First INFN International School on Architectures, tools and methodologies for developing /)
w efficient large scale scientific computing applications INF

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009 L/

Building the software

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 1

Overview

= This lecture will focus on a number of practical issues that
come up when one is faced with when building a large set of
software

= In particular I'd like to focus on some transitions that (for many
of us!) have been happening recently, or are ongoing....

= Some of you work in the context of a large HEP collaborations
and thus you may find the basic transition has been already
been done by your software releases/tools group

© But there are probably still things to investigate!

= Or perhaps you are at the other (standalone) end of the
spectrum: “Here | am with my source tarball, now what?”

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 2

Overview

= |In particular | intend to provide a bit of
background information and describe some
performance-related issues for the following
topics:
7 Compilers

= in particular the transition from gcc3 to gcc4

© Shared libraries
© Floating point math

J The transition to 64bit

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

Personal Biases (Fair Warning)

" There is some bias towards Linux, gcc, about
Xx86/x86 64, etc.

= QObviously there is also some bias towards
experimental High Energy Physics (HEP) issues.

= And even within that | have some bias towards
talking about LHC experiments and in particular
my own experiment (CMS)...

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

‘Compilers

= The compiler is clearly one of the most important
tools for achieving optimum code performance

= Unless we want to hand-code everything in
assembly, we rely on it to take our code, written in a
high-level language like C++, and produce the
fastest code possible.

= Usually we also want it to accomplish that in the
shortest time possible, to use as little memory as
possible doing it, to produce the smallest code
possible, etc.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 5

‘GNU compiler collection (gcc)

The workhorse open source compiler, used by most of us,
most of the time, these days...

Front ends for C, C++, Fortran (Ada, Objective-C(++),
Java and others)

Back ends for x86, x86_64 (Alpha, ARM, ia-64, PowerPC,
Sparc and many others)

Most software today is easily configured to build with gcc

Although most of work on linux/x86(_64) today, or at most
MacOSX/x86 64, at least in non-DAQ environments, the
wide availability of gcc for different OS/CPU combinations
once eased porting C/C++ from one to another.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 6

\LLVM/CIang Compiler

Recent open source compiler project, aiming to build a set
of modular compiler components

= The initial versions replace the optimizer and code
generation of gcc, but still reuse the gcc front-end/parser
(compatible compiler options!)

= A separate project (Clang) aims to replace gcc front-end
for C/C++/Objective-C

= Targets both static compilation as well as just-in-time (JIT)
compilation

= Sponsorship (in particular) by Apple

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 7

Intel Compiler (icc)

= |Intel's showcase Fortran/C/C++ compiler(s)

= Arguably focused on demonstrating the best possible
performance to be obtained from their processors

" Independent compiler (language syntax, code quality)

= Generates code for all of the Intel processors, plus in
principle other x86/x86_64 compatible, i.e. AMD, processors

= Available for Linux/MacOSX/Windows, proprietary license

= The default behaviour for floating point may or may not be
what is desired (see later slides about floating point)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 8

\GCC version timeline/features

GCC 3.2.0 - 14 Aug. 2002

7 GCC 3.2.3 - 22 Apr, 2003 (~RHEL3/SL3
= GCC 3.4.0 - 18 Apr. 2004

7 GCC 3.4.6 - 06 Mar, 2006 (~RHEL4/SL4
= GCC 4.0.0 - 20 Apr. 2005
= GCC4.1.0 - 28 Feb. 2006

1 GCC 4.1.2 - 13 Feb, 2007 (~RHEL5/SL5
= GCC 4.3.0 - 05 Mar. 2008

0 GCC 4.3.2 - 27 Aug, 2008

7 GCC 4.3.4 - 04 Aug, 2009

default)

= GCC4.4.0-21 Apr, 2009

efault)
DSO Symbol Tree SSA
Visibility
Autovectorization
default) OpenMP 2.5
C++0x
New Register OpenMP 3.0

Allocator

5 GCC 4.4.1 - 22 Jul, 2009

New framework for
loop optimizations

Various banner improvements in recent gcc4.x compiler versions.

(See Release notes for full list, though!)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

GCC 3.2.0 - 14 Aug, 2002

7 GCC 3.2.3 - 22 Apr, 2003 (~RHEL3/SL3 default)
GCC 3.4.0 - 18 Apr, 2004

7 GCC 3.4.6 - 06 Mar, 2006 (~RHEL4/SL4 default)
GCC 4.0.0 - 20 Apr, 2005

GCC 4.1.0 - 28 Feb, 2006

7 GCC 4.1.2 - 13 Feb, 2007 (~RHEL5/SL5 default)
GCC 4.3.0 - 05 Mar, 2008

1 GCC 4.3.2 - 27 Aug, 2008
7 GCC 4.3.4 - 04 Aug, 2009
GCC 4.4.0 - 21 Apr, 2009

Rough status of some large HEP experiments

5 GCC 4.4.1 - 22 Jul, 2009

GCC versions and HEP

BaBar

BaBar

§e

BE 8

§c &

~Aflas . (GMS LHCb

(my personal understanding!)

_ Porting _
Production Not-deployed Deploying

14 October, 2009

ESCO9 - Peter Elmer, Princeton University

10

gccdx - Getting from here to there

= Porting your code forward to gcc4x (from gcc3x) is fairly

straightforward:
U There are often minor issues with missing system includes as other includes were
cleaned up

o Additional small cleanups related to namespace consistency, templates, duplicate
parameters, etc.

o Lots of documentation out there about the minor migration issues including
dedicated “porting guides” for gcc4.3/gcc4.4

o A slightly larger issue for some people is the transition from g77 to gfortran

= Regarding code from other people on which you depend:

© You may find that those packages have been ported to gcc4x, but only in versions
more recent than those you have

1 See Pere's talk on “Software Physical Design”: minimizing dependencies helps!

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 11

gccdx - Getting from here to there

= A few technical issues to watch out for:

O

If you build the compiler yourself on some platform, as opposed to taking it from
an operating system (OS) “default compiler” installation, in rare circumstances
you can have problems with other tools like bintuils

If you are not rebuilding cleanly everything yourself, e.g. mixing gcc3x and gcc4x
builds in your applications, note that you can wind up with multiple
copies/versions of things like libstdc++.s0

Some OS vendors (e.g. RH) ship more recent “preview” versions of their
compilers, in addition to the default compiler. The preview version may have (as
in the RH5 gcc4.3 example) the libstdc++.s0 downgraded for consistency to that
of the default compiler.

In general the OS vendors don't ship the canonical, downloadable versions of
many things, e.g. gcc, binutils, etc. but apply some number of patches on top.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 12

gcc
" This Is an exciting time for many of us as the

transition to gcc4x means that lots of new
tools and features become available.

= | will present some background information on
a few selected topics

= Others will cover (or have covered)
Autovectorization, OpenMP, C++0X in much
greater detail separate presentations

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 13

‘Compiler structure changes - gcc

Cttto
GENERIC

Java to
GENERIC

Figures from:
http://www.redhat.com/magazine/002dec04/features/gcc/
“From Source to Binary: The Inner Workings of GCC”
D.Novillo, used with permission

Caode Object
Generator Code

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 14

http://www.redhat.com/magazine/002dec04/features/gcc/

‘Compiler optimizations

" A simple comparison of the evolution of the
optimization options by version is here:

http://cern.ch/elmer/gcc_opt_by_ version.txt

" For 99% of purposes, you will probably stick with
-00, -0O1, -02, -Os, -O3, but it is interesting to
see how things are evolving. In general you would
probably only fine-tune the optimization options
based on specific profiling results.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 15

http://cern.ch/elmer/gcc_opt_by_version.txt

‘Compiler limitations

" The compiler should limit itself to optimizations
that do not change the behaviour of the program

© See however later notes on floating point

" |t often also doesn't have enough information to
make certain decisions, e.g. due to the scope of
what it is looking at or due to lack of knowledge
about inputs

2 While you (mostly) don't see this for the optimization
process, you've certainly noticed it if you've spent time
fixing compiler warnings

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 16

Aliasing/restrict

= A classic example where a compiler must make
conservative choices is regarding possible
aliasing of variables

void addme(int n, int* s, int* a, int* b) {
for (i=0; i<n; i++) {
s[i] = a[i] + bli];
}
}

= The compiler cannot assume that s*, a* and b* all
point to independent storage.

= restrict__ keyword can be used

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 17

‘Compiler limitations

" |In general the compiler may not be able perform
many optimizations in the presence of code
constructs that may have side effects:

© Obijects within loops
© Function calls within loops

" |t can't make assumptions about code it cannot
see

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 18

Code (physical) packaging

" The last generation(s) of experiments often used
archive (.a) libraries for code and linked some set of
static binaries for various purposes

7 The question is “which static binaries?”

The current generation of experiments has moved
almost entirely to using dynamic shared (.s0)
libraries as a technology

In the following slides, | will discuss two use cases
where they are advantageous, but also some of the
resulting problems (plus a few solutions)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 19

HEP Event Processing Frameworks

" Modern HEP event processing frameworks
are usually designed such that:

© A number of independent “modules” or “algorithms’
are run one after another

© The “modules’”/”algorithms” use as input data taken
from the “event”

© The “modules”/”algorithms” may produce and add
data to the “event” or they may do other things (e.g.
stop some set of modules from

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 20

HEP Event Processing Frameworks

Data T1

Data T2, T3(

Transient Even

Data T2

Data Store

Data T4

Algorithm

A

Data T1

Apparent dataflow
< —

Real dataflow

PATH Digitizer

Highly configurable frameworks
allow for a specific choice of
modules (sequences, etc.) to be
run via simple edits to a python
config script, without needing to
relink a full binary. A standard stub
application reads the config script
and loads the necessary shared
libraries as dynamic “plugins”

Tracker | , Vertexer | |—>

\kveep?
e

@1

Event

Output
Module

14 October, 2009

ESCO9 - Peter Elmer, Princeton University 21

Software Development Model

Most modern
experiments
support in some
way a “base
release”/user
sandbox style R
of development, E:J%%‘de%ﬁailapi::ﬁ 5!‘5“
e.g. via SCRAM “;'é’vtbodi"f%“

or CMT or

SoftRelTools

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 22

Shared library/plugin advantages

= Much more convenient for rapid turnaround testing:
© Many application changes can be made by a simple python edit alone.

© Even if code has been changed, it is often only necessary to rebuild
one or more shared libraries (fast) and not relink one or more static
binaries

= There are also advantages for release management and
bookkeeping

© No need to keep both (archive) libraries, (hnumerous) largish binaries
and application config files around. These are replaced by just shared
libraries and the config files.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 23

Shared library/plugin advantages

= The fact that multiple users might be reusing the same shared
libraries in different applications on any given machine
permits the OS to share a single in-memory copy between
them. If each user has a custom static binary for each possible
small variation on the application configuration, no sharing is
possible.

* The possibility of replacing a .so used by other people with
another (compatible) one, e.g. with some bug fix, is also
possible, but less commonly done.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 24

Shared libraries - downsides
= Size/bloat

© What is loaded in memory is often far more than what is
actually needed. In practice, there are often also fine-
grained redundancies between .so's

= Run time performance - Poor code locality

= Startup time

J The dynamic linker is still needed, but at run-time

= Virtual Memory Fragmentation (See Lassi's talk)

= All of these are worsened by having too many .so's
and each may or may not be a relevant effect for you

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 25

Shared libraries - size/bloat

= Three things in particular contribute to the larger
than necessary in-memory size of the code:

© Redundant copies of the same template function,
iInstantiated over and over again in each .so

© Redundant (out-of-line) copies of inline functions (i.e.
those functions you have as implementations in the .h)

7 Code which is co-resident in the same .so, but not
needed in this particular application
= In practice you care mostly if the relevant and the
irrelevant are mingled together on memory pages

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 26

Shared libraries - size/bloat
= What can be done to reduce the code size/bloat?

7 Combine .s0's which are always loaded together

© Look for and remove various types of bloat, e.g.:

= Non-templated parts of implementations in templates or
obviously non-inlinable functions can be moved out-of-line.

= Use of exceptions (if truly exceptional) can often be moved
out-of-line and/or out of template functions.

7 In short, look to see what is redundant/repeated and what
contributes to the size! “Why do | need N copies of that?”

7 gccd.x on average appears to produce smaller code, -Os
can be used in some cases, see also next slides on symbols

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 27

Shared libraries- Startup time

Even though a full link of a static binary is avoided through the
use of shared libraries and/or plugins, nothing comes for free.

Some of that work still needs to be done by the dynamic linker
at run-time, according to the actual load addresses of the .s0's.

For full description of this process and options for improving
performance, see U.Drepper, “How To Write Shared Libraries”

In the following slides | will just give an overview!

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 28

Shared libraries- Startup time

= Each shared library exports a (sometimes quite large) dynamic
symbol table

* The symbol lookup for (undefined) named symbols involves
(hashed) string comparisons with things found in that symbol
table

= The strings used in the comparisons are the mangled C++
names (which have the disadvantage of being both long and
often having longish common initial character sequences)

= Many of the exported symbols don't actually need to be... The
default is to export all globally visible symbols.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 29

Symbol visibility
" The ELF format used for shared libraries permits one to
control the visibility of the symbols in the shared library
= By default all globally visible symbols are exported
= There are several methods to control the symbol visibility:
< gcc compiler switches
= -fvisibility-inlines-hidden
= -fvisibility=default, -fvisibility=hidden

" Fine-grained use of __attribute__ ((visibility ("hidden")))
In source code

< Linker export maps (wildcarded lists of symbols and the
desired visibility for those symbols)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 30

Notes on symbol visibility

= Most noticeable effects:
© Faster startup, mostly due to fewer string comparisons

© Smaller (loaded) library size, from reduced dynamic symbol table

= Difficulties:

7 -fvisibility=hidden is in practice difficult to use, as the various type_info
in particular often needs to remain visible

0 Consistent choices across all relevant shared libraries needed

= Additional improvements were also made in the hash table
used for the dynsym table (via —hash-style=gnu, available in
the binutils shipped with RHEL5/SL5). And removing
spuriously linked libraries (explicitly or with —as-needed) of
course always helps.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 31

Integer calculations

Fairly straightforward,
all integers in some
given range are
representable

Math with integers is
easy to understand
and easily
reproducible. The
main “gotcha” is
overflows.

(signed) int

O

11111111 11111111 11111111 11111110 == -2

11111111 11111111 11111111 11111111 == -1

00000000 00000000 00000000 00000000 ==

00000000 00000000 00000000 00000001 ==

00000000 00000000 00000000 00000010 ==

O1111111 11111111 11111111 11111111 == 2147483647
10000000 00000000 00000000 00000000 ==-2147483648

unsigned int

00000000 00000000 00000000 00000000 ==
00000000 00000000 00000000 00000001 ==
00000000 00000000 00000000 00000010 ==
11111111 11111111 11111111 11111111 == 4294967295
00000000 00000000 00000000 00000000 ==

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 32

Floating point calculations

* Floating point calculations are a more complicated problem

* The problem stems from the fact that the number of real
numbers on any given interval is not finite and countable, as
for the integers.

= Using a finite number of bits, we thus cannot hope to represent
all real numbers exactly for computations, not even by
restricting the range
0 32 bits => 2732 = 4294967296 numbers max

* Indeed for floating point numbers we need to make restrictions
on both the range and the precision of the representation

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 33

|EEE-754 representation

IEEE Single Precision (Float)

Sign Exponent Mantissa
1 bit 8 bits 23 bits

Tricks in the representation

Valid (binary) exponents are -126 to 127
The exponent is "biased", add 127 to real exponent (1-254)
Biased exponent values 0 and 255 are special

The mantissa is "normalized". The leading digit is
always 1, e.g. 1.xyz, in binary.

Since the leading digit is always 1, it is assumed and
treated as a "hidden bit".

(Also double precision with 1 bit sign, 11 bit expt and 52 bit mantissa)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

34

|EEE-754 representation

IEEE Single Precision (Float)

Sign Exponent Mantissa
1 bit 8 bits 23 bits

Special Values in the representation

Biased exponent = 0, mantissa = 0 represents (signed) 0

Biased exponent = 0, mantissa !'= 0 represents "denormal
numbers": gradual underflow

Biased exponent = 255, mantissa = 0 represents (signed) infinity

Biased exponent = 255, mantissa != 0 represents NaN
(Not a Number)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 35

|EEE-754 operations

IEEE Single Precision (Float)

Sign Exponent Mantissa
1 bit 8 bits 23 bits
Operations

Rounding! (Upcoming slides)
Invalid operations like INF/INF, 0/0, INF-INF,
O*INF, sqgrt(negative), etc. produce NaN
Five exceptions are specified for errors:
1) Invalid operation - a NaN was produced
2) Divison by zero
3) Overflow
4) Underflow
5) Inexact - rounding

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

cases -

what could go wrong?

T
RGP e

First Ariane 5 flight,
destroyed just after
launch as it

veered out-of-control,
along with a $400M
scientific mission
(Cluster).

The subsequent investigation identified the lowest level problem as a
software bug coming an arithmetic overflow when converting a 64bit floating
point to a 16bit integer, triggering a hardware exception.

Numerous higher level problems also contributed, of course.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 37

Rounding

= Since most real numbers don't correspond exactly to floating
point numbers, a mapping (“rounding”) process is required.
Non-repeating in decimal doesn't imply the same in binary:
700111111 00000000 00000000 00000000 == 0.5
9 00111101 11001100 11001100 11001101 == 0.1

= Usual rules of associativity don't (always) apply due to limited
precision and rounding

7 (1.0e10 — 1.0e10) + 3.14e-2
4 1.0e10 - (1.0e10 + 3.14e-2)

= “x=y/c” and “a=1.0/c; x=a"y;” not necessarily numerically the
same

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 38

Rounding and compiler optimizations

" |n general the goal for compiler optimizations
should be to modify the code in a way that one
obtains the same results

* Due to the issues mentioned on the previous slide
and the possibility that intermediate values could
generate infinities, underflows or NaN's, what
may initially appear to be a simple algebraic
transformation of the code may actually change
the results.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 39

Implementations - x87 and sse

" Note that there are two floating point units available in
the x86 processors (x87 and sse)

= x87 floating point unit

7 Available from i386 onwards, default for gcc/32bit,
deprecated for x86 64

< Registers by default are “double extended” (80bit) format

" sse floating point unit

7 Supports both scalar and vector single and double precision
operations (see earlier talk by Sverre)

2 Default for x86 64

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 40

Floating Point Rules

= Understand the IEEE standard and what the compiler is doing,
e.g. if by default or by options it is making optimizations that
affect floating point results

< Reciprocals instead of division, associativity

= Understand the ranges of your numbers. What precision do
you really need?

= Sum from smallest to largest (see also Kahan summation)
= Watch for places where cancellations might occur
* Do not mix single and double precision: especially bad for SSE

= Globally applied solutions and choices are probably not
possible (and probably not needed)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 41

32bit vs 64bit

= Another transition that is still ongoing for the large HEP
experiments is the transition from 32bit to 64bit. For example:
© BaBar/CDF/D0 are 32bit only
© The LHC experiments have (mostly) been using 32bit applications,

although all have 64bit builds available and/or deployed in parallel

= One limiting factor has been that WLCG grid sites in the past
have deployed a mix of 32bit and 64bit OS on batch worker
nodes, even if the CPU's were 64bit-capable.

= As part of the recent/ongoing WLCG transition to SLC5, sites
were requested to deploy uniformly the 64bit version of the
OS.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 42

64bit history

= Early 64bit processors — Cray, Alpha (DEC),
MIPS, Nintendo 64, PowerPC, (now CBE), etc.
" Intel/HP attempted ia64/ltanium

= But in the 21° century we are mostly interested in
commodity hardware for bulk, batch-oriented HEP
computing

= In practice the 64bit commodity CPU which interests
most of us at this point is AMD's AMD64 (and Intel's
EM64T implementation), generically x86 64

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 43

64bit performance advantages

= Larger addressible memory space (>4GB)

7 In HEP, at least, this is not relevant for most bulk batch-oriented data
processing applications (MC simulation, reconstruction, etc.)

J Some specialized applications may benefit, e.g. tracking alignment,
standalone fitting, perhaps also interactive analysis

" Increased number, and size, of general purpose
registers

" Increased number of SSE registers

" Instruction pointer relative addressing: reduced cost
of position independent code (shared libraries)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 44

64bit applications - issues

= There are numerous webpages out there about porting
applications to 64bit and YMMYV in any case, but examples
of problems include:

© Assumptions about the size of pointers and/or types and their
iInterchangeability (lots of flora and fauna here)

7 Use of variable size types (e.g. size _t) for persistent/stored
classes

© Memory use issues (and confusion, see next slides)

© Floating point math changes — The use of the sse fpmath (see
earlier slide) is default for x86_64/gcc. This may or may not be
a change for you, depending on the options you use for your
32bit software builds

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 45

64bit - memory accounting

= The first thing to note when looking into the memory use of
your 64bit applications is that using the VSIZE, even as a
rough metric, is becoming meaningless.

= Unfortunately it is still true that a number of tools (shells,
queue systems, etc.) as well as people's naive expectations,
use VSIZE for resource accounting.

= The combination of these two things has given 64bit a worse
reputation than it deserves in some quarters.

= The next slide gives two specific 64bit examples, but “How
much memory is my job using?” also appears as we move to
multicore (also for RSS, etc.).

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 46

64bit - memory accounting

Although the VSIZE doubles for the
64bit applications, the RSS
increase is much more modest (25-
30%).

Most of the VSIZE/RSS difference
between 32bit and 64bit comes
from a default 1MB alignment of
data/text pages, imposed by Id for
64bit, visible with pmap as memory
segments with no permissions.

A similar issue happens for the
mapping of the locale file: for 32bit
it is mapped into memory in 2MB
slices, for 64bit the entire file is
memory mapped (50MB+)

2500

MB

2000 -

1500 -

6 event test app

m VSIZE
m RSS

1000

500

0

64bit
Id fix

64bit 32bit

0

1 2 3 4 5 & 1 2 3 4 5 6 1 2 3 4 5 6

CMS example: with a custom linker
script, ~500MB can be removed by
relinking the numerous and very small
libs (see plot). Another ~100MB would
be possible from linking external libs in
the same way. (Workaround to keep
systems using VSIZE happy for now...)

14 October, 2009

ESCO9 - Peter Elmer, Princeton University 47

64bit memory - the increase

" There are some real increases in the memory
use, however:

© Pointer sizes increase from 4 bytes to 8 bytes, with corresponding
increases in data structures

= Alignment padding may increase the size of data structures

“ The actual code (text/data) size itself also increases by a small
amount from 32bit to 64bit (YMMV, CMS saw ~5% increase)

© The heap allocation overhead/alignment cost for 64bit is twice that
of 32bit. For 5-10M live allocations in the heap (observed in HEP
applications!) this itself implies an extra 40-80MB for our
applications, plus (one copy of) the 64bit pointers themselves imply
an extra 20-40MB.

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 48

64bit - Getting from here to there

= Many of the memory (footprint) issues are in the
end the same ones we see for 32bit, so can be
improved by the same technigues

= At least within WLCG we are in the process of
providing uniform 64bit computing, enabling the
experiments to transition fully should they like

= A full transition to 64bit (only) by an experiment
may mean cutting off support for very old
hardware (e.g. some laptops)

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 49

Code Evolution and Maintainance

= Certain types of changes made for improved
performance, e.g.
© Changes to use multithreading in applications
© Widespread changes to floating point behaviour
4 Etc.

may impact the software development model.

= Making such changes requires validation at the time
they are deployed and in fact continued validation may
be needed as the software evolves, simply because
they can break the simple model used by developers

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 50

'Code evolution

3.5e+06

2.5e+06 —

2e+06

SLOC

1.5e+06

1e+06 —

500000

BaBar

ALX 'BaB 600
O5F/Dec
| I_rlluﬂ H = 50[]
SLOC —_— i
Int Lumi (1/fp) —=—
Cit L
,il:aridard = — 400
First H,fﬂhmi ;
Callisions _ NTN /J — 300
| .r/ RW th 511 |EOM
+ o migration
-l:——l—)' — 200
G3 1G4 |
/ ~ 100
/ sinZbeta
| result | Afirst
paper | T T i 0
L L
B, W, By By B, G B B W, @, 9 D,
79, 700, 05, N S O, Vi as, W g
19 &, (&) [o [[#) [[2)
95 %9 505y 00, Vo5 s 00, V5. 0 o5

1/pb

14 October, 2009

ESCO9 - Peter Elmer, Princeton University

51

‘Code evolution

180

160 -

140
120
100

80 -

60 -

40 |

20

— BaBar

Unique developers People
committing to CVS Papers/year
1 during each month BaBar
| Total 857 over
1-entire time period
F
Tl
e 7007 0 B O s Oy, ey, ey Sy Sy g g
G 8, 0. % Y B, 0 0y Y, 0 Y

14 October, 2009

ESCO9 - Peter Elmer, Princeton University

52

Code Evolution

3e+06

2.5e+06

2e+06

1.5e+06

SLOC

1e+06

500000

0

CDF Run Il

_ Irix 2
Linux
) T L 3000
SLOC —e—
Int Lumi {(1/pb) ——— = 2500
— 2000
=
_ g
— 1500
~ Tracki d
Taring oo - 1000
/\ _|Muon reco
= "New EDM | — 500
(Run1l) First CDF R
un 2
.h. Paper
| r __{llf/ I l 0
” o
Q? ‘5’,.-:} ,.-? "5?..-? ‘3‘@ .l'? 'Q.:, -"? Q":" {?‘?
.-" 7 7
%5 "% "0 "y eﬁ % I N AN

14 October, 2009

ESCO9 - Peter Elmer, Princeton University

53

Code Evolution - CDF Run Il

140
Unique developers People
120 | commiting to CVS Papers/year
during each month CDF Run 2
100 |
Total 408 .over
go | entire ime period
60 -
40 -
20 A
0 ¥

(o (¥ (o (o (¥ (¥4 (¥ (¥ (¥ (¥
. Y. . Y. Y. Y. Y. . . 9.9,
70 70 7o <o <p. <o So <o <h <o <y
e o > C}:J f.%, C?:'? % r.%, CE'__-,

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

Summary

" A number of interesting transitions are underway,
bringing new opportunities and challenges!

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 55

References

" gcc release notes:
7 http://gcec.gnu.org/gcc-4.1/
7 http://gcc.gnu.org/gcc-4.2/
J http://gcc.gnu.org/gcc-4.3/
2 http://gcc.gnu.org/gcc-4.4/

= gcc optimization options:

7 http://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Optimize-Options.html

= Many interesting articles at gcc summits
= LLVM: http://www.llvm.org/

= Intel compilers: http://software.intel.com/en-us/intel-
compilers/

14 October, 2009 ESCO9 - Peter Elmer, Princeton University

56

http://gcc.gnu.org/gcc-4.1
http://gcc.gnu.org/gcc-4.2/
http://gcc.gnu.org/gcc-4.4/
http://gcc.gnu.org/onlinedocs/gcc-4.4.1/gcc/Optimize-Options.html
http://www.llvm.org/

References

= Ulrich Drepper, “How to Write Shared Libraries”,
http://people.redhat.com/drepper/dsohowto.pdf (along with
most other notes)

= lan Lance Taylor, “Linkers”, 20 blog entries in
http://www.airs.com/blog/archives/38 and follow-ons

= David Goldberg, “What Every Computer Scientist Should
Know About Floating-Point Arithmetic”

= David Monniaux, “The Pitfalls of Verifying Floating-Point
Computations”, http://hal.archives-
ouvertes.fr/docs/00/28/14/29/PDF/floating-point-article.pdf

14 October, 2009 ESCO9 - Peter Elmer, Princeton University 57

http://people.redhat.com/drepper/dsohowto.pdf
http://www.airs.com/blog/archives/38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

