
Lassi Tuura, Northeastern University	

ESC09 – Bertinoro, Italy – 12-17 October 2009	

Architectures, tools and methodologies for developing���
efficient large scale scientific computing applications	

Efficient Memory
Management 	

Graphics Toolkits	

About ese Lectures

ese lectures will address memory use and management in large
scale scientific computing applications, with Linux/C++ focus.

I will introduce general concepts mainly through specific concrete examples
common to everyday developer work. I will focus on common aspects on
commodity hardware, in areas I am personally experienced in – this is not a
tour of absolutely everything there is to know about memory management.

e following are valuable additional reading:
U. Drepper, What Every Programmer Should Know About
Memory, http://people.redhat.com/drepper/cpumemory.pdf

D. Bovet, M. Cesati, Understanding the Linux Kernel,
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2

http://techreport.com, reviews with good technical detail
2	

Graphics Toolkits	

Why Memory Management Matters?

So, you’ve got a problem to solve. You’ve designed an algorithm to
solve it. Now all you need is it code it up and you are done, right?

Actually, you have just begun. Your algorithm will translate to real
machine code, which will run on very real physical systems, which have
very real practical limitations.

A complete design must account for the real world limitations. is
means “the solution” will vary over time with technology evolution.

3	

Graphics Toolkits	

Why Memory Management Matters?

Different solutions to the same problem vary dramatically in real
life performance.

Algorithmic and data structure changes can easily result in several orders of
magnitude improvement and regression. Always research this option first.

In some cases, changes in memory use and management can also easily produce
orders of magnitude performance wins and losses – even without major
logical change to the underlying algorithms. Common critical factors include
memory churn, poor locality, and in multi-processing, memory contention.

In other cases, simple, subtle changes can yield performance wins in the
1-10% range. When % of your computing capacity is counted in rows of racks
and days of processing, this still matters a great deal in practise! e small
stuff still directly affects how much science you get out of your funding.

4	

Graphics Toolkits	

Key Memory Management Factors

Many factors at different levels: physical hardware, operating system,
in-process run-time, language run-time, and application level.
#1: Correctness matters.
–  If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory churn matters.
–  Badly coded good algorithm ≈ bad algorithm. If you spend all the time in

the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
–  Cache locality – stay on the fast hardware, away from the memory wall.
–  Virtual address locality – address translation capacity is limited.
–  Kernel memory locality – share memory across processes.
–  Physical memory locality – non-uniform memory access issues.

5	

Graphics Toolkits	

Memory Management at 10’000ft

Physical hardware
CPU pipelines and out-of-order execution; memory management unit
[MMU] and physical memory banks and access properties; interconnect –
front-side bus [FSB] vs. direct path [AMD: HT, Intel: QPI]; cache
coherence and atomic operations; memory access non-uniformity [NUMA].

Operating system kernel
Per-process linear virtual address space; virtual memory translation from
logical pages to physical page frames; page allocation and swapping; file and
other caching; shared memory.

Run time
Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing
memory [shmget/mmap/fork]; c/c++ libraries and containers; application
memory management.

6	

Graphics Toolkits	

Old design: All CPUs linked via the
front side bus (FSB) to the north bridge,
which provides access to memory, and
to south bridge which attaches to I/O.

Issues: FSB bottlenecks in SMP
systems, device-to-memory bandwidth
via north bridge, north bridge to RAM
bandwidth limitations.

7	

I/O Hub

PCIe

CPU

Interconnect Memory

SATA

USB

North

Bridge

South

Bridge
PCIe

CPU
FSB

RAM

SATA

USB

CPU, Physical Memory and Interconnect
Current design: memory controller
directly on each CPU, physical memory
partitioned per CPU, fast interconnect
to link CPUs to each other and to I/O.

Solves many issues in FSB design, but
memory is no longer uniform – 30-50%
overhead to accessing remote memory,
up to 50x in obscure multi-hop systems.

Page #123

Page #543

Frame #411

Frame #629

Frame #937

#123 #629

#543 #411

Page #123

Page #137

#123 #937

#137 #629

Process A Virtual
Address Space

Process B Virtual
Address Space

OS Kernel
Page Tables

Physical
Memory

Graphics Toolkits	

Today’s OSes give processes a flat* linear
virtual address space: the same linear address
in two different address spaces means two
entirely different physical addresses.

Virtual and real physical memory is divided in
pages, usually 4kB, but optionally 1-4MB.
e OS provides the CPU per-process page
tables to map a virtual address to a contiguous
physical page frame plus offset, which in turn
translates to memory bank, row and column.

Page tables themselves use memory, consume
L2+ cache space, and are never swapped out.

Even if processes share physical page frames,
the page tables are not shared. With 4kB
pages, large address spaces mean big page
tables, even if the memory itself is shared:
there’s over 2MB of page tables for every 1GB
of committed address space.+

Virtual Memory

* CPUs also segment or otherwise divide memory in regions;
details in the references. “Flat” does not mean “simple”, the
address space can be a fairly hairy object. 8	

+ 2GB VSIZE × 128 processes requires 0.5GB page tables.

Segmentation
Unit

Paging
Unit

Logical Address Linear Address Physical Address

CR3

+

O!setIndexIndexIndexIndex(0/1)
x86 64-bit Linear Address Mapping, 48-bit [9-9-9-9-12 / 9-9-9-21 / 9-9-30] Virtual Address Space, 40-bit Physical Address Space

01112202129303839474864

Page Map

Page Pointers

Page Directory

Page Table

Page Frame

+
+

+
+

Graphics Toolkits	

Special cache hardware called TLB,
translation look-aside buffer, accelerates
virtual-to-physical address mapping to avoid
a full page table walk on every memory op.
TLB fits only a limited number of pages.

Virtual Address Translation

A page which isn’t present or valid causes a
page fault. e OS handles these, e.g. code
page is read in from a file on disk on first use.
Some page table changes force a synchronous
update on all processors (“TLB shootdown”).

9	

Memory interface

North Bridge & Hyper Transport Switch

H
yp

er
Tr

an
sp

or
t

Co
re

 +
 L

1
Ca

ch
e

L2
 C

ac
he

L3
 C

ac
he

 +
 T

ag
s

Graphics Toolkits	

Typical CPU
Architecture Today

2-6 cores per die, 1-2 dies per package,
1-N packages per system.

3 levels of cache
–  Small [32kB] separate L1 I+D

caches for each core.
–  Medium [256kB-3MB] combined L2

cache, perhaps shared among some cores.
–  Large [4-16MB] combined L3 cache

shared between all cores on die.

2-3 channels to DDR2 or DDR3, 2-3
DIMMs per DDR channel, or up to 8 FB-
DRAM DIMMs per channel; practical
performance varies a lot depending on how
many DIMMs there are on the channels.

High-speed interconnect to other CPUs:
HyperTransport (AMD) or QPI (Intel).
Cache snooping, cache tagging follow
memory use in other packages.

10	

[6-core AMD Opteron]

Graphics Toolkits	

Typical Core Memory
Architecture Today

Out-of-order, super-scalar, deep pipelines.

Significant capacity to reorder and buffer
memory operations, will automatically
prefetch several different access patterns.

32kB L1I + L1D caches, 128-entry L1
ITLB, 64-entry L1 DTLB ≅ 512kB code,
256kB data addressing capacity.

512-entry L2 TLB ≅ 2MB code + data
addressing capacity – less than fits in L3
cache, but more than one core share of L3.

All this exists to combat the memory wall.

BUT for all practical purposes a modern
CPU performs well on large data volumes
only if organised as arrays-of-structures
(AoS) or structures-of-arrays (SoA) –
pointer-rich “objects” will perform poorly.

11	

[Wikipedia / Intel Nehalem / By “Appaloosa” / GFDL]

quadruple associative Instruction Cache 32 KByte,

128-entry TLB-4K, 7 TLB-2/4M per thread

Prefetch Buffer (16 Bytes)

Predecode &

Instruction Length Decoder

Instruction Queue

18 x86 Instructions

Alignment

MacroOp Fusion

Complex

Decoder

Simple

Decoder

Simple

Decoder

Simple

Decoder

Decoded Instruction Queue (28 !OP entries)

MicroOp Fusion

Loop

Stream

Decoder

2 x Register Allocation Table (RAT)

Reorder Buffer (128-entry) fused

2 x

Retirement

Register

File

Reservation Station (128-entry) fused

Store

Addr.

Unit

AGU

Load

Addr.

Unit

AGU

Store

Data

Micro

Instruction

Sequencer

256 KByte

8-way,

64 Byte

Cacheline,

private

L2-Cache

512-entry

L2-TLB-4K

Integer/

MMX ALU,

Branch

SSE

ADD

Move

Integer/

MMX

ALU

SSE

ADD

Move

FP

ADD

Integer/

MMX ALU,

2x AGU

SSE

MUL/DIV

Move

FP

MUL

Memory Order Buffer (MOB)

octruple associative Data Cache 32 KByte,

64-entry TLB-4K, 32-entry TLB-2/4M

Branch

Prediction

global/bimodal,

loop, indirect

jmp

128

Port 4 Port 0Port 3 Port 2 Port 5 Port 1

128 128

128 128 128

Result Bus
256

Quick Path

Inter-

connect

DDR3

Memory

Controller

Common

L3-Cache

8 MByte

Uncore

4 x 20 Bit

6,4 GT/s

3 x 64 Bit

1,33 GT/s

GT/s: gigatransfers per second

Intel Nehalem microarchitecture

Graphics Toolkits	

e Memory Wall

Average memory access time
 = Hit time + Miss rate × Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.

I/D$: L1 miss, L2 hit =~ 10-15 cycles.

TLB: L1 miss, L2 hit =~ 8-10 cycles.

TLB: L1 miss, L2 miss =~ 30+ cycles.

What happens when you drop to memory?

Intel Netburst Xeon (Pentium-era) memory
latency was 400-700 clock cycles depending
on access pattern and architecture.

AMD Opteron, Intel Core 2 and later CPU
memory latency is ~200 cycles (times any
NUMA overhead if crossing interconnect).

Good cache efficiency matters.
12	

Memory latency, Linux 2.6.28 x86-64
Intel i7 940 2.93 GHz, 6GB

[LMBENCH 2.5 results for array strides 16, 32, 64, 256, 512, 1024B]

0

10

20

30

40

50

60

70

256 1K 4K 16K 64K 256K 1M 4M 16M 64M 256M 1024M

Array size

La
te

nc
y

in
 n

an
os

ec
on

ds

Graphics Toolkits	

A Typical Dilemma for
Scientific C++ App

Relatively resource-rich CPU, 4-core AMD
Opteron 270 from ~2007, but application is
nowhere near compute bound.

60% of clock cycles are completely stalled
and do not retire a single instruction.

60% of memory stalls are for instructions.

60% of memory stalls are for page tables.

L2 cache accesses are dominated by code
and page tables.

Oops?

13	

[CMSSW on 4-core AMD Opteron 270, 2007]

% of cycles	

Graphics Toolkits	

Starting Programs
$ cmsRun somecfg.py

OS creates a new process
-  create and initialise a new address space,

initial thread stack, command line args
-  mmap code, data + other loadable

segments from the main executable,
dynamic linker (creating page tables)

-  start thread in the dynamic linker

Dynamic linker finishes the start-up
-  mmap code, data segments recursively

from all shared library dependencies
-  relocate position independent code, data
-  invoke init sections, start executing

As process executes…
-  page fault code, data in as needed

14	

$ readelf –l cmsRun!

Elf file type is EXEC (Executable file) !
Entry point 0x80519f0
There are 8 program headers, starting at offset 52 !

Program Headers: !
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align !
 PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4 !
 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1 !
 [Requesting program interpreter: /lib/ld-linux.so.2] !
 LOAD 0x000000 0x08048000 0x08048000 0x1bbb3 0x1bbb3 R E 0x1000 !
 LOAD 0x01c000 0x08064000 0x08064000 0x00bdc 0x00c14 RW 0x1000 !
 DYNAMIC 0x01c01c 0x0806401c 0x0806401c 0x00208 0x00208 RW 0x4 !
 NOTE 0x000148 0x08048148 0x08048148 0x00020 0x00020 R 0x4 !
 GNU_EH_FRAME 0x019360 0x08061360 0x08061360 0x002f4 0x002f4 R 0x4 !
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4 !

$ readelf –d cmsRun !

Dynamic section at offset 0x1c01c contains 60 entries: !
 Tag Type Name/Value !
 0x00000001 (NEEDED) Shared library: [libFWCoreFramework.so] !
 0x00000001 (NEEDED) Shared library: [libFWCoreService...so] !
 0x00000001 (NEEDED) Shared library: [libFWCorePython...so] !
 0x00000001 (NEEDED) Shared library: [libDataFormatsCommon.so] !
 0x00000001 (NEEDED) Shared library: [libFWCoreParameter...so] !
 0x00000001 (NEEDED) Shared library: [libDataFormats...so] !
 0x00000001 (NEEDED) Shared library: [libFWCoreMessage...so] !
 0x00000001 (NEEDED) Shared library: [libFWCorePlugin...so] !
 [...] !
 0x0000000c (INIT) 0x8051278
 0x0000000d (FINI) 0x8060084
 0x00000004 (HASH) 0x8048168 !
 0x00000005 (STRTAB) 0x804a6d4 !
 0x00000006 (SYMTAB) 0x8048c34 !
 0x0000000a (STRSZ) 24813 (bytes) !
 0x0000000b (SYMENT) 16 (bytes) !
 0x00000015 (DEBUG) 0x0 !
 0x00000003 (PLTGOT) 0x806430c !
 0x00000002 (PLTRELSZ) 936 (bytes) !
 0x00000014 (PLTREL) REL !
 0x00000017 (JMPREL) 0x8050ed0 !
 0x00000011 (REL) 0x8050b88 !
 0x00000012 (RELSZ) 840 (bytes) !
 0x00000013 (RELENT) 8 (bytes) !
 0x6ffffffe (VERNEED) 0x8050b18 !
 0x6fffffff (VERNEEDNUM) 3 !
 0x6ffffff0 (VERSYM) 0x80507c2 !
 0x00000000 (NULL) 0x0 !

Graphics Toolkits	

After a while…
Process has loaded even more code and
has allocated quite a bit of heap space
-  Invoked the dynamic linker to bring in

even more shared libraries, each of which
mmaped more code and data segments

-  Called sbrk, mmap to acquire additional
heap memory from the operating system

Result: 1060MB VSIZE, 850MB RSS,
600 libraries, 1370 memory regions
-  Each shared library has separate code

and data pages, which is bad for virtual
address space locality and stresses TLB

-  Random scatter of mapped library pages
(a security feature) × lots of libraries
= dense address map with many holes
= fragmented address space and heap

-  is produced 2.3MB new page tables
-  Definitely not smart – dwarfs the

capacity of even the latest hardware
15	

1024x1024 pixel image map of the address space of a
32-bit cmsRun process. Every pixel is one 4096B page.

Orange = code, green = data, blue = heap, stack.
Total VSIZE 1060MB of which 230 MB is code(!)

0GB

1GB

2GB

3GB

4GB

Graphics Toolkits	

Operating System and Memory

e operating system manages processes and their address spaces.
Each process has a virtual linear address space to itself, isolated from other
address spaces and the kernel itself. Each process has one or more threads,
which share the address space but have a separate stack and execution state.

In 32-bit, the 4GB address space is usually split 3:1 and sometimes 4:4
between the user space and the kernel. In 64-bit the split does not matter.

e operating system manages memory allocation and sharing.
Memory is used for kernel itself and files in the buffer cache. Applications
can share memory by referring to shared physical pages: just memory blocks,
buffer cache regions, or special objects such as pipe memory with vmsplice().
Methods to share memory include fork(), mmap() or shmget().
On NUMA systems the OS also manages process-to-physical memory
mapping. In practice application affinity hinting is necessary (cf. numactl).

16	

Graphics Toolkits	

About Shared Memory

Shared memory is not special – it is completely natural and widely
used on modern systems, with many ways to initiate sharing:

Calling mmap() on a file in multiple processes can be used to create shared
read-only or read-write mappings, on any file region. Example: shared library
position independent code. One way to share static read-only data is to wrap
and load it as a shared library. Suitable use of mmap() + {f,m}advise() can
map windows of the OS buffer cache and provide hints on future use.

Calling fork() without exec() makes copy-on-write shared memory of the
entire process address space; writing to a page after fork() creates a private
copy. One of the simplest ways to create writeable transient shared memory
without file association is to use anonymous mmap() and then call fork().

It’s also possible to create persistent named shared memory with shmget().

Pages can be shuffled around with vmsplice(), tee() and remap_file_pages().

17	

Graphics Toolkits	

C, C++ Run Time Memory Management
“C++: e power, elegance and simplicity of a hand grenade.”

C/POSIX provides some very basic memory allocation primitives
malloc(); free(); realloc(); calloc(); memalign(); valloc(); alloca()

Various libraries provide alternatives, or higher-level managers
Some of the best alternatives: Google TCMalloc, FreeBSD jemalloc;
Managers: Boost Pool, Sun SLAB allocator + derivatives, SAMBA talloc,
GNU obstacks

C++ provides partially incompatible allocation technology
operator new/delete; object constructors, destructors and copy constructors;
standard library containers and allocator objects; smart pointers, etc.; does
map easily on top of malloc + free, somewhat painfully on anything else

18	

I will not comment here on other languages, e.g. java, c# or scripting languages like python.

Graphics Toolkits	

Scalar

Pointer

Structure / Array

Linked list

Hash

19	

…

Getting Hands Dirty: Logical Data Structures

…

Balanced Binary
Tree, e.g. Red-Black

…

K
V

K
V

K
V

K
V

/

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K = key, V = value, C = color, L = left, R = right
= by far the most efficient

Graphics Toolkits	

is logical linked list…

20	

Logical vs. Real Data Structures

Could be scattered in virtual
address space like this…

And in physical
memory like this…

0GB

1GB

2GB

3GB

4GB

Graphics Toolkits	

21	

Logical vs. Real Data Structures

e scatter is unimportant as
long as Ln and TLB caches
hide all latencies. Otherwise

you must explicitly arrange for
a better memory ordering.

ere is no silver bullet to
make this problem go away.

Custom application-aware
memory managers, such as

pool / slab / arena allocators,
other data structure changes,
and affinity hints are the tools.

0GB

1GB

2GB

3GB

4GB

Graphics Toolkits	

Getting Hands Dirty: C++ Types
std::vector<double>

std::vector<double> vec; !
vec.reserve(4); !
vec.push_back(1.0); !
vec.push_back(3.14); !
vec.push_back(7.133); !

A good and efficient data structure in general.
– Good locality usually, guaranteed contiguous allocation.
– Avoid small vectors because of the overhead; more on this in a moment.
– Beware creating vectors incrementally without reserve(). Grows exponentially

and copies old contents on every growth step if there isn’t enough space!
– Beware making a copy, the dynamically allocated part is copied!
– Beware using erase(), it also causes incremental copying.

22	

start

finish

capacity

1.0

3.14

7.133

X

Graphics Toolkits	

Getting Hands Dirty: C++ Types
std::vector<std::vector<std::vector<int>>>

typedef std::vector<int> VI; !
typedef std::vector<VI> VVI; !
std::vector<VVI> vvvi; !
for (int i = 0, j, k; i < 10; ++i) !
 for (vvvi.push_back(VVI()), j = 0; j < 10; ++j) !
 for (vvvi.back().push_back(VI()), k = 0; k < 10; ++k) !
 vvvi.back().back().push_back(k); !

A very common mistake. C++ vectors of vectors are expensive, and
not contiguous matrices. Let’s measure just how lethal this nested
containment by value combined with incremental growth is.
– Naively: 111 allocations, 5’320 bytes. (IA32; proper use of reserve() gets this.)
– Reality: 980 allocations, total 30’402 bytes allocated, 5’632 at end, 9’508 peak.
– +780% # allocs, +460% bytes alloc’d, 79% working and 6% residual overhead!
– Versus 1 allocation, 4’440 bytes and some pointer setup had we used a real matrix.

23	

Graphics Toolkits	

Getting Hands Dirty: C++ Types
std::vector<std::vector<std::vector<int>>>

std::vector<VVI> vvvi, vvvi2; !
for (/* ... */) { /* ... */ } !
vvvi2 = vvvi; !

Why you should avoid making container copies by value…
– +111 allocations, +5’320 bytes (= naïve / full reserve() allocation).
– An allocation storm is inevitable if you copy nested containers by value.

Evil bonus: memory churn. Because of the allocation/free pattern, by-value
copies are an effective way to scatter the memory blocks all over the heap.
– “A nested container” does not have to be a standard library container. It can

refer to any object type which makes an expensive deep copy – for instance
almost any normal type with std::string, std::vector or std::map data
members, or objects which “clone” pointed-to objects on copy.
– e simple “=“ line may also generate lots of code.

24	

Graphics Toolkits	

Getting Hands Dirty: C++ Types
std::vector<uint16_t> x

Typical std::vector<uint16_t> overhead is 40 bytes [64-bit system].
– 3 pointers × 8 bytes for vector itself, plus average 2 words × 8 bytes malloc()

overhead for the dynamically allocated array data chunk.
– So, if x always has N ≤ 20 elements, it’d better to just use a uint16_t x[N].
– More generally, if 95+% of uses of x have only N elements for some small N,

it may be better to have a uint16_t x[N] for the common case, and a separate
dynamically allocated “overflow” buffer for the rare N = large case. Somewhat
more complex code may be offset by reduction in overheads – measure to see!
– Even more generally, this applies to any small object allocated from heap.

Examples abound in almost any large code base – at one point our software
made many heap copies of 1-byte strings (yes, just the trailing null byte).

25	

Graphics Toolkits	

Getting Hands Dirty: C++ Types
const char * and std::string

const char array[] = “foo”; !
const char *ptr_to_literal = “foo”; !
std::string dynstr; dynstr.reserve(3); !
dynstr += ‘f’; dynstr += ‘o’; dynstr += ‘o’; !

Character arrays are filled in by compiler – if local, at run-time.
String literals are statically allocated by compiler and linker.
– It’s foolish to copy string literals unmodified into std::strings – you store the

same character data twice, once in .rodata, another time on heap. Avoid
defining APIs taking a std::string if 99% of callers will use a string literal!

C++ std::string is a container much like std::vector<>.
– Same caveats apply. Even though strings may be reference-counted and copy-

on-write, avoid relying on that extensively as consequences are usually awful.
– Strings are highly overrated and spread like rats through bad interfaces.

Our apps have ~15% of dynamic std::string data, majority misguided use.
26	

len

capacity

refcount

‘f’ ‘o’ ‘o’ \0

ptr ‘f’

‘o’

‘o’

\0

≠

Graphics Toolkits	

Getting Hands Dirty: C++ Types
std::map<std::string, X>

std::map<K,V> is a balanced binary tree, usually red-black tree
– Each tree node is a separately allocated [R/B, LeftPtr, RightPtr, Key, Value]

tuple. Key comparison determines whether to follow left or right pointer. e
recursive pointer chasing is poison to modern CPUs if data is not in cache.
– Since the map is a balanced binary tree, it has log2(size) levels. If you have

1M entries in the map, it will take up to 20 key comparisons to find a match.
If each key is a container such as std::string, every key comparison involves
another pointer dereference, then key data match – for 1M entries, up to 40
pointer dereferences and up to 20 key comparisons before you get to data. If
you fill the map slowly, the tree nodes and key and value data can be scattered
all over virtual address space. Avoid large maps and use inexpensive keys.
– Beware temporaries in x[“foo”] = abc(); x[“foo”].call()! Beware code growth

when using maps inside loops: for (…) { std::map<K,V> mymap; … }

27	

13

8 17

1 25

6 22

NILNIL

27

NILNIL

15

NILNIL

11

NILNILNIL

NILNIL

[Wikipedia / GFDL]

Graphics Toolkits	

Getting Hands Dirty: C++ Types

All C++ standard containers take an allocator template argument.
– Usually by default the containers just grab memory with operator new when

they need something. is can lead to highly inefficient memory layouts.
– We are meant to use the template argument and constructor parameter to

specify an alternate allocator, such as a pool allocator to improve locality.
Pointer-rich containers (maps, lists) do need pool allocators for performance.
– Do be advised this is even more invasive decision than starting to use slabs,

obstacks, talloc, or purpose-built areanas – it affects the type. In general the
decision needs to be made early on, retrofitting custom allocators into a large
code base is a significant effort.

I personally have rarely customised C++ allocators, mainly because
it affects API types. I have used custom (= handwritten, non-std-
like) allocators and containers extensively, with great benefit.

28	

Graphics Toolkits	

Getting Hands Dirty: C++ Types
Hey wait, aren’t you going to talk about objects!?

Peak performance requires effective cache use for low latency. How
that is achieved is less important. Understanding the language
mapping from high-level constructs to low-level behaviour helps.

With big data the answer tends to translate to hardware-aware and -friendly
Arrays of Structures (AoS) and Structures of Arrays (SoA) organisation, e.g.
partitioning problem so it fits in L1 cache, strides hardware can prefetch or is
vectorisation-friendly. Cache-defeating pointer chasing will simply not work.

Based on what we know of future processor roadmaps, the performance gap
between AoS/SoA and pointer chasing data structures will only stay or grow
bigger. If streaming units get prominent, code locality will also matter more.

Pointer-rich “proper objects” do remain immensely useful – as long as caches
are used very effectively, or performance simply doesn’t matter, for example in
GUIs, support data structures and rarely used infrastructure.

29	

Graphics Toolkits	

Key Factor #1: Correctness

VALGRIND is one of the most valuable tools to verify correctness
of any memory related operations. It will save you hours of work.

It’s not a toy – it’s one of the most useful software developer tools I have ever
used. Always verify your regression test suite under valgrind; if nothing is
flagged there’s reasonable chance there are no silent memory access problems.

Any time you run into a problem, and certainly if you have a memory fault
such as a segmentation violation, run the program under valgrind.

It will also provide useful leak data. It’s very slow just for that however.

e same suite has other tremendously useful associated tools.
HELGRIND for finding multi-threaded data races, MASSIF for generating
run time heap snapshot profiles and CACHEGRIND for CPU simulation.

30	

Graphics Toolkits	

Key Factor #1: Correctness
IgProf profiling suite is complementary to the Valgrind family.

IgProf can profile memory allocations, and can report the full stack trace for
every allocated memory block. It’s particularly useful for detecting leaks,
generating run-time heap snapshots, and generally tracking memory use.

Recommended use: check correctness with Valgrind, then use IgProf to
create heap profiles, in particular to identify leaks. IgProf has much less
overhead than Valgrind (50-100% vs 1000%), but assumes correctness.

Memory leaks come in broadly two flavours: unreachable but still
allocated, and accumulated reachable garbage.

Unreachable memory is created by forgetting to free data past last reference. In
C++ it is usually a sign of fairly poor object ownership design – see talloc for
ideas. Accumulated garbage happens when object lifetime extends long beyond
the time the object is needed. Fattens virtual memory use and slows apps down.

31	

Graphics Toolkits	

Combating Memory Leaks
#1: Design clear object ownership – it won’t just happen!

e most common reason for leaks is developers don’t know who owns the
object or how long it will be live. Most likely to happen at API boundaries.
Design clear ownership rules; see for example talloc library. [Causes knock-
on issues: developers copy objects when they don’t know who owns them.]

#2: Use RAII idiom where possible (Resource Acquisition Is Initialisation)
e owner object will release resources when destructed. Numerous idioms.
A) Prefer memory pools when you can define en-masse clear ownership; B)
Use by-value containers – std::string, std::vector; C) Use reference counting
smart pointers – std::auto_ptr, boost::intrusive_ptr, boost::shared_ptr; good
for internal use, be cautious of using them in APIs: prefer #1 over #2.

#3: Proactively verify correctness using leak detection tools
32	

Graphics Toolkits	

Key Factor #2: Memory Churn
Memory churn is excessive reliance on dynamic heap allocation,
usually in the form of numerous very short-lived allocations.

Every HEP C++ application I have looked at has suffered from extreme
memory churn. Our software performs 1M memory allocations per second
on average, over hours of running. at’s a malloc() + free() every ~2500 cycles!

Memory churn has several highly undesirable side effects.
Time is spent in memory management, not in your algorithms. We’ve seen
up to 40% in malloc()+free(); 10%+ is a strong sign of bad problems.
Tends to cause poor heap locality and to increase heap fragmentation.
Churn on large allocations can cause frequent, costly page table updates.
Contaminates I, D and TLB caches with memory management code and
data structures. CPU performance counter profiling less useful because the
caches will seem to perform extremely well – they just contain the wrong data.

33	

Graphics Toolkits	

Combating Memory Churn
Eliminating churn tends to yield big gains – x10 is not unusual.

Unless the code suffers from even greater algorithmic flaws, memory churn
tends to mask any other properties, rendering other profiling ineffective.
Detecting memory churn is relatively easy: memory use profiling, such as
IgProf MEM_TOTAL stats, tends to flag the problems almost trivially.

Solving memory churn varies from trivial to very hard.
Easy to fix mistakes like passing / returning containers by value, std::vector
push_back()/erase(), containers defined inside of loops rather than outside.
Maybe caching, a std::vector (“poor man’s arena”), replacing local variable
with a data member, or a proper pool allocator will provide sufficient relief.
Next hardest are changes to specific common types, e.g. replacing small
heap-allocated matrix objects with compile-time sized array matrices.
By far the hardest is to address systematic poor design – code “thinks” too
locally and you have to touch tens to hundreds of thousands of lines of code
to cut string use or introduce new object ownership or pool / slab allocators.

34	

Graphics Toolkits	

Key Factor #3: Locality

Detecting, measuring and fixing poor locality: discussed extensively
in other sessions this week and somewhat already in this one.

Using suitable pool allocators is known to help, but no easy-to-use analysis
tools. You can try evaluate heap trashing and allocation size distribution to
some extent with e.g. igprof heap snapshots, even GLIBC’s memusage. In
general the better your unit and regression test collection, the easier the job.

Do pay attention to excessive virtual memory use – code and data.
A good rule of thumb is the larger the process, the slower it gets, with a few
well designed applications an exception to this. 200+ MB of machine code
from 500+ shared libraries is usually just preposterously bad packaging and/or
large-scale code bloat. Fix packaging, make big shared libraries only, use
coverage testing to figure out what you really need, fix coding problems, if
nothing else works, reorder binaries to separate “hot” and “cold” segments.

35	

Graphics Toolkits	

Exotic Efficiency Issues

Applications may need to become NUMA aware.
May have to if on NUMA hardware, and either make significant use of
concurrency and shared memory (multi-threading or multi-processing); or
need more memory than a single physical node has. Read up on numactl.

Poor cache use, not getting enough out of prefetching hardware.
Make sure you use SoA/AoS data structures, then see the other sessions this
week on cache awareness, proper strides, alignment, collision avoidance,
SIMD, and which tools to use identify problems and possible solutions.

Multi-threaded systems may suffer from cache line contention for heavily
accessed data (e.g. locks). Lots of research out there; typical solution is finer
grained locks, or eliminating locking using e.g. read-copy-update (RCU).

Killed by large page tables or TLBs? Look into using huge pages.
36	

Graphics Toolkits	

Summary

Real-world limitations of CPUs and programming languages make
memory management a significant factor in overall performance.

e solution will vary with technical evolution. If you missed everything else,
remember this: get the latency down. May mean you have to design to use
hardware-aware AoS/SoA data structures.

ere’s no silver bullet for making your applications scream.
For top performance you have to invest in real understanding and custom
application-specific solutions. Beware memory churn in particular.

ere are tools out there which will reduce the mysteries a lot.
And we will try them out in the exercises part!

37	

