First INFN International School on Architectures, tools and methodologies for

‘ &w developing efficient large scale scientific computing applications

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009

Vincenzo Innocente
“Software Architectures
For

Parallel Programming”

Implemented using
= std::thread

= OpenMP

= MPI

15/10/2009 Vincenzo Innocente CERN

‘ Goal of Today

= Learn a methodology to analyze a
computational problem and provide a
(optimal) parallel solution

= Review structural building blocks
o Architectural & Design patterns
o Algorithmic structures
o Implementations

= Study few use cases

= |dentify pitfalls, use measurement tools, apply
optimization strategies

15/10/2009 Vincenzo Innocente CERN 2

Resources

This lectures is largely based on

= the excellent 2009 Par Lab Boot Camp —
“Short Course on Parallel Programming”

http://parlab.eecs.berkeley.edu/bootcampagenda

= The OpenLab/Intel courses at CERN

= Examples and exercises use the latest C++0x
proposed standard as implemented in gcc 4.4.1
2 Not finalized, implementation incomplete and buggy...
o Very little doc (best: Anthony Williams ongoing blog)

15/10/2009 Vincenzo Innocen te CERN

‘ Top-to-Bottom Parallelism

= Cluster/Grid/Cloud

s Multi-socket

s Multi-core

= Hyperthreading

= SIMD/Wide execution

= Pipelining

= Superscalar
execution

15/10/2009 Vincenzo Innocente CERN

‘ Parallel Environments

Applications

LN

Operating System & Run-Time System

P: process
5 T: thread
C: core

(Shared) Memory S: socket

Vincenzo Innocente CERN 5

15/10/2009

‘ (Parallel) Software Engineering

Engineering Parallel software follows the “usual” software
development process with one difference: Think Parallel!

= Analyze, Find & Design

" Analyze problem, Finding and designing parallelism

= Specify & Implement

" How will you express the parallelism (in detail)?

= Check correctness
" How will you determine if the parallelism is right or wrong?

= Check performance

" How will you determine if the parallelism improves over sequential
performance?

15/10/2009 Vincenzo Innocente CERN

Foster’s Design Methodology

sFour Steps:
o Partitioning
= Dividing computation and data

o Communication

= Sharing data between computations
0

= Grouping tasks to improve performance
o Mapping

= Assigning tasks to processors/threads

From “Designing and Building Parallel Programs” by lan Foster

15/10/2009 Vincenzo Innocente CERN

‘ Designing Threaded Programs

mPartition

o Divide problem into
tasks

sCommunicate

o Determine amount and
pattern of
communication

lAgg |0merate Communication

s
o Combine tasks T \& @@

lllllllllllllll
N

Initial tasks

.Map

0 Assign agglomerated
tasks to created threads

Final Program

15/10/2009 Vincenzo Innocen te CERN 8

‘ Domain (Data) Decomposition

= Exploit large datasets whose elements can
be computed independently

o Divide data and associated computation amongst
threads

o Focus on largest or most frequently accessed data
structures

o Data parallelism: same operations(s) applied to all

Vot 20090

Functional Decomposition

= Divide computation based on a natural
set of independent functions
o Predictable organization and dependencies

0 Assign data for each task as needed

= Conceptually a single data value or transformation
is performed repeatedly

T —
Atmosphere Model
Hydrology Nces

Model nde

Vadte 2009 nocente CERN 10

‘ Activity (Task) Decomposition

= Divide computation based on a natural set
of independent tasks
2 Non deterministic transformation
0 Assign data for each task as needed
o Little communication

= Example: Paint-by-numbers
o Painting a single colour is a single task

YAkt 2009 nocente CERN 11

!!ruc!ur'al programming patterns

BIn order to create more "OYVET\
complex software it is A Ré (F) {l ITIQ\F\é{—{ 6 RF

necessary to compose - e

. PERSPECTIVES ON AN EMERGING IXSCIPLINE
pr‘ogrammlng pa.r.rer'ns MARY SHAW DAVID GARLAN

BmFor this purpose, it has |
been useful to induct a
set of patterns known as
“architectural styles”

BExamples:
- pipe and filter
- event based/event driven
- layered

- Agent and repository/
blackboard

- process control
- Model-view-controller

15/10/2009 Vincenzo Innocente CERN 12

* PLPP is the first attempt to develop a
complete pattern language for parallel
software development.

* PLPP is a great model for a pattern l) \ T T E R \ S
language for parallel software l“ () R P \ R \ I ' l, l

* PLPP mined scientific applications)
that utize a l ROGRAMMING

monolithic application style

-~
v

*PLPP doesn’t help us much with
horizontal composition

*Much more useful to us than: Design
Patterns: Elements of Reusable
Object-Oriented Software, Gamma,
Helm, Johnson & Vlissides, Addison-
Wesley, 1995.

15/10/2009 Vincenzo Innocente CERN 13

‘ Computational Patters

Finite State Mach
Circuits

Graph Algorithms
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Dynamic Prog

N-8ody
Backtrack/ B&B

Graphical Models
‘Unstructured Grid

Embed
SPEC

Games
ML

HPC

HOMMEQ
)/r ’ . -’; :

Health Image Speech Music Browser CAD

+ Computational patterns describe the key computations
but not how they are implemented

r. Our Pattern Language 2.0: Keutzer and Mattson /NN

Productivity Layer

> g
Choose your high level Choose you high level architecture? Guided decomposition Idenfify flhe key
structure - what is the Task Decomposition © Data Decomposition COTF::::'::: mpail;feerns
st_ru?urg oé m(}’ g Group Tasks Order groups data sharing data access computaﬁo):ts?y
applications &uide Guided instantiation
expansion
. - Model-view controller Graph Algorithms Graphical models
Plpe—and—fllfejr' e Dynamic Programming Finite state machines
Agent and Repository Map reduce Dense Linear Algebra Backtrack Branch and Bound
i Pr:t;ess :0."""".' X Layered systems Sparse Linear Algebra N-Body methods
e in\?(f:ai:i::p - Arbitrary Static Task Unstructured Grids Circuits
Graph Structured Grids Spectral Methods

Refine the structure - what concurrent approach do I use? Guided re-organization

Event Based Data Parallelism Pipeline Task Parallelism Digital Circuits

Divide and Conquer Geometric Decomposition Discrete Event 6raph algorithms

Efficiency Layer

Utilize Supporting Structures - how do I implement my c%n’::::gs,n(szzu&euided mappin%‘as ter/worker
Fork/Join Distributed Array Shared Hash Table Loop Parallelism
CcSP Shared Data SPMD BSP
Implementation methods - what are the building blocks of parallel programming? Guided implementation
Thread Creation/destruction Message passing Speculation Barriers Semaphores
Process Creation/destructidivllective communication Transactional memory Mutex

15/ 10U/ 200y Vincenzo Innocente CERKN 15

Main Challenge:
Build an architecture that scales
and will survive hardware evolution W

Recognition
Network

.

Inference Engine

s B St0ps .

ES 3 i MapReduce)
:

B B B | e

erations Most

¥
Signal Likely
wvocemis M E E8 E= E
h

J‘

Word
/ Sequence

‘ Iterator !

* SW ArCh”ec*ur,e of Large- Analogous to the design of an
Vocabulary Continuous entire manufacturing plant
Speech Recognition

N

Raises appropriate issues like scheduling, latency, throughput,

workflow, resource management, capacity etc.

31

15/10/2009 Vincenzo Innocente CERN 16

Think Parallel
PATTERNS

15/10/2009 Vincenzo Innocente CERN

17

‘ Pipes and Filters

‘Filters embody
computation

}

*Only see inputs and

Filter 1

produce outputs

k

Filter 3

Filter 2

}

}

Filter 4

!

Filter 5

|

!

Filter 6

Filter 7

=

*Pipes embody
communication

May have
feedback

15/10/2009 Vincenzo Innocente CERN

18

[teration

Initialization condition

Variety of functions

™

performed

|
p ¥
\\ (
asynchronousl\ T@}

Synchronize results [@ }

SYEIEN

of iteration

\

Exit condition met?

=

Yes

Ex

15/10/2009

Vincenzo Innocente CERN

19

‘ Layered Systems

Delegation pattern: Lower
layers “work” for the upper
ones

Individual Layers are big
Interface between two
adjacent layer is narrow
*No communication among
not adjacent layers

Challenge:
where parallelization shall occur?
«Often lower layers is legacy software

15/10/2009 Vincenzo Innocente CERN 20

‘ Agents and Repository

Agent 1

Agent 2

Agent 3

Repository/ Examples?
Blackboard
(i.e. database) Agent 4

Agent and repository : Blackboard structural pattern
Agents cooperate on a shared medium to produce a result

Key elements:

0 Blackboard: repository of the resulting creation that is shared by

all agents (circuit database)

0 Agents: intelligent agents that will act on blackboard

0 Manager: orchestrates agents access to the blackboard and
creation of the aggregate results (scheduler)

15/10/2009

Vincenzo Innocente CERN 21

Common-sub-expression
Constant P

elimination

folding
Internal
loop _
fusi Program Strength-reduction I
‘ usion

representation

Software —
Dead-code elimination I

Optimization of a software program
= Intermediate representation of program is stored in the repository
= Individual agents have heuristics to optimize the program

= Manager orchestrates the access of the optimization agents to the
program in the repository

= Resulting program is left in the repository

15/10/2009 Vincenzo Innocente CERN 22

Event-Based Systems

B Agenfts interact via events/signals in a medium

B Event manager manages events
B Interaction among agents is dynamic - no fixed connection

15/10/2009 Vincenzo Innocente CERN 23

‘ Puppeteer

‘Need an efficient way to manage and control the interaction of © =
multiple simulators/computational agents

* Puppeteer Pattern - quides the interaction between the
simulation codes to guarantee correctness of the overall simulation

Difference with agent and repository?
*No central repository

» Data transfer between simulators

Puppeteer Simulation n

Simulation 1

Simulation 2 Examples?

15/10/2009 Vincenzo Innocente CERN 24

‘ Map/Reduce

Original (google, Hadhoop) Map/Reduce takes a set of
input key/value pairs, and produces a set of output key/
value pairs.

= Map (written by the user)

o takes an input pair and produces a set of intermediate key/value
pairs.
= The MapReduce library

o groups together all intermediate values associated with the same
intermediate key | and passes them to the Reduce function.

= Reduce, also written by the user,

0 accepts an intermediate key | and a set of values for that key. It
merges together these values to form a possibly smaller set of
values.

15/10/2009 Vincenzo Innocente CERN 25

‘ Word count

map(String key, String value):
// key: document name

// value: document contents
for each word w in value:

EmitIntermediate(w

Input

15/10/2009

Worker 1

Worker N

II>

1)

Map Stage

reduce(String key, Iterator values):
// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += Parselnt(v);
Emit(AsString(result));

Reduce Stage

Worker 1

educe -]

Ll |

>,/"’—"\,
| Merge L
.\'_—_ J .

Output

il || I
— , / \ //

| Merge .}/

AN

1l

Worker M

Vincenzo Innocente CERN

26

FEvent Building]

Level-1 — Detector Frontend
Trigger
Cal. Muon Global | et | S T ceadout
T S i i] Systems
94
Mg‘r,\:gter o Builder Networks Controls

e ! Filter
Systems
I : I - Syalama PP ey LI" i i il

- Sub-systems 3 _
- Acronyms Computing Services e —

Map: Detector frontend assign event-id to each fragment
DAQ dispatch all fragment with same id to a given filter node
Reduce: filter node assemble the event and process it

15/10/2009 Vincenzo Innocente CERN

PARALLEL ARCHITECTURES
FOR HEP EVENT PROCESSING

15/10/2009 Vincenzo Innocente CE RN

‘ HEP Application

)

Application Event
Mangger ™ ™ selector
Message &~ " Event Data
Service / Service
JobOptions
Service | Algorithm ﬂ
Particle Prop. / \ Detec . Data
Service Service
Other
Services .
| ervice Histogram
| Service

@ Event \

=] Anal
[AxPatCandidates
[MCPaticlss

{:l MCTrackerHits ——

{:I MCVertices

Transient
\Even‘r Store /

Transient
Detector
Store

Transient
Histogram
Store

Converter

)

Persistency
Service

Persistency
Service

Persistency
Service

15/10/2009

Vincenzo Innocente CERN

Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

CMS:
1GB total Memory Footprint

Event Event- Event- Event- Event Size 1 MB
specific specific specific specific Sharable data 250MB
data data data data Shared code 130MB

Global Private Data 400MB !
data
Physics - multi-process vs multi-threaded
processes

- Read-only: Copy-on-write, Shared
Libraries

- Read-write: Shared Memory, sockets,
files

30

‘ Parallelization of Gaudi Framework

@

[InputStream]

Invisible to User

gaudirun.py

Ad'suondop

l Algorithm

Single Process

AR R
Qe ANSITas:
RS
W Dre
b
P

_—
(N

[OutputStream]

gaudirun.py --parallel=N

o

[InputStream]

l Algorithm

Workers Writer

Reader

[OutputStream]

Invisible to User

60/€1/01

U0 TIM)YIWS UI0d

loonmN XY ¢ LAS

“Hd

‘ Gaudi : HEP Event Processing

*Transient Event Store : Part
of Framework

*Stores DataObjects during
processing

Data T1 sLoaded from Persistent
Dot T2 T3 Storage at Start - |
* *Constantly modified during run
Data T2
Data T3
Transient Event Data T2 frori
Retes Data T4 Algorithm
Data T3, T4 Data T4
Algorithm
~ Data T5 C‘ <:
\ // Real dataflow
lf—
Data T5 U
15/10/2009 Vincenzo Innocente CERN 32

‘ HEP data processing

= No need of a coherent event state:
o Algorithms

= read specific event-fragments, store new fragments: never
modify existing ones

o Storage:
= Fragments map root branches: independent of each other
= Conditions shared among events and (some)
algorithms

o Event parallelism will profit of coherent shared
conditions

o Algorithm parallelism can make them private to each
of them

15/10/2009 Vincenzo Innocente CERN

33

Act Parallel
ALGORITHMIC STRUCTURE

15/1

0/2009 Vincenzo Innocente CE RN

Hello Word!

void hi() {
std::cout << "Hello World from”
<< std::this_thread::get_id() << std::endl;

void hello() {
std::thread t1(hi); eate (Fork
std::thread t2(hi);

Ni()) —
t1.join(); Run hi'in the "main” thread

t2.join();

15/10/2009 Vincenzo Innocente CERN

bO Hello Word!

Pass it by copy to

class Hi {
public:
Hi() - j(0) {}
explicit Hi(int i) : j(i){}
void operator()() {
H;
std::cout << "Hello World from "
<< std::this_thread::get_id()
<<"where jis" << | << std::end|

void hello() { Thread
std::thread t1(hi);
std::thread t2(Hi

hi();

—

Hi oneHi;
std::thread t3(std::ref(oneHi
std::thread t4(std::ref(oneHi));

\

);
)

Pass it by reference

to Threads

std::cout <<"jis " << oneHi, <
std::endl:
)

15/10/2009 Vincenzo Innocente CERN 36

What Happens?

[pcphsft60] ~/public/Bertinoro $./a.out

Hello World from Hello World from 140186020210544
Hello World from 1090701632 where j is 4 start is 0
1113024832

start is 3

Hello World Hello Hello World from from World from \
1090701632 where j is 11130248321401860202105442 \

where jis where jis 11 startis startis startis 00

0

startis 0

jis 2

[pcphsft60] ~/public/Bertinoro $./a.out

Hello World from 1091725632Hello World from
Hello World from 1102555456 where j is 4 start is 0
139953850718064

start is 2

Hello World from Hello 139953850718064Hello where j is \
World 1 start is World Ofrom

startis 0

from 1102555456 where jis 2 startis 0
1091725632 where | is 3 startis 0

jis3

[

[pcphsft60] ~/public/Bertinoro $./a.out

Hello World from Hello 139882834876272World from

1108351296 where j is 4 startis 0

Hello World from 1084438848

start is 2

Hello World Hello Hello World from from 1398828348762721108351296
where jis where jis 1 start is 0World

from startis 0

3 startis 0

1084438848 where jis 2 startis 0

jis 3

[pcphsft60] ~/public/Bertinoro $./a.out

Hello World from Hello 140206101608304World from 1093429568 where |
is

4 start is Hello World from 0

1085036864

start is 2

Hello Hello Hello World World from World from 140206101608304 where j
is from 110934295681085036864 where jis startis wherejis 0
startis 0

1 startis 0

2 startis 0

jis 2

15/10/2009 Vincenzo Innocente CERN 37

‘ Synchronization

= Critical sections

o A critical section is a portion of code that shall be
executed by only one thread at a time.

= Used to protect access to shared resources (memory)
o In C++0x, a critical section can be protected by a

“guard” that takes care to lock and then release a
“Mutual exclusion object (mutex)”

typedef std::mutex Mutex;
typedef std::unique_lock<std::mutex> Guard;

Mutex lock:

{
Guard guard(lock);

std::cout....

}

Destructor unlocks it

15/10/2009

Vincenzo Innocente CERN

38

 Optimize Critical Sessions (and avoid
pittalls)

= Critical sections may introduce a significant
fraction of sequential (non parallel) operations
o Granularity shall be chosen properly

= Make critical sections small
= Use different mutex to guard independent sections

o Major Pitfall: DeadLock

= Are sections really independent?

15/10/2009 Vincenzo Innocen te CERN 39

‘fﬁc Types of Synchronization: Barrier %‘h\\

Barrier -- global synchronization
- Especially common when running multiple copies of the same
function in parallel
» SPMD "Single Program Multiple Data"

- simple use of barriers -- all threads hit the same one
work on my subgrid();
barrier;
read neighboring values();

barrier;
- more complicated -- barriers on branches (or loops)
if (tid 3 2 == 0) {
workl () ;
barrier

} else { barrier }

- barriers are not provided in all thread libraries

No “barrier in C++0x: use modified boost::barrier

15/10/2009 Vincenzo Innocente CERN

‘ Explicit Synchronization

C++0x provides a simple explicit synchronization

mechanism based on “condition_variable”s

typedef std::mutex Mutex;
typedef std::unique_lock<std::mutex> Guard;
typedef std::condition_variable Condition;

Mutex goLock;
Condition go;
{ {
Guard guard(goLock); Guard guard(goLock);
go.wait(guard); /| prepare data
/I do something go.notify_all();
}

15/10/2009 Vincenzo Innocente CERN

41

Barrier implementation

#include <thread>
#include <exception>
class barrier {
public:
typedef std::mutex Mutex;
typedef std::unique_lock<std::mutex> Guard;
typedef std::condition_variable Condition;

barrier(unsigned int count)
: m_threshold(count),
m_count(count), m_generation(0) {
if (count == 0)
throw std::invalid_argument("count
cannot be zero.");

}

15/10/2009

bool wait() {
Guard guard(m_mutex);
unsigned int gen = m_generation;

if (--m_count == 0) {
m_generation++;
m_count = m_threshold;
m_cond.notify_all();
return true;
}
while (gen == m_generation)
m_cond.wait(guard);
return false;
}
private:
Mutex m_mutex; Condition m_cond:
unsigned int m_threshold, m_count;
unsigned int m_generation;

?

Vincenzo Innocente CERN

42

Future

C++0x provides a data exchange mechanism
among threads based on promise-future pattern

Able to transfer exceptions too!

std::promise<T> promise;

try {

Il prepare data

promise.set_value(result);

Ycateh (...)
m_promise.set_exception(std::current_exc
eption());

}

unique_future<T> input = promise.get_future();
/I now | need the result of the other thread
try {
T data = input.get();
Il continue gffpcessing
Ycatch (...) {f/*handle error*/}

Il continue processing

(or exception) in promise

15/10/2009 Vincenzo Innocente CERN 43

‘ Synchronization

= Lost time waiting for locks

#pragma omp parallel
{

o EBusy
#pragma omp critical 5 Hidle
{ M In Critical

}

Viricerzmdnnocente CERN 44

‘ L.oad Imbalance

= Unequal work loads lead to idle
threads and wasted time

#pragma omp parallel
{

swTy

#pragma omp for
for(; ;){

}

Viricerzmdnnocente CERN 45

‘ mance Pitfall: too many Barriers / M

g N\

Computations as DAGs

View parallel executions as the directed acyclic graph of the
computation

Cholesky
4 x4

Slide source: Jack Dongarra

15/10/2009 Vincenzo Innocente CERN

Nested fork-join parallelism (e.g., Cilk, TBB)

EEEyEEEREES

Arbitrary DAG scheduling (e.g., PLASMA,

SuperMatrix)

15/10/2009 Vincenzo Innocente CERN 47

‘ Pertformance Calculations

TS Best serial code timing (single thread/core)

Tp (n) Parallel code timing using n threads/cores (p fraction parallel, p&/0,1])

Tp (1) Parallel code timing using 1 thread/core

r,(1) Indication of parallel overhead
TS

S (n) __I Actual Speedup over single thread using n
p T, (n) threads/cores (p fraction parallel)

F (n) — Sp (1) Efficiency using n threads/cores (p fraction parallel)
4 n

Smax (I’l) — 1 Max. Speedup over single thread using n threads/
p 1-p+< cores (p fraction parallel)

YAkt 2009 nocente CERN 48

‘ Speedup

= Maximum speedup defined by Amdahl’s law:

- i
£ X
:
5
» T
\ » >
"

max _ 1 ~ ~ .
S » (n) = _p+2 n=#threads, p=parallel fraction

S

= Which just state the obvious:

o A bare 10% non-parallel fraction limits the
speedup to a factor 10!

15/10/30%enzo Innocente CERN 49

Classical parallel Algorithms

= Single Program Multiple Data (SPMD)
= Loop parallelism

= Wait for OpenMP/MPI presentation!

15/10/2009 Vincenzo Innocente CERN

50

Divide&Conquer by Fork&Join

[* re-entrant function Mattson el al. 5.29 page 170 */
template<typename lter, typename Compare>
void parallel_sort(Iter b, lter e, Compare c) {

size_t n = std::distance(b,e);

[l final exit

if (n< SORT_THRESHOLD) return std::sort(b,e,c);
/l Divide

lter pivot = b +n/2;

/I Conquer

/[fork first half

Thread forked(parallel_sort<lter,Compare>,b,pivot,c);
/I process locally second half

parallel_sort(pivot,e,c);
/l wait for the other half

forked.join();

/I merge...

std::inplace_merge(b,pivot,e);

}

Exercise:
rewrite Map-Reduce-Like
Eventually using OpenMP

What about returning data,
error management,
exceptions?

Wait for future!

15/10/2009 Vincenzo Innocente CERN

51

‘ Master/Worker

= Master distribute tasks to
workers

2 No communication among
workers

o Many possible data
access patterns

= Scheduling and queue
theory applies!
o Single queue multiple
workers
o Multiple queues
o Dedicated queues/workers
2 Roundrobin, priorities,...

15/10/2009 Vincenzo Innocen te CERN 52

‘ Shared Queue

Full chapter in Mattson el al.

void push(T const & t) {
Guard g(m_lock);
if (full()) m_full.wait

£

bool pop(T & t) {
Guard g(m_lock);
while (empty()) {
if (m_drain) return false;
m_empty.wait(g);

}
t= m_qg.front(); \
m_g.pop(); std::queue (?)
if (!full()) m_full.notify_all(); // (or !
notify_one?)

return true; <

}

15/10/2009 Vincenzo Innocente CERN 53

‘ (managing) shared data

= Single Lock:
o Last resort (in case of legacy data-structures)

= Distributed Locks

o Optimize granularity
= Heuristic: #locks = #threads

= Distributed data
o Map-Reduce:

= overhead of reduce vs overhead of locks
= Transactional memory access
o Atomic operations
o No lock, unroll if fails
o Promising technology...

15/10/2009 Vincenzo Innocen te CERN

54

TCMalloc (Google Malloc)

= TCMalloc assigns each thread a thread-local cache.
o Small allocations are satisfied from the thread-local cache.

o Objects are moved from central data structures into a thread-local
cache as needed,

o Periodic garbage collections are used to migrate memory back from a
thread-local cache into the central data structures.

Thread Cache Thread Cache

N

Central
Heap

Not the end of the story...

Read Phenix Rebirth about porting on a 256-thread UltraSPARC T2+ system.
http://csl.stanford.edu/~christos/publications/2009.scalable phoenix.iiswc.pdf

15/10/2009 Vincenzo Innocente CERN 55

‘ Atomic operation

= Modern architectures provide atomic operations
o Guaranteed to be fully completed by just one thread

= gcc intrinsics on x86 64
http://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Atomic-Builtins.html

a CAS
= _ sync _bool compare and swap(addr,expected,new)
= _ sync val compare_and_swap(addr,expected,new)
o Op and fetch (also fetch and op)
= _ sync add _and_fetch(addr,n)
o Swap
= _ sync lock test and set(addr,n)

15/10/2009 Vincenzo Innocente CERN 56

‘ Atomic operation

s C++0x std::atomic<type>
#include <cstdatomic>
std::atomic<int> x;

o CAS

= X.compare_exchange_ strong(expected,new)
o Fetch and op ; Op and fetch
= Xx.fetch_add(n); x++; x+=n; etc

o Swap
= Xx.exchange(n); x=n;

15/10/2009 Vincenzo Innocente CERN

57

‘ Atomics 1n use
= Barrier with spinlock

struct barrier {
void wait(} {
__sync_add_and_fetch(m_n,-1);
while(m_n) {/* std::this_thread::yield(); */}
}

volatile long m_n;

J
= Shared linked list A

pointer insert(pointer p, value_type const & value) {
Node * me = new Node; me->value=value;
if (p==0) p=&head;
while (true) {
me->next = p->next; // next sequential code p->next=me;
if (__sync_bool_compare_and_swap(&(p->next),me->next,me)) break;

}

next r——>

15/10/2009 Vincenzo Innocente CERN

58

‘ Non Blocking
Shared Queue

/I circular buffer
T container]l

-

bool pop(T&t) {
while (true) {
if(waitEmpty()) return false; //
include a signal to drain and terminate
volatile size t cur=tail;
if (cur==head) continue;
t = container{cur];
if
(__sync_bool_compare_and_swap(&tai
|,cur,cur==0 ?last : cur-1)) break;
}

return true;

}

)

I single producer only
void push(T const & 1) {
while (true) {
waitFull(); / head always empty...
volatile size_t cur=head,;
containerfcur] = t; // shall be done first to

15/10/2009

Vincenzo Innocente CERN 59

L.ock Free Hash Table
(Clitt Click at Google Camp 2007)

= Insert; CAS as before
= Delete: just mark

= The difficult part is to implement lock free
resizing
o Do not block operation from other threads
o Allow other threads to collaborate in resizing

= Memory management is the other big issue

= Read slides and papers: very instructive

15/10/2009 Vincenzo Innocen te CERN 60

‘ Singleton, Services

= Very unclear, static seems to introduce a full
memory barrier in any case

= Will not be covered
= Slide will be deleted

15/10/2009 Vincenzo Innocen te CERN

61

(Sorting)

Word count
Histograming
Clustering
N-body dynamics

USE CASES

15/10/2009

Vincenzo Innocen te CERN

62

‘ Histograming

Produce amplitude histogram (0-255) for each
10MPixel image

o Throughput: process images in parallel
= Embarrassingly parallel

o Latency: process each image in parallel!
= Input: vector<uchar> image(10000000);
= Output: vector<int> histogram(256);
= Function: ++histogram[imageli]];

15/10/2009 Vincenzo Innocente CERN 63

‘ Word count
Count the number of occurrences of each word in
a text
= Input: Sequence<char> text(N); N large
= Output: AssociativeContainer<string,int> words;
= Function: WordlIterator word(text);
++words[*(++word)];

15/10/2009 Vincenzo Innocente CERN 64

‘ Clusterize

Clusterize points in 3D using Kmeans

= Input vector<Points3D> points

= Output vector<Cluster> clusters

Algorithm

n Start with a set of seeds

= Associate points to closest seed: (clusters)
= Compute mean (cluster position, new seed)
= Iterate

15/10/2009 Vincenzo Innocente CERN

65

‘ Blbhography

Google, wikipedia

= Architecture:
o http://www.cs.berkeley.edu/~volkov/cs267.sp09/
o http://parlab.eecs.berkeley.edu/wiki/patterns/pattern1 0O
o http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3594
o http://www.sigsoft.org/phdDissertations/theses/JorgeOrtega.pdf
= Computational Patterns
o http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

= Map-Reduce
o hitp://hadoop.apache.org/ (distributed: cluster, grid, cloud)
o Phoenix hitp://mapreduce.stanford.edu/ (multicore)

= C++0X

o http://Iwww.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-
part-1-starting-threads.html

o http://www.stdthread.co.uk/doc/

15/10/2009 Vincenzo Innocente CERN 66

