synchronous I/O

User Space

Application

Kernel Space

read()

Initiate I/O

Suspend

thread

in I/O Wait

Context

Switch

Copy data

Resume

thread

Check if OK

Kernel performs I/O

while thread is suspended

10/16/2009 5Andrew Hanushevsky

Asynchronous I/O
User Space

Application

Kernel Space

aio_read()

Queue I/O

Return

Initial status

Context

Switch

aio_error()

aio_return()

Return

ending

status

Copy data

and send

signal

Kernel performs I/O is parallel

Thread continues execution

SIGNAL

10/16/2009 6Andrew Hanushevsky

Implications

• Only sync I/O for blocking devices is sensible

– Can use non-blocking option to prevent stalls

• Parallelism is a manual programming process

– But no I/O can occur until device is unblocked

• Sync or Async I/O to non-blocking devices OK

– Using non-blocking options makes no sense

• Though you are allowed to do so

• We will only discuss async non-blocking I/O

10/16/2009 7Andrew Hanushevsky

The AIO Interface

• aio_read(), aio_write(), aio_fsync()

– Start a read, write, or fsync() operation

• aio_cancel()

– Cancel a previous read, write, or fsync

• aio_error()

– Check request’s progress

• aio_return()

– Get final status of completed request (use only once!)

• aio_suspend()

– Wait for request completion

10/16/2009 8Andrew Hanushevsky

The Common AIO Element

• The aiocb structure correlates all requests

– Defined in aio.h

struct aiocb
{
int aio_fildes; /* File descriptor. */
int aio_lio_opcode; /* lio Operation. */
int aio_reqprio; /* Request priority offset. */
volatile void *aio_buf; /* Location of buffer. */
size_t aio_nbytes; /* Length of transfer. */
struct sigevent aio_sigevent; /* Signal number and value. */
off_t aio_offset; /* File offset. */
.
. /* Additional fields */
.

};

10/16/2009 9Andrew Hanushevsky

Simplistic AIO Read Example
#include <aio.h>
● ● ●

int fd, rc, ret;
struct aiocb my_aiocb;

if ((fd = open("my_file", O_RDONLY)) < 0) {handle error}

memset((char *)&my_aiocb, 0, sizeof(my_aiocb)); // Always zero it out!

/* Allocate a data buffer for the aiocb request */
if (!(my_aiocb.aio_buf = malloc(BUFSIZE))) {handle error}

/* Initialize the necessary fields in the aiocb */
my_aiocb.aio_fildes = fd;
my_aiocb.aio_nbytes = BUFSIZE;
my_aiocb.aio_offset = 0;

if ((rc = aio_read(&my_aiocb)) < 0) {handle error}

while((rc = aio_error(&my_aiocb)) == EINPROGRESS) {};

if ((ret = aio_return(&my_aiocb)) >= 0) {
/* got ret bytes on the read */

} else {
/* read failed, rc is the errno value but errno is now set as well */

}

10/16/2009 10Andrew Hanushevsky

Some Warnings!

• After aio_read(), do not change. . .

– Any byte of the aiocb structure

– The buffer passed via the aiocb

• It must remain valid as well (i.e., no free or munmap)

• Failure to do so yields unpredictable results

• You may change memory after aio_return()

– Which may one be called once!

10/16/2009 11Andrew Hanushevsky

Simplistic Approach is Bad!

• Example is essentially sync/non-blocking

– A CPU eater and to always be avoided

• We can convert it to async/blocking

– Much better but not particularly useful

struct aiocb *cblist[] = {&my_aiocb, 0, . .};

if ((rc = aio_read(&my_aiocb)) < 0) {handle error}

If ((rc = aio_suspend(cblist, 1, NULL))) {handle error}

while((rc = aio_error(&my_aiocb)) == EINPROGRESS) {};

if ((ret = aio_return(&my_aiocb)) >= 0) {
/* got ret bytes on the read */
} else {
/* read failed, rc has errno value and errno is now set too */
}

10/16/2009 12Andrew Hanushevsky

Other Issues With aio_suspend()

• aio_suspend() can wait on n aiocb’s

• Successful completion indicated by 0 return

– Means one or more of the aiocb’s completed

– You must now poll each one to find out which

• Use aio_error()

– This simply delays context switches

• Waiting on more than one is problematic

10/16/2009 13Andrew Hanushevsky

Cancelling AIO Requests

• aio_cancel(int fd, struct aiocb *aiocbp)

– To cancel a particular request supply fd & aiocbp

– To cancel all requests for an fd set aiocbp to zero

• Returns

– AIO_CANCELED if all were cancelled

– AIO_NOTCANCELED if at least one was not

– AIO_ALLDONE if all completed already

– -1 with errno for aio_cancel() call errors

10/16/2009 14Andrew Hanushevsky

Handling Multiple Requests

• lio_listio() can initiate a number of requests
– int lio_listio(int mode, struct aiocb *list[],

int nent, struct sigevent *sig);

– mode
• LIO_WAIT – wait until everything completes

• LIO_NOWAIT – return once aiocb’s queued

– nent
• The number of aiocb’s in the list[]

– sig
• Defines signal notification for LIO_NOWAIT

10/16/2009 15Andrew Hanushevsky

lio_listio Details

struct aiocb aiocb1, aiocb2;
struct aiocb *list[2] = {&aiocb1, &aiocb2};
● ● ●

/* Prepare the first aiocb */
aiocb1.aio_fildes = fd;
aiocb1.aio_buf = malloc(BUFSIZE);
aiocb1.aio_nbytes = BUFSIZE;
aiocb1.aio_offset = next_offset;
aiocb1.aio_lio_opcode = LIO_READ; // Can be LIO_READ, LIO_WRITE, and LIO_NOP
● ● ●

ret = lio_listio(LIO_WAIT, list, 2, NULL);

struct aiocb aiocb1, aiocb2;
struct aiocb *list[2] = {&aiocb1, &aiocb2};
Struct aiocl {int num; struct aiocb *list;} aioList = {2, list};
struct sigevent aio_sigevent;
● ● ●

/* Prepare the first aiocb */
● ● ●

aio_sigevent.sigev_notify = SIGEV_SIGNAL;
aio_sigevent.sigev_signo = innocuous_signum;
aio_sigevent.sigev_value.sival_ptr = &aioList;;
● ● ●

ret = lio_listio(LIO_NOWAIT, list, 2, &aio_sigevent);

10/16/2009 16Andrew Hanushevsky

The Good Part of lio_listio()

• lio_listio() allows you to do a number of things

– Start I/O on a number of different files

– Start I/O on a number of different offsets

• All this is done in one system call

• If you need multi-faceted I/O this is it

– Even with LIO_WAIT it’s very effective

• But waiting for single aio requests is bad

– Defeats the whole purpose of async I/O

• Unfortunately, most aio requests are singletons

10/16/2009 17Andrew Hanushevsky

The Right AIO Approach

• To make AIO truly async we must use signals

– They notify us when a request is completed

• And, optionally, which aiocb completed

– Means setting up a signal handler

– Means setting up a request queue manager

• Will handle completed requests out of signal handler

– Multi-threading is the best model for this

10/16/2009 18Andrew Hanushevsky

AIO With Signals
● ● ●

struct sigaction sa;

sa.sa_sigaction = mySigHadler;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
if (sigaction(innocuous_signum, &sa, NULL) < 0) {handle error}
● ● ●

my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
my_aiocb.aio_sigevent.sigev_signo = innocuous_signum;
my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;

if ((rc = aio_read(&my_aiocb)) < 0) {handle error}

Off to do other things while I/O occurs and notification sent!

void mySigHandler(int signo, siginfo_t *info, void *context)
{ struct aiocb *req;

if (info->si_signo == innocuous_signum && info->si_code == SI_ASYNCIO)
{req = (struct aiocb *)info->si_value.sival_ptr;

/*
While we could do aio_error() and aio_return() here; a workable solution
requires that we queue this aiocb on a completion queue so that some other
thread can handle the post-processing which is usually too complex to be
done inside a signal handler (e.g., like more I/O).
*/

}
}

10/16/2009 19Andrew Hanushevsky

What You Will Find In Practice

• You will need to embed aiocb in an object

– The object can be used to coordinate requests

• E.g., queuing and callbacks

• The callback can do the aio_error() and aio_return()

– It can also reflect the completion to the requestor

class aioRequest
{public:
aioRequest *Next; // For queuing purposes
struct aiocb theAiocb; // The actual request
●

●

●

void CallBack(); //Invoked when aiocb completes
●

●

●

};

10/16/2009 20Andrew Hanushevsky

A Workable Picture

aio_read()
aio_write()
aio_fsync()

aiocb

queue

Signal

Handler

aio consumer

threads

aio post-processing

threads

pthread_mutex_lock()
queue
pthread_mutex_unlock()
sem_post()

sem_wait()
pthread_mutex_lock()
dequeue
pthread_mutex_unlock()

Warning: Not all platforms implement sem_xxx functions.

10/16/2009 21Andrew Hanushevsky

Devil In The Details I

• What innocuous signal number to choose?

– Real time signals are preferred

• One between SIGRTMIN and SIGRTMAX

– Defined if real time signals are supported

– Otherwise, choose SIGUSR1 or SIGUSR2

• AIO is not supported on all platforms

– _POSIX_ASYNCHRONOUS_IO defined by gcc if present

• sigwaitinfo() is not present on all platforms

– Though that is getting less so

• It can be emulated but that is not straightforward

10/16/2009 22Andrew Hanushevsky

Devil In The Details II

• There are limits to the number of active AIO’s

– Linux supports a system limit

• /proc/sys/fs/aio-max-nr (max number usually 64K)

• /proc/sys/fs/aio-nr (number currently active)

– Other platforms impose per process limits

• Refer to the platform’s getrlimit() and sysconf()

• AIO requests can fail if the limit is exceeded

– Be prepared to revert to synchronous processing

• Usually will get EAGAIN error on an aio request

10/16/2009 23Andrew Hanushevsky

Avoiding Signals

• You can automatically start a thread

– sigev_notify = SIGEV_THREAD

– sigev_notify_function = void (*func)(union sigval)

• Practical problems. . .

– Not all platforms support this notification

– Ill-defined actions when thread limit exceeded

– Relatively heavy-duty for a simple notification

• Though it makes programming easier

• Generally, I do not recommend using this
10/16/2009 Andrew Hanushevsky 24

What’s The Alternative?

• A multi-threaded I/O architecture can work

– aio defined before threading became pervasive

• Implemented as a consumer/producer model

– One or two dozen producer threads are sufficient

• Can be dynamically created as needed

– Producers use well established sync interfaces

– Consumers see an asynchronous interface

– The kernel works just as hard

• Better yet, use parallelizable algorithms

10/16/2009 25Andrew Hanushevsky

Conclusions

• AIO is a powerful performance technique

– But historically geared to non-threaded event loops

– Difficult to use and is error prone

– Of these lio_listio() has the greatest potential

• Consider using this for multiple disparate I/O requests

• Better alternative is to use multi-threading

– Must use algorithms amenable to parallelism

– Using synchronous interfaces only suspends thread

• Computation still continues in other threads

10/16/2009 Andrew Hanushevsky 26

