
First INFN International School on Architectures, tools and methodologies for developing
efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Compilers
Performance optimizationPerformance optimization

[Floating-point representation]
Vectorization

Sverre Jarp
CERN

l bopenlab
CTO

Bertinoro – 12-17 October 2009

Overview

●Compiler theory
Front end Back endFront-end, Back-end

●Compilers in practice
Manufacturers (open source or not)
Working with compilers

C d f• Correctness and performance

● [Floating-point representation][g p p]

●Vectorization

Sverre Jarp - Compilers 2

Why are compilers important?

● “Why should we care about compilers? The
compiler is just a tool…” p j

The compiler is NOT just a tool
It has the entire responsibility for telling the
computer what you are trying to docomputer what you are trying to do…

• ..using an archaic language:
– movsd .LC0(%rip), %xmm0

d % 0 % 1– movapd %xmm0, %xmm1

● Knowledge of the compilation process can help
programmers produce better codeprogrammers produce better code

● Very important to know what the compiler can
do for you (and what it can’t)do for you (and what it can t)

Sverre Jarp - Compilers 3

const vs. #define

What is a compiler?

Source code

Compiler

Object or
Intermediate

code

Machine

Sverre Jarp - Compilers 4

Compiler Theoryp y
from “Building an Optimizing
Compiler” by Robert Morgan

Sverre Jarp - Compilers 5

Compiler Front-End
● Language-specific

● Performs all lexical analysis
Scanner

Parsing● Performs all lexical analysis,
parsing, and semantic checks.

● Builds an abstract syntax tree

Parsing

Semantic Analysis

Symbol Table Creating● Builds an abstract syntax tree
and symbol table

Th i iti l ti i ti h

Intermediate Representation
Creation

● The initial optimization phase
builds the flow graph or
intermediate representation (IR)intermediate representation (IR)

Each node in the flow graph
represents a “basic block”

• Straight-line piece of code

Sverre Jarp - Compilers 6

Compiler Back-End

● Backend is
comprised of

Front-End

Flow Graph Buildercomprised of
several phases
that will gradually

Flow Graph Builder

Dominator Optimization

Inter-Procedural Optimizationg y
lower the
intermediate

i

Inter Procedural Optimization

Dependence Optimization

Global Optimization

representation to
assembler code

Limiting Resources

Instruction Scheduling

Register Allocation

Instruction Rescheduling

Sverre Jarp - Compilers 7

Object Module Formation

Actions by the optimization phases

●Typical optimization steps
IdentifyIdentify

• Values that are constants
• Computations known to have the same value
• Instructions having no effect on the results of the program

Identify and eliminate
• Redundant computationsp

Optimize
• load and store operations
• Loops:• Loops:

– Interchange indexes or unroll loops
– Other advanced loop transformations

PerformPerform
• Code motion, strength reduction and dead-code elimination

Sverre Jarp - Compilers 8

Optimization phases (cont’d)

● Interprocedural Optimization
phasephase

Analyses procedure calls within
all the flow graphs of all
procedures within the wholeprocedures within the whole
program (or library)
Identifies
• which variables might be modified

by each procedure call
• which ones might be referencingwhich ones might be referencing

the same memory locations
• which parameters are known to

be constantsbe constants

Sverre Jarp - Compilers 9

Optimization phases (cont’d)

● In order to create the object modulej

Optimize the use of the physical registers

Save remaining temporaries in memory

S h d l ll th i t tiSchedule all the instructions

Write out the assembly languagey g g

Sverre Jarp - Compilers 10

What affects the optimizer’s
capabilities?capabilities?

● In general: Too little knowledge of theIn general: Too little knowledge of the
programmer’s intentions!

● Pointer aliasing: lack of knowledge of whichPointer aliasing: lack of knowledge of which
locations are being referenced

● Functions called through function pointers● Functions called through function pointers

● Branches, switch statements, etc.
Lack of knowledge of what is importantLack of knowledge of what is important

● Inefficient math expressions

● …

Sverre Jarp - Compilers 11

Compilers in Practicep

Sverre Jarp - Compilers 12

Linux compilers on the market (1)

● Open source:

GNU compiler suite. C/C++/Fortran
• http://gcc.gnu.org/

LLVM (C/C++) compiler framework
• Originated from U. of Illinois

N t d b A l• Now supported by Apple
• http://www.llvm.org/

Open64 compiler suite. C/C++/Fortran
• Derived from the SGI MIPS, IA-64 compiler
• Now also supported by AMDNow also supported by AMD
• http://www.open64.net/

Sverre Jarp - Compilers 13

Linux compilers on the market (2)
● Commercial:● Commercial:

Intel’s compiler suite (C/C++/Fortran for IA-32, Intel64,
and IA-64); http://www.intel.com/

ST Microelectronics/Portland Group (PGI) p ()
(C/C++/Fortran) compilers; http://www.pgroup.com/

Pathscale compilers (Now owned by NetSyncro com)Pathscale compilers (Now owned by NetSyncro.com)
Also derived from SGI’s compilers) (C/C++/Fortran);
http://www.pathscale.com/

Microsoft C/C++ compilers; http://www.microsoft.com/

Lahey/Fujitsu Fortran 95/90/77 compiler;
http://www.lahey.com/

Sverre Jarp - Compilers 14

Approaching a new compiler (version)
● Quality/Ease of use:

Does my code compile straight out of the box?

● Correctness:
Do I get correct results ?

• Don’t ignore warnings;
– Always have good tests for checking correctness, especially of

floating-point calculations

● Performance:
Do I enjoy the same performance ?

• Another (or the same) set of tests for performance
– Always risks of performance regression

Are there new performance capabilities?
• Can I add new flags and get even better performance

– Without changing the code?
Sverre Jarp - Compilers 15

How to best influence the compiler
●Multiple ways:

Use flags
• Problem: There are lots of them

Pre-processor definitions
• allowing executable code to be generated differentlyallowing executable code to be generated differently

depending on each case
Define pragmas:

• #pragma vector aligned#pragma vector aligned
Improved use of syntactical keywords

• const, inline, etc.
((16))• __declspec(align(16))

Improved visibility
• Compile bigger chunks in one go
• Use Interprocedural Optimization

Sverre Jarp - Compilers 16

Getting lost in flags?
● gcc performance flags:

-falign-functions=n -falign-jumps=n -falign-labels=n -falign-loops=n -fbranch-probabilities
-fprofile-values - fvpt -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fcaller-
saves -fcprop-registers -fcse-follow-jumps-fcse-skip-blocks -fdata-sections -fdelayed-
branch -fdelete-null-pointer-checks -fexpensive-optimizations -ffast-math -ffloat-store -
fforce-addr -fforce-mem -ffunction-sections -fgcse -fgcse-lm -fgcse-sm -fgcse-las -
floop-optimize -fcrossjumping -fif-conversion -fif-conversion2 -finline-functions -finline-
limit=n -fkeep-inline-functions -fkeep-static-consts -fmerge-constants -fmerge-all-
constants -fmove-all-movables -fnew-ra -fno-branch-count-reg -fno-default-inline -fno-
defer-pop -fno-function-cse -fno-guess-branch-probability -fno-inline -fno-math-errno -
fno-peephole -fno-peephole2 -funsafe-math-optimizations -ffinite-math-only -fno-
trapping-math -fno-zero-initialized-in-bss -fomit-frame-pointer -foptimize-register-move -
foptimize-sibling-calls -fprefetch-loop-arrays -fprofile-generate -fprofile-use -freduce-all-
givs -fregmove -frename-registers -freorder-blocks -freorder-functions -frerun-cse-after-

f f f f floop -frerun-loop-opt -frounding-math -fschedule-insns -fschedule-insns2 -fno-sched-
interblock -fno-sched-spec -fsched-spec-load -fsched-spec-load-dangerous -fsched-
stalled-insns=n -sched-stalled-insns-dep=n -fsched2-use-superblocks -fsched2-use-
traces -fsignaling-nans -fsingle-precision-constant -fstrength-reduce -fstrict-aliasing -
f f h d j f ll ll l f ll l f l l f i h l

Sverre Jarp - Compilers 17

ftracer -fthread-jumps -funroll-all-loops -funroll-loops -fpeel-loops -funswitch-loops -
fold-unroll-loops -fold-unroll-all-loops --param name=value -O -O0 -O1 -O2 -O3 -Os

What should you expect?

● Understand how the compiler “behaves”

C 1● Case 1: #include <math.h>
double test() { return pow(2.1,2) ; }

● Case 2: #include <math.h>
double test() { return pow(2.1,2.1) ; }

● Case 3: #include <math.h>
double test(double x) { return x/x ; }() { }

For the enthusiasts:
Reference: Table 7 1 in “Optimizing software in C++”

Sverre Jarp - Compilers 18

Reference: Table 7.1 in Optimizing software in C++
(Agner Fog: www.agner.org/optimize/optimizing_cpp.pdf)

Inspect your assembly code

● From the previous example (Case 2)
When compiling with “-S”:When compiling with S :

test:
LFB2● gcc 4.1.2 .LFB2:

movsd .LC0(%rip), %xmm0
movapd %xmm0, %xmm1
jmp powj p p

test:
LFB0:● gcc 4.4.1 .LFB0:

.cfi_startproc
movsd .LC0(%rip), %xmm0
ret

Sverre Jarp - Compilers 19

Interprocedural Optimization

●What is can do:
Function inlining
Optimizing calls and

t iargument passing
Constant propagation
Alias analysisAlias analysis
Address-taken analysis
Unreferenced valiable
removal
…

Sverre Jarp - Compilers 20

Profile-Guided Optimization
● Compilers have normally no clue as to what will

happen during execution
If/ l it h t t t tIf/else, switch statements, etc.

● With PGO, a compiler can analyze your software at
r n time and choose the “best” optimi ationrun-time and choose the “best” optimization
techniques dependent on the path actually taken

gcc (as of 4.1)g ()
• -fprofile-generate + test run + -fprofile-use

icc
• prof gen + test run + prof use• -prof-gen + test run + -prof-use

● Main problems:
Time consumingTime consuming
Must make the test run representative

Sverre Jarp - Compilers 21

Using more than one compiler?

●Multiple reasons:
You get more faith in your own code baseg y

• When it builds with different compilers
– Some compilers give more and better warnings as well

You get more faith in your calculations
• Again, this is especially true for FLP calculations

You could see different performance results

You could get acquainted with new and revealing
performance flags

• Autovectorization; Profile-Guided OptimizationAutovectorization; Profile Guided Optimization
• Etc.

Sverre Jarp - Compilers 22

Floating-Point
R t tiRepresentation

(See Peter Elmer’s talk)

“What Every Computer Scientist Should Know About Floating Point Arithmetic”What Every Computer Scientist Should Know About Floating-Point Arithmetic”
David Goldberg, 1991, 48 pages (http://portal.acm.org/citation.cfm?id=103163)

Sverre Jarp - Compilers 23

Vectorization

Sverre Jarp - Compilers 24

Back to SSE data types

single single single single
PACKED

In 128 bits:

single
SCALAR

double
PACKED

double
PACKED

SCALAR
double

PACKED 8 BIT

Sverre Jarp - Compilers 25

PACKED 8-BIT

Programming levels with SSE

● Classical tradeoff: code
manageability vs speedmanageability vs. speed

● Available levels● Available levels
Assembly
Intrinsics (C/C++)
Autovectorization (C/C++)

F HOTSPOTS!● Focus on HOTSPOTS!

Sverre Jarp - Compilers 26

Vectors in the x86 assembly (1)

● There are more pleasant languages...
but not powerful enoughp g

● All vector operations can be controlled
directly

● Pros:
Full, fine-grained control
Useful for inner loops within higher levelUseful for inner loops within higher level
code

● Cons:
Large development overhead
Poor code manageability
Low flexibility

Sverre Jarp - Compilers 27

Tied directly to a particular architecture

Vectors in the x86 assembly (2)

● High level code (straight block)
a[0] b[0] * c[0];a[0] = b[0] * c[0];

a[3] = b[3] * c[3];

a[2] = b[2] * c[2];a[2] = b[2] c[2];

a[1] = b[1] * c[1];

● Assembly● Assembly
movaps %xmm0, b ; load 4 elem

mulps %xmm0 c ; multiplymulps %xmm0, c ; multiply

movaps a, %xmm0 ; store

Sverre Jarp - Compilers 28

Example from “The Software Vectorization Handbook”, A. J. C. Bik, Intel Press

Vector intrinsics (C/C++)
●Most SSE related operations in assembly

can be invoked using intrinsics

● Pros:
Much easier to write than inline assembly

• Access to instructions without the need to manage• Access to instructions without the need to manage
registers or code scheduling

Good performance and fine-grained control
still possiblestill possible
Best for inner loops within higher level code

• (possibility to combine effectively with C/C++)

● Cons:
Some additional development overhead
Medium flexibility

Po
we

r
Fl

ex
ib

ili
ty

Ea
se

 o
f u

se

Sverre Jarp - Compilers 29

y
Typically tied to a particular architecture

SSE* Intrinsics with C++
(HLT example)(HLT example)
F64vec2 operator +(const F64vec2 &a, const F64vec2 &b)

{ return mm add pd(a b); }{ return _mm_add_pd(a,b); }

F64vec2 min(const F64vec2 &a, const F64vec2 &b)

{ return _mm_min_pd(a, b); }

F64vec2 sqrt (const F64vec2 &a)F64vec2 sqrt (const F64vec2 &a)

{ return _mm_sqrt_pd (a); }

F64vec2 operator<(const F64vec2 &a, const F64vec2 &b)

{ return _mm_cmplt_pd(a, b); }

Sverre Jarp - Compilers 30

Source: HLT demo
(CERN openlab / Intel / Univ. Heidelberg)

Intrinsics browser

Sverre Jarp - Compilers 31

Autovectorization (C/C++)
● Heavily compiler and code dependent

Although the principle is the same, GCC and ICC differ

N b fit itf ll● Numerous benefits, numerous pitfalls
Speedups of 2x are not uncommon
Delicate: for example, one data type change in your loop
variable can derail all compiler efforts to vectorize the loopvariable can derail all compiler efforts to vectorize the loop

● Pros:
Speedups can often be achieved with virtually no effort on
th ’ tthe programmer’s part
Compiler reports make it easier
Architecture independent on the source level

C● Cons:
Difficult to control, many pitfalls
Heavy dependencies
Gains not as significant as with direct techniques – only Po

we
r

ex
ib

ili
ty

 o
f u

se

Sverre Jarp - Compilers 32

Gains not as significant as with direct techniques – only
as good as the compiler

P

Fl
ex

Ea
se

 o

Autovectorization techniques
● Basic premise: simple loops are automatically transformed into

vectors by the compiler
Only as smart as the compiler

● Conventional autovectorization● Conventional autovectorization
Vectorizing inner loops
Data dependencies break this scenario

● Loop unrolling to match cache line sizep g
● Loop peeling to align data
● Basic block autovectorization

A bigger block of code is autovectorizedA bigger block of code is autovectorized
Also applicable to smaller loops/vectors

● Branch statements are sometimes handled well using
predication

● Numerous caveats
Example: ICC autovectorizes only the first inner loop in a block of
code
Data alignment issues

Sverre Jarp - Compilers 33

g
Changing just one line might have huge consequences

Autovectorization example

Sverre Jarp - Compilers 34

Example from “The Software Vectorization Handbook”, A. J. C. Bik, Intel Press

You versus the Compiler

● You expect the compiler always to do the
right things for youright things for you

This is obviously the best, but does not always
happen
• May even be a regression issue: “It used to work !”

● The compilers expect you to do the right
thingg

Good programmers may do it right; Others may
“forget”
• Gi t hi t t th i t ti• Give strong hints as to the intentions
• Give maximum visibility

Sverre Jarp - Compilers 35

Conclusions
● For everybody with millions of source lines:

The compiler must be considered a “close ally”
• Let it know your intentions; Find out how it reacts

Obtain trust through stringent testing
• Correctness; SpeedCorrectness; Speed

Consider using more than one compiler

● Floating-point (See Peter’s talk)Floating point (See Peter s talk)
Understand how data is:

• Represented
M i l t d d i l l ti• Manipulated during calculations

● Vectorization
U d t d th t ti lUnderstand the potential

• Today and tomorrow
Sverre Jarp - Compilers 36

Q & AQ & A

BACKUPBACKUP

Sverre Jarp - Compilers 38

Scanning or Lexical Analysis (1)

sum := sum+data
id01 assign

id01 plus id02;Scanner

● Partition of the text into tokens (smallest meaningful
unit)unit)

● Remove comments, white spaces, etc.

● Track line numbers

● The scanner is basically a recognizer of a regular
llanguage

Sverre Jarp - Compilers 39

Parsing or Syntactic Analysis (2)

assign

id01 assign id01
plus id02; Parser

id01

id01 id02

plus

● B ild Ab t t S t T (AST)

id01 id02

● Build Abstract Syntax Tree (AST)

● The parser is a recognizer of a context-free
language

Sverre Jarp - Compilers 40

Semantic Analysis (3)

assign
assign

Semantic Analyzer

assign

id01 plus
id01
(int)

id01 id02

plus

id01 id02 (int) (int)
Type

checking
Symbol
table

Class
hierarchy

● Symbol Table creation (debugging)

● Class inheritance hierarchy● Class inheritance hierarchy

● Type checking

● Static semantic checking (def before use)
Sverre Jarp - Compilers 41

Fl ti P i tFloating-Point
RepresentationRepresentation

“What Every Computer Scientist Should Know About Floating Point Arithmetic”What Every Computer Scientist Should Know About Floating-Point Arithmetic”
David Goldberg, 1991, 48 pages (http://portal.acm.org/citation.cfm?id=103163)

Sverre Jarp - Compilers 42

A few words on floating point
● IEEE754 as a standard

● Numbers are represented in a binary notation:● Numbers are represented in a binary notation:
S * 2e * M
For instance, in double precision (64-bit)

• Sign: 1 bit (0 – positive, 1 – negative)
• Exponent: 11 bits
• Mantissa: 52 bits (for the fraction): 1.fffffffff()

● Decimal number are often not 100% accurate:
1.0 is OK, 0.1 is not

● Accuracy can be destroyed in one line:
• d = a + b – c;
• a = 2.0; b = 3.333333e-17; c = 2.0;
• What happens to d ?

Sverre Jarp - Compilers 43

IEEE 754

● Quickly summarized:

Sign Exponent Mantissa Max
exponent

Precision
(10xxx)

Single 1 8 23 +127 7.2

Double 1 11 52 +1023 16.0Double 1 11 52 +1023 16.0

Extended 1 15 64 +16383 19.3

Note that x87 uses 80-bit registers, whereas
SSE uses 64 bits only (in a DP calculation)

Sverre Jarp - Compilers 44

SSE uses 64 bits only (in a DP calculation).

Some FP rules

● Understand the IEEE standard

● Understand if the compiler follows the standard● Understand if the compiler follows the standard
strictly or not

Rules often change with O3
For instance,

• Use reciprocal rather than division
• Math libraries with less accuracyMath libraries with less accuracy

● Understand the ranges of your numbers
What precision do you really need?What precision do you really need?

● Sum up from smallest to largest

● Do not mix single and double precision
Especially bad for SSE

Sverre Jarp - Compilers 45

