
16 October 2009 Fabrizio Furano 1

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Fabrizio Furano: “From IO-less to Networks”

Exercises

Test setup for LAN exercises

Prepare a 8GB file with your unique name
>dd of=/tmp/<yourname>.dat if=/dev/zero bs=1048576 count=8192

Copy it to the xrootd server of the school
>xrdcp /tmp/<yourname>.dat root://esc09-master:1095//<yourname>.dat

Copy it back to check it
>xrdcp –v -f root://esc09-master:1095//<yourname>.dat /dev/null

Copy the input file to your home dir
>cp /nfsmaster/track2_furano/Track2progs/inputfile.txt ~

>export PATH=/nfsmaster/track2_furano/xrootd-20091012/bin/arch:$PATH

16 October 2009 Fabrizio Furano 2

Exercise: local seq sparse access

Write a program which reads 1Kb every

10KB up to the end of the file.

Clear the cache before each run with the tool

“clearcache”

See how it performs

Estimate the average apparent latency per

request

16 October 2009 Fabrizio Furano 3

Exercise: local seq sparse access

Write a program which reads 1Kb every

10KB

But this time it does it backwards

The reads must be the same as the previous

exercise

See how it performs

Estimate the average apparent latency per

request

16 October 2009 Fabrizio Furano 4

TestXrdClient_read

A test program for xrootd data access

Interprets the standard input as a sequence of

requests to satisfy

The cmd line parameters modify the way it works

Read ahead size, buffer cache size, readv usage, …

16 October 2009 Fabrizio Furano 5

TestXrdClient_read
This program gets from the standard input a sequence of
 <length> <offset> (one for each line, with <length> less than 16M)
 and performs the corresponding read requests towards the given xrootd URL or to ALL
 the xrootd URLS contained in the given file.

Usage: TestXrdClient_read <xrootd url or file name> <blksize> <cachesize> <vectored_style>
<inter_read_delay_ms> [--check] [-DSparmname stringvalue]... [-DIparmname intvalue]...

 Where:
 <xrootd url> is the xrootd URL of a remote file
 <rasize> is the read ahead size. Can be 0.
 <cachesize> is the size of the internal cache, in bytes. Can be 0.
 <vectored_style> means 0: no vectored reads (default),
 1: sync vectored reads,
 2: async vectored reads, do not access the buffer,
 3: async vectored reads, copy the buffers
 (makes it sync through async calls!)
 4: no vectored reads. Async reads followed by sync reads.
 (exploits the multistreaming for single reads)
 5: don't read, but write data which is compatible with the --check option.
 <inter_read_delay_ms> is the optional think time every 100 reads.
 note: the think time will comsume cpu cycles, not sleep.
 --check verify if the value of the byte at offet i is i%256. Valid only for the single

url mode.
 -DSparmname stringvalue
 set the internal parm <parmname> with the string value <stringvalue>
 See XrdClientConst.hh for a list of parameters.
 -DIparmname intvalue
 set the internal parm <parmname> with the integer value <intvalue>
 See XrdClientConst.hh for a list of parameters.
 Examples: -DSSocks4Server 123.345.567.8 -DISocks4Port 8080 -DIDebugLevel 1

16 October 2009 Fabrizio Furano 6

Playing with remote data

Execute the testload testrandom.txt
(true data access from an ATLAS job)

With TestXrdClient_read

Using the naif synchronous reads
vectored_style set to 0

Cache set to 0

Read ahead set to 0

Which is what is officially used up to now

10ms of “think time” every 100 reads

Try at least 5 times, pick the best result, document it

Estimate the average total latency per request

Estimate the average CPU/wall time measure

16 October 2009 Fabrizio Furano 7

Playing with remote data

Execute the testload testrandom.txt
(true data access from an ATLAS job)

With TestXrdClient_read

Using the “Average window” readahead
vectored_style set to 0

Add “-DIReadAheadStrategy 2” to enable it

10ms of “think time” every 100 requests

Sparse, sequential load (easy case)
Try (at least 3-5 times each, pick the best result):

Cache sizes: 30000000(30M) up to 100000000(100M)

Read ahead size: from cache/10 to cache*3/4

Document the results, find your preferred option and explain why
you think it’s better

Estimate the average CPU/wall time measure

16 October 2009 Fabrizio Furano 8

Playing with remote data

Execute the testload testrandom.txt

(true data access from an ATLAS job)

With TestXrdClient_read

10ms of “think time” every 100 requests

Using the “async readv” technique for sparse

loads

Try at least 3-5 times, pick the best result

Compare the results with the previous runs

16 October 2009 Fabrizio Furano 9

