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About ese Lectures 

ese lectures will address memory use and management in large 
scale scientific computing applications, with Linux/C++ focus. 

I will introduce general concepts mainly through specific concrete examples 
common to everyday developer work. I will focus on common aspects on 
commodity hardware, in areas I am personally experienced in – this is not a 
tour of absolutely everything there is to know about memory management. 

e following are valuable additional reading: 
U. Drepper, What Every Programmer Should Know About 
Memory, http://people.redhat.com/drepper/cpumemory.pdf 

D. Bovet, M. Cesati, Understanding the Linux Kernel, 
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2 

http://techreport.com, reviews with good technical detail 
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Why Memory Management Matters? 

So, you’ve got a problem to solve. You’ve designed an algorithm to 
solve it. Now all you need is it code it up and you are done, right? 

Actually, you have just begun. Your algorithm will translate to real 
machine code, which will run on very real physical systems, which have 
very real practical limitations. 

A complete design must account for the real world limitations. is 
means “the solution” will vary over time with technology evolution. 
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Why Memory Management Matters? 

Different solutions to the same problem vary dramatically in real 
life performance. 

Algorithmic and data structure changes can easily result in several orders of 
magnitude improvement and regression. Always research this option first. 

In some cases, changes in memory use and management can also easily produce 
orders of magnitude performance wins and losses – even without major 
logical change to the underlying algorithms. Common critical factors include 
memory churn, poor locality, and in multi-processing, memory contention. 

In other cases, simple, subtle changes can yield performance wins in the 
1-10% range. When % of your computing capacity is counted in rows of racks 
and days of processing, this still matters a great deal in practise! e small 
stuff still directly affects how much science you get out of your funding. 
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Key Memory Management Factors 

Many factors at different levels: physical hardware, operating system, 
in-process run-time, language run-time, and application level. 
#1: Correctness matters. 
–  If your results are incorrect, buggy, or unreliable, none of the rest matters. 

#2: Memory churn matters. 
–  Badly coded good algorithm ≈ bad algorithm. If you spend all the time in 

the memory allocator, your algorithms may not matter at all. 

#3: Locality matters, courtesy of the memory wall. 
–  Cache locality – stay on the fast hardware, away from the memory wall. 
–  Virtual address locality – address translation capacity is limited. 
–  Kernel memory locality – share memory across processes. 
–  Physical memory locality – non-uniform memory access issues. 
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Memory Management at 10’000ft 

Physical hardware 
CPU pipelines and out-of-order execution; memory management unit 
[MMU] and physical memory banks and access properties; interconnect – 
front-side bus [FSB] vs. direct path [AMD: HT, Intel: QPI]; cache 
coherence and atomic operations; memory access non-uniformity [NUMA]. 

Operating system kernel 
Per-process linear virtual address space; virtual memory translation from 
logical pages to physical page frames; page allocation and swapping; file and 
other caching; shared memory. 

Run time 
Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing 
memory [shmget/mmap/fork]; c/c++ libraries and containers; application 
memory management. 
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Old design: All CPUs linked via the 
front side bus (FSB) to the north bridge, 
which provides access to memory, and 
to south bridge which attaches to I/O. 

Issues: FSB bottlenecks in SMP 
systems, device-to-memory bandwidth 
via north bridge, north bridge to RAM 
bandwidth limitations. 
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Today’s OSes give processes a flat* linear 
virtual address space: the same linear address 
in two different address spaces means two 
entirely different physical addresses. 

Virtual and real physical memory is divided in 
pages, usually 4kB, but optionally 1-4MB. 
e OS provides the CPU per-process page 
tables to map a virtual address to a contiguous 
physical page frame plus offset, which in turn 
translates to memory bank, row and column. 

Page tables themselves use memory, consume 
L2+ cache space, and are never swapped out. 

Even if processes share physical page frames, 
the page tables are not shared. With 4kB 
pages, large address spaces mean big page 
tables, even if the memory itself is shared: 
there’s over 2MB of page tables for every 1GB 
of committed address space.+ 

Virtual Memory 

* CPUs also segment or otherwise divide memory in regions; 
details in the references. “Flat” does not mean “simple”, the 
address space can be a fairly hairy object. 8	



+ 2GB VSIZE × 128 processes requires 0.5GB page tables. 
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Special cache hardware called TLB, 
translation look-aside buffer, accelerates 
virtual-to-physical address mapping to avoid 
a full page table walk on every memory op. 
TLB fits only a limited number of pages. 

Virtual Address Translation 

A page which isn’t present or valid causes a 
page fault. e OS handles these, e.g. code 
page is read in from a file on disk on first use. 
Some page table changes force a synchronous 
update on all processors (“TLB shootdown”). 
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Typical CPU 
Architecture Today 

2-6 cores per die, 1-2 dies per package, 
1-N packages per system. 

3 levels of cache 
–  Small [32kB] separate L1 I+D 

caches for each core. 
–  Medium [256kB-3MB] combined L2 

cache, perhaps shared among some cores. 
–  Large [4-16MB] combined L3 cache 

shared between all cores on die. 

2-3 channels to DDR2 or DDR3, 2-3 
DIMMs per DDR channel, or up to 8 FB-
DRAM DIMMs per channel; practical 
performance varies a lot depending on how 
many DIMMs there are on the channels. 

High-speed interconnect to other CPUs: 
HyperTransport (AMD) or QPI (Intel). 
Cache snooping, cache tagging follow 
memory use in other packages. 
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[6-core AMD Opteron] 
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Typical Core Memory 
Architecture Today 

Out-of-order, super-scalar, deep pipelines. 

Significant capacity to reorder and buffer 
memory operations, will automatically 
prefetch several different access patterns. 

32kB L1I + L1D caches, 128-entry L1 
ITLB, 64-entry L1 DTLB ≅ 512kB code, 
256kB data addressing capacity. 

512-entry L2 TLB ≅ 2MB code + data 
addressing capacity – less than fits in L3 
cache, but more than one core share of L3. 

All this exists to combat the memory wall. 

BUT for all practical purposes a modern 
CPU performs well on large data volumes 
only if organised as arrays-of-structures 
(AoS) or structures-of-arrays (SoA) – 
pointer-rich “objects” will perform poorly. 
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[Wikipedia / Intel Nehalem / By “Appaloosa” / GFDL] 
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e Memory Wall 

Average memory access time 
  = Hit time + Miss rate × Miss penalty. 

I/D$: L1 hit = 2-3 clock cycles. 

I/D$: L1 miss, L2 hit =~ 10-15 cycles. 

TLB: L1 miss, L2 hit =~ 8-10 cycles. 

TLB: L1 miss, L2 miss =~ 30+ cycles. 

What happens when you drop to memory? 

Intel Netburst Xeon (Pentium-era) memory 
latency was 400-700 clock cycles depending 
on access pattern and architecture. 

AMD Opteron, Intel Core 2 and later CPU 
memory latency is ~200 cycles (times any 
NUMA overhead if crossing interconnect). 

Good cache efficiency matters. 
12	



Memory latency, Linux 2.6.28 x86-64
Intel i7 940 2.93 GHz, 6GB

[LMBENCH 2.5 results for array strides 16, 32, 64, 256, 512, 1024B]
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A Typical Dilemma for 
Scientific C++ App 

Relatively resource-rich CPU, 4-core AMD 
Opteron 270 from ~2007, but application is 
nowhere near compute bound. 

60% of clock cycles are completely stalled 
and do not retire a single instruction. 

60% of memory stalls are for instructions. 

60% of memory stalls are for page tables. 

L2 cache accesses are dominated by code  
and page tables. 

Oops? 
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[CMSSW on 4-core AMD Opteron 270, 2007] 

% of cycles	
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Starting Programs 
$ cmsRun somecfg.py 

OS creates a new process 
-  create and initialise a new address space, 

initial thread stack, command line args 
-  mmap code, data + other loadable 

segments from the main executable, 
dynamic linker (creating page tables) 

-  start thread in the dynamic linker 

Dynamic linker finishes the start-up 
-  mmap code, data segments recursively 

from all shared library dependencies 
-  relocate position independent code, data 
-  invoke init sections, start executing 

As process executes… 
-  page fault code, data in as needed 
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$ readelf –l cmsRun!

Elf file type is EXEC (Executable file) !
Entry point 0x80519f0 
There are 8 program headers, starting at offset 52 !

Program Headers: !
 Type         Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align !
 PHDR         0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4 !
 INTERP       0x000134 0x08048134 0x08048134 0x00013 0x00013 R   0x1 !
      [Requesting program interpreter: /lib/ld-linux.so.2] !
 LOAD         0x000000 0x08048000 0x08048000 0x1bbb3 0x1bbb3 R E 0x1000 !
 LOAD         0x01c000 0x08064000 0x08064000 0x00bdc 0x00c14 RW  0x1000 !
 DYNAMIC      0x01c01c 0x0806401c 0x0806401c 0x00208 0x00208 RW  0x4 !
 NOTE         0x000148 0x08048148 0x08048148 0x00020 0x00020 R   0x4 !
 GNU_EH_FRAME 0x019360 0x08061360 0x08061360 0x002f4 0x002f4 R   0x4 !
 GNU_STACK    0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x4 !

$ readelf –d cmsRun        !

Dynamic section at offset 0x1c01c contains 60 entries: !
 Tag        Type          Name/Value !
 0x00000001 (NEEDED)      Shared library: [libFWCoreFramework.so] !
 0x00000001 (NEEDED)      Shared library: [libFWCoreService...so] !
 0x00000001 (NEEDED)      Shared library: [libFWCorePython...so] !
 0x00000001 (NEEDED)      Shared library: [libDataFormatsCommon.so] !
 0x00000001 (NEEDED)      Shared library: [libFWCoreParameter...so] !
 0x00000001 (NEEDED)      Shared library: [libDataFormats...so] !
 0x00000001 (NEEDED)      Shared library: [libFWCoreMessage...so] !
 0x00000001 (NEEDED)      Shared library: [libFWCorePlugin...so] !
 [...] !
 0x0000000c (INIT)        0x8051278 
 0x0000000d (FINI)        0x8060084 
 0x00000004 (HASH)        0x8048168 !
 0x00000005 (STRTAB)      0x804a6d4 !
 0x00000006 (SYMTAB)      0x8048c34 !
 0x0000000a (STRSZ)       24813 (bytes) !
 0x0000000b (SYMENT)      16 (bytes) !
 0x00000015 (DEBUG)       0x0 !
 0x00000003 (PLTGOT)      0x806430c !
 0x00000002 (PLTRELSZ)    936 (bytes) !
 0x00000014 (PLTREL)      REL !
 0x00000017 (JMPREL)      0x8050ed0 !
 0x00000011 (REL)         0x8050b88 !
 0x00000012 (RELSZ)       840 (bytes) !
 0x00000013 (RELENT)      8 (bytes) !
 0x6ffffffe (VERNEED)     0x8050b18 !
 0x6fffffff (VERNEEDNUM)  3 !
 0x6ffffff0 (VERSYM)      0x80507c2 !
 0x00000000 (NULL)        0x0 !
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After a while… 
Process has loaded even more code and 
has allocated quite a bit of heap space 
-  Invoked the dynamic linker to bring in 

even more shared libraries, each of which 
mmaped more code and data segments 

-  Called sbrk, mmap to acquire additional 
heap memory from the operating system 

Result: 1060MB VSIZE, 850MB RSS, 
600 libraries, 1370 memory regions 
-  Each shared library has separate code 

and data pages, which is bad for virtual 
address space locality and stresses TLB 

-  Random scatter of mapped library pages 
(a security feature) × lots of libraries 
= dense address map with many holes 
= fragmented address space and heap 

-  is produced 2.3MB new page tables 
-  Definitely not smart – dwarfs the 

capacity of even the latest hardware 
15	



1024x1024 pixel image map of  the address space of  a 
32-bit cmsRun process. Every pixel is one 4096B page. 

Orange = code, green = data, blue = heap, stack. 
Total VSIZE 1060MB of  which 230 MB is code(!) 
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Operating System and Memory 

e operating system manages processes and their address spaces. 
Each process has a virtual linear address space to itself, isolated from other 
address spaces and the kernel itself. Each process has one or more threads, 
which share the address space but have a separate stack and execution state. 

In 32-bit, the 4GB address space is usually split 3:1 and sometimes 4:4 
between the user space and the kernel. In 64-bit the split does not matter. 

e operating system manages memory allocation and sharing. 
Memory is used for kernel itself and files in the buffer cache. Applications 
can share memory by referring to shared physical pages: just memory blocks, 
buffer cache regions, or special objects such as pipe memory with vmsplice(). 
Methods to share memory include fork(), mmap() or shmget(). 
On NUMA systems the OS also manages process-to-physical memory 
mapping. In practice application affinity hinting is necessary (cf. numactl). 
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About Shared Memory 

Shared memory is not special – it is completely natural and widely 
used on modern systems, with many ways to initiate sharing: 

Calling mmap() on a file in multiple processes can be used to create shared 
read-only or read-write mappings, on any file region. Example: shared library 
position independent code. One way to share static read-only data is to wrap 
and load it as a shared library. Suitable use of mmap() + {f,m}advise() can 
map windows of the OS buffer cache and provide hints on future use.  

Calling fork() without exec() makes copy-on-write shared memory of the 
entire process address space; writing to a page after fork() creates a private 
copy. One of the simplest ways to create writeable transient shared memory 
without file association is to use anonymous mmap() and then call fork(). 

It’s also possible to create persistent named shared memory with shmget(). 

Pages can be shuffled around with vmsplice(), tee() and remap_file_pages(). 
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C, C++ Run Time Memory Management 
“C++: e power, elegance and simplicity of a hand grenade.” 

C/POSIX provides some very basic memory allocation primitives 
malloc(); free(); realloc(); calloc(); memalign(); valloc(); alloca() 

Various libraries provide alternatives, or higher-level managers 
Some of the best alternatives: Google TCMalloc, FreeBSD jemalloc; 
Managers: Boost Pool, Sun SLAB allocator + derivatives, SAMBA talloc, 
GNU obstacks 

C++ provides partially incompatible allocation technology 
operator new/delete; object constructors, destructors and copy constructors; 
standard library containers and allocator objects; smart pointers, etc.; does 
map easily on top of malloc + free, somewhat painfully on anything else 

18	



I will not comment here on other languages, e.g. java, c# or scripting languages like python. 
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… 

Getting Hands Dirty: Logical Data Structures 

… 
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is logical linked list… 
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Logical vs. Real Data Structures 

Could be scattered in virtual 
address space like this… 

And in physical 
memory like this… 
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Logical vs. Real Data Structures 

e scatter is unimportant as 
long as Ln and TLB caches 
hide all latencies. Otherwise 

you must explicitly arrange for 
a better memory ordering. 

ere is no silver bullet to 
make this problem go away. 

Custom application-aware 
memory managers, such as 

pool / slab / arena allocators, 
other data structure changes, 
and affinity hints are the tools. 
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Getting Hands Dirty: C++ Types      
std::vector<double>     

std::vector<double> vec; !
vec.reserve(4); !
vec.push_back(1.0); !
vec.push_back(3.14); !
vec.push_back(7.133); !

A good and efficient data structure in general. 
– Good locality usually, guaranteed contiguous allocation. 
– Avoid small vectors because of the overhead; more on this in a moment. 
– Beware creating vectors incrementally without reserve(). Grows exponentially 

and copies old contents on every growth step if there isn’t enough space! 
– Beware making a copy, the dynamically allocated part is copied! 
– Beware using erase(), it also causes incremental copying. 
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Getting Hands Dirty: C++ Types 
std::vector<std::vector<std::vector<int>>> 

typedef std::vector<int> VI; !
typedef std::vector<VI> VVI; !
std::vector<VVI> vvvi; !
for (int i = 0, j, k; i < 10; ++i) !
  for (vvvi.push_back(VVI()), j = 0; j < 10; ++j) !
    for (vvvi.back().push_back(VI()), k = 0; k < 10; ++k) !
      vvvi.back().back().push_back(k); !

A very common mistake. C++ vectors of vectors are expensive, and 
not contiguous matrices. Let’s measure just how lethal this nested 
containment by value combined with incremental growth is. 
– Naively: 111 allocations, 5’320 bytes. (IA32; proper use of reserve() gets this.) 
– Reality: 980 allocations, total 30’402 bytes allocated, 5’632 at end, 9’508 peak. 
– +780% # allocs, +460% bytes alloc’d, 79% working and 6% residual overhead! 
– Versus 1 allocation, 4’440 bytes and some pointer setup had we used a real matrix. 
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Getting Hands Dirty: C++ Types 
std::vector<std::vector<std::vector<int>>> 

std::vector<VVI> vvvi, vvvi2; !
for (/* ... */) { /* ... */ } !
vvvi2 = vvvi; !

Why you should avoid making container copies by value… 
– +111 allocations, +5’320 bytes (= naïve / full reserve() allocation). 
– An allocation storm is inevitable if you copy nested containers by value. 

Evil bonus: memory churn. Because of the allocation/free pattern, by-value 
copies are an effective way to scatter the memory blocks all over the heap. 
– “A nested container” does not have to be a standard library container. It can 

refer to any object type which makes an expensive deep copy – for instance 
almost any normal type with std::string, std::vector or std::map data 
members, or objects which “clone” pointed-to objects on copy. 
– e simple “=“ line may also generate lots of code. 
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Getting Hands Dirty: C++ Types 
std::vector<uint16_t> x 

Typical std::vector<uint16_t> overhead is 40 bytes [64-bit system]. 
– 3 pointers × 8 bytes for vector itself, plus average 2 words × 8 bytes malloc() 

overhead for the dynamically allocated array data chunk. 
– So, if x always has N ≤ 20 elements, it’d better to just use a uint16_t x[N]. 
– More generally, if 95+% of uses of x have only N elements for some small N, 

it may be better to have a uint16_t x[N] for the common case, and a separate 
dynamically allocated “overflow” buffer for the rare N = large case. Somewhat 
more complex code may be offset by reduction in overheads – measure to see! 
– Even more generally, this applies to any small object allocated from heap. 

Examples abound in almost any large code base – at one point our software 
made many heap copies of 1-byte strings (yes, just the trailing null byte). 
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Getting Hands Dirty: C++ Types      
const char * and std::string       

const char array[] = “foo”; !
const char *ptr_to_literal = “foo”; !
std::string dynstr; dynstr.reserve(3); !
dynstr += ‘f’; dynstr += ‘o’; dynstr += ‘o’; !

Character arrays are filled in by compiler – if local, at run-time. 
String literals are statically allocated by compiler and linker. 
– It’s foolish to copy string literals unmodified into std::strings – you store the 

same character data twice, once in .rodata, another time on heap. Avoid 
defining APIs taking a std::string if 99% of callers will use a string literal! 

C++ std::string is a container much like std::vector<>. 
– Same caveats apply. Even though strings may be reference-counted and copy-

on-write, avoid relying on that extensively as consequences are usually awful. 
– Strings are highly overrated and spread like rats through bad interfaces. 

Our apps have ~15% of dynamic std::string data, majority misguided use. 
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Getting Hands Dirty: C++ Types      
std::map<std::string, X>       

std::map<K,V> is a balanced binary tree, usually red-black tree 
– Each tree node is a separately allocated [R/B, LeftPtr, RightPtr, Key, Value] 

tuple. Key comparison determines whether to follow left or right pointer. e 
recursive pointer chasing is poison to modern CPUs if data is not in cache. 
– Since the map is a balanced binary tree, it has log2(size) levels. If you have 

1M entries in the map, it will take up to 20 key comparisons to find a match. 
If each key is a container such as std::string, every key comparison involves 
another pointer dereference, then key data match – for 1M entries, up to 40 
pointer dereferences and up to 20 key comparisons before you get to data. If 
you fill the map slowly, the tree nodes and key and value data can be scattered 
all over virtual address space. Avoid large maps and use inexpensive keys. 
– Beware temporaries in x[“foo”] = abc(); x[“foo”].call()! Beware code growth 

when using maps inside loops: for (…) { std::map<K,V> mymap; … } 
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Getting Hands Dirty: C++ Types 

All C++ standard containers take an allocator template argument. 
– Usually by default the containers just grab memory with operator new when 

they need something. is can lead to highly inefficient memory layouts. 
– We are meant to use the template argument and constructor parameter to 

specify an alternate allocator, such as a pool allocator to improve locality. 
Pointer-rich containers (maps, lists) do need pool allocators for performance. 
– Do be advised this is even more invasive decision than starting to use slabs, 

obstacks, talloc, or purpose-built areanas – it affects the type. In general the 
decision needs to be made early on, retrofitting custom allocators into a large 
code base is a significant effort. 

I personally have rarely customised C++ allocators, mainly because 
it affects API types. I have used custom (= handwritten, non-std-
like) allocators and containers extensively, with great benefit. 
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Getting Hands Dirty: C++ Types 
Hey wait, aren’t you going to talk about objects!? 

Peak performance requires effective cache use for low latency. How 
that is achieved is less important. Understanding the language 
mapping from high-level constructs to low-level behaviour helps. 

With big data the answer tends to translate to hardware-aware and -friendly 
Arrays of Structures (AoS) and Structures of Arrays (SoA) organisation, e.g. 
partitioning problem so it fits in L1 cache, strides hardware can prefetch or is 
vectorisation-friendly. Cache-defeating pointer chasing will simply not work. 

Based on what we know of future processor roadmaps, the performance gap 
between AoS/SoA and pointer chasing data structures will only stay or grow 
bigger. If streaming units get prominent, code locality will also matter more. 

Pointer-rich “proper objects” do remain immensely useful – as long as caches 
are used very effectively, or performance simply doesn’t matter, for example in 
GUIs, support data structures and rarely used infrastructure. 
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Key Factor #1: Correctness 

VALGRIND is one of the most valuable tools to verify correctness 
of any memory related operations. It will save you hours of work. 

It’s not a toy – it’s one of the most useful software developer tools I have ever 
used. Always verify your regression test suite under valgrind; if nothing is 
flagged there’s reasonable chance there are no silent memory access problems. 

Any time you run into a problem, and certainly if you have a memory fault 
such as a segmentation violation, run the program under valgrind. 

It will also provide useful leak data. It’s very slow just for that however. 

e same suite has other tremendously useful associated tools. 
HELGRIND for finding multi-threaded data races, MASSIF for generating 
run time heap snapshot profiles and CACHEGRIND for CPU simulation. 
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Key Factor #1: Correctness 
IgProf profiling suite is complementary to the Valgrind family. 

IgProf can profile memory allocations, and can report the full stack trace for 
every allocated memory block. It’s particularly useful for detecting leaks, 
generating run-time heap snapshots, and generally tracking memory use.  

Recommended use: check correctness with Valgrind, then use IgProf to 
create heap profiles, in particular to identify leaks. IgProf has much less 
overhead than Valgrind (50-100% vs 1000%), but assumes correctness. 

Memory leaks come in broadly two flavours: unreachable but still 
allocated, and accumulated reachable garbage. 

Unreachable memory is created by forgetting to free data past last reference. In 
C++ it is usually a sign of fairly poor object ownership design – see talloc for 
ideas. Accumulated garbage happens when object lifetime extends long beyond 
the time the object is needed. Fattens virtual memory use and slows apps down. 
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Combating Memory Leaks 
#1: Design clear object ownership – it won’t just happen! 

e most common reason for leaks is developers don’t know who owns the 
object or how long it will be live. Most likely to happen at API boundaries. 
Design clear ownership rules; see for example talloc library. [Causes knock-
on issues: developers copy objects when they don’t know who owns them.]  

#2: Use RAII idiom where possible (Resource Acquisition Is Initialisation) 
e owner object will release resources when destructed. Numerous idioms. 
A) Prefer memory pools when you can define en-masse clear ownership; B) 
Use by-value containers – std::string, std::vector; C) Use reference counting 
smart pointers – std::auto_ptr, boost::intrusive_ptr, boost::shared_ptr; good 
for internal use, be cautious of using them in APIs: prefer #1 over #2. 

#3: Proactively verify correctness using leak detection tools 
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Key Factor #2: Memory Churn 
Memory churn is excessive reliance on dynamic heap allocation, 
usually in the form of numerous very short-lived allocations. 

Every HEP C++ application I have looked at has suffered from extreme 
memory churn. Our software performs 1M memory allocations per second 
on average, over hours of running. at’s a malloc() + free() every ~2500 cycles! 

Memory churn has several highly undesirable side effects. 
Time is spent in memory management, not in your algorithms. We’ve seen 
up to 40% in malloc()+free(); 10%+ is a strong sign of bad problems. 
Tends to cause poor heap locality and to increase heap fragmentation. 
Churn on large allocations can cause frequent, costly page table updates.  
Contaminates I, D and TLB caches with memory management code and 
data structures. CPU performance counter profiling less useful because the 
caches will seem to perform extremely well – they just contain the wrong data. 
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Combating Memory Churn 
Eliminating churn tends to yield big gains – x10 is not unusual. 

Unless the code suffers from even greater algorithmic flaws, memory churn 
tends to mask any other properties, rendering other profiling ineffective.  
Detecting memory churn is relatively easy: memory use profiling, such as 
IgProf MEM_TOTAL stats, tends to flag the problems almost trivially. 

Solving memory churn varies from trivial to very hard. 
Easy to fix mistakes like passing / returning containers by value, std::vector 
push_back()/erase(), containers defined inside of loops rather than outside. 
Maybe caching, a std::vector (“poor man’s arena”), replacing local variable 
with a data member, or a proper pool allocator will provide sufficient relief. 
Next hardest are changes to specific common types, e.g. replacing small 
heap-allocated matrix objects with compile-time sized array matrices. 
By far the hardest is to address systematic poor design – code “thinks” too 
locally and you have to touch tens to hundreds of thousands of lines of code 
to cut string use or introduce new object ownership or pool / slab allocators. 
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Key Factor #3: Locality 

Detecting, measuring and fixing poor locality: discussed extensively 
in other sessions this week and somewhat already in this one. 

Using suitable pool allocators is known to help, but no easy-to-use analysis 
tools. You can try evaluate heap trashing and allocation size distribution to 
some extent with e.g. igprof heap snapshots, even GLIBC’s memusage. In 
general the better your unit and regression test collection, the easier the job. 

Do pay attention to excessive virtual memory use – code and data. 
A good rule of thumb is the larger the process, the slower it gets, with a few 
well designed applications an exception to this. 200+ MB of machine code 
from 500+ shared libraries is usually just preposterously bad packaging and/or 
large-scale code bloat. Fix packaging, make big shared libraries only, use 
coverage testing to figure out what you really need, fix coding problems, if 
nothing else works, reorder binaries to separate “hot” and “cold” segments. 
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Exotic Efficiency Issues 

Applications may need to become NUMA aware. 
May have to if on NUMA hardware, and either make significant use of 
concurrency and shared memory (multi-threading or multi-processing); or 
need more memory than a single physical node has. Read up on numactl. 

Poor cache use, not getting enough out of prefetching hardware. 
Make sure you use SoA/AoS data structures, then see the other sessions this 
week on cache awareness, proper strides, alignment, collision avoidance, 
SIMD, and which tools to use identify problems and possible solutions. 

Multi-threaded systems may suffer from cache line contention for heavily 
accessed data (e.g. locks). Lots of research out there; typical solution is finer 
grained locks, or eliminating locking using e.g. read-copy-update (RCU).  

Killed by large page tables or TLBs? Look into using huge pages. 
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Summary 

Real-world limitations of CPUs and programming languages make 
memory management a significant factor in overall performance. 

e solution will vary with technical evolution. If you missed everything else, 
remember this: get the latency down. May mean you have to design to use 
hardware-aware AoS/SoA data structures. 

ere’s no silver bullet for making your applications scream. 
For top performance you have to invest in real understanding and custom 
application-specific solutions. Beware memory churn in particular. 

ere are tools out there which will reduce the mysteries a lot. 
And we will try them out in the exercises part! 
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