
16 Oct 2009 Fabrizio Furano 1

Techniques to higher the I/O performance

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Fabrizio Furano: “From IO-less to Networks”

Part 2

A simple idea: pack things together

Instead of requesting one data chunk at a time and
waiting for it:

Request two chunks IN THE SAME REQUEST

When they arrive, put them in a buffer

The application reads twice from this buffer

In principle by doing this we have cut the total
latency by two

Because, trivially, we have cut the number of interactions

In our million-chunks job this means being idle 10m instead
of 20m

This mechanism can be put to work for many more chunks
And cut the latency by a bigger factor

16 Oct 2009 Fabrizio Furano 2

Another idea: work in the background

Request the (n+1)th chunk just before
starting processing the (n)th

This implies some form of tricky lower level
parallelism

While the app computes, the data flows
When the app finishes computing the (n)th chunk, it
again:

Requests the (n+2)th

Wait for the (n+1)th to finish its incoming path

Eventually it’s already available

Process the (n+1)th

16 Oct 2009 Fabrizio Furano 3

Two ideas or just one?

It may look the same idea, but they imply

completely different architectures/

implementations

1: the ability of issuing composite requests

2: the ability of handling asynchronous data

transfers

Both techniques deal with when to issue a

data request

16 Oct 2009 Fabrizio Furano 4

Work in the background

16 Oct 2009 Fabrizio Furano 5

How to do it… in principle

In the real world these can be accomplished in two
different ways:

A Vectored read primitive (readv)
Instead of a single couple (offset, length) we want to aggregate
many of them in the same request

A single request pays the network latency once

Even if it is much heavier

All the data chunks will travel together, serialized in a big composite
data block

The request will be much more demanding for the disk

But there is a higher probability that it will be treated efficiently

Asynchronous capabilities in the communication
The client can send requests without waiting for each response

The responses are collected by a parallel thread

The app gets the data from internal buffers populated by the requests

16 Oct 2009 Fabrizio Furano 6

About vectored reads

We are speaking about a concept

Aggregating multiple requests into one

Send these composite requests through the

network to a server which supports them

Then, the server forwards these requests to the

disk system it is connected to

Doing this way:

We aggregate requests at the app/network level, cutting

the network latency (well, dividing it by a ‘big’ factor)

16 Oct 2009 Fabrizio Furano 7

About vectored reads

This kind of request must be supported by the
data transport protocol

e.g. xrootd, dcap, http, etc.

The server receives such a request

And then forwards it to its disk system
Eventually translating it into normal reads

The server builds up its unique (composite) response and
sends it back

The client unpacks it and puts the individual subchunks into
memory buffers for the app to access them

Yes, it needs a complicated machinery which also has to be
very efficient

Better to hide it from the application’s perspective

16 Oct 2009 Fabrizio Furano 8

About vectored reads

What the disk sees is more or less unchanged
Still the same stream of requests, eventually sorted

So, same number of requests, same number of interrupts

It is believed to be somehow more efficient at the disk level
But still very controversial

Request streams from several clients will interleave, leading to a completely random
pattern

At the OS/disk side there are the primitives to do that:
If you do man readv you can see that that one is not what we are talking about

Try instead man lio_listio

So there is no easy way to aggregate requests towards the disks
At least, we need to implement one more complicated machinery

And the creator of the application should better be shielded against all the technicalities

The disks heads will still have to move

Hence, in principle, we cannot cut the disk latency, or not too much

Nor the disk thrashing due to an excessive load

16 Oct 2009 Fabrizio Furano 9

This is not what we need

ssize_t

 readv(int d, const struct iovec *iov, int iovcnt);

(. . .)

Readv() performs the same action, but scatters the input data into the
iovcnt buffers specified by the members of the iov array: iov[0],
iov[1], ..., iov[iovcnt-1].

For readv(), the iovec structure is defined as:

 struct iovec {

 char *iov_base; /* Base address. */

 size_t iov_len; /* Length. */

 };

Each iovec entry specifies the base address and length of an area in memory
where data should be placed.

Readv() will always fill an area completely before proceeding to the next.

16 Oct 2009 Fabrizio Furano 10

An example of the readv we need

// Read multiple blocks of data compressed into a sinle one. It's up

// to the application to do the logistic (having the offset and len to find

// the position of the required buffer given the big one). If no error

// occurs, it returns all the requested bytes.

// NOTE: if buf == 0 then the req will be carried out asynchronously, i.e.

// the result of the request will only populate the internal cache.

// A subsequent read()

// of that chunk will get the data from the cache

kXR_int64 ReadV(char *buf, long long *offsets, int *lens, int nbuf);

16 Oct 2009 Fabrizio Furano 11

No compromises

We want the best of both worlds

What about sending asynchronous vectored
requests which are not too big?

Transferred in parallel
Hides the overall latency (network+disk)

Big enough to cut their network latency by e.g. 512
times

Small enough to avoid the serialization problem
Having to wait for the last chunk in order to process the first

This works
Not very easy to exercise seriously

This is the way ROOT works if used properly

Anybody else could do it in principle

16 Oct 2009 Fabrizio Furano 12

Pure Readv vs. Async

16 Oct 2009 Fabrizio Furano 13

An example

Let’s see how all this behaves in my laptop

towards a robust data server over a 1Gb LAN

Nobody else using it (which is an optimistic situation)

The server has already cached all the data (optimistic

situation = no disk latency, only network)

This is almost never true in the real world

Even better than the performance of SSDs

We use this case to see the difference between the

various techniques

And this difference can be even bigger in the real case!

For the reasons we already described.

16 Oct 2009 Fabrizio Furano 14

A practical evaluation: sync reads

This tells us that the network latency is ~1.25ms per request
120.333 / 95651 = 0.00125

Because we know that we have almost no disk latency here (everything
is cached because we wanted it to be that way)

16 Oct 2009 Fabrizio Furano 15

./bin/TestXrdClient_read root://lxfsrc2802//cfs/fs10/fabrizio/h1huge.root 0 0 0 0 <
~/offsetlen_nurcan2.txt
Read style: Synchronous reads, ev. with read ahead.
.....--- Freeing buffer
Summary ----------------------------
$$$ starttime: 1.25414e+09
$$$ lastopentime: 1.25414e+09
$$$ closetime: 1.25414e+09
$$$ endtime: 1.25414e+09
$$$ open_elapsed: 0.013067
$$$ data_xfer_elapsed: 120.295
$$$ close_elapsed: 0.0252302
$$$ total_elapsed: 120.333
$$$ totalbytesreadperfile: 132851819
$$$ maxbytesreadpersecperfile: 1.10438e+06
$$$ effbytesreadpersecperfile: 1.10403e+06
$$$ readscountperfile: 95651
$$$ openedkofilescount: 1

A practical evaluation: async reads

Looks interesting… from 120s to 5.6s doing
the same sequence of reads

>20 times faster. Seems a very good optimization!

The latency has been “hidden” in this case

16 Oct 2009 Fabrizio Furano 16

>./bin/TestXrdClient_read root://lxfsrc2802//cfs/fs10/fabrizio/h1huge.root 0 50000000 4 0 < ~/
offsetlen_nurcan2.txt
Read style: Asynchronous reads.
.....--- Freeing buffer
Summary ----------------------------
$$$ starttime: 1.25414e+09
$$$ lastopentime: 1.25414e+09
$$$ closetime: 1.25414e+09
$$$ endtime: 1.25414e+09
$$$ open_elapsed: 0.0132041
$$$ data_xfer_elapsed: 5.6057
$$$ close_elapsed: 0.0121732
$$$ total_elapsed: 5.63108
$$$ totalbytesreadperfile: 132851819
$$$ maxbytesreadpersecperfile: 2.36994e+07
$$$ effbytesreadpersecperfile: 2.35926e+07
$$$ readscountperfile: 95651
$$$ openedkofilescount: 1

A practical evaluation: sync readv

What? 120s to 2.1s doing the same thing?
60 times faster!

In this case the latency has been “cut” by aggregating
reads

16 Oct 2009 Fabrizio Furano 17

>./bin/TestXrdClient_read root://lxfsrc2802//cfs/fs10/fabrizio/h1huge.root 0 50000000 1 0 < ~/
offsetlen_nurcan2.txt
Read style: Synchronous readv
<snip>
--- Freeing buffer
Summary ----------------------------
$$$ starttime: 1.25414e+09
$$$ lastopentime: 1.25414e+09
$$$ closetime: 1.25414e+09
$$$ endtime: 1.25414e+09
$$$ open_elapsed: 0.0133462
$$$ data_xfer_elapsed: 2.13707
$$$ close_elapsed: 0.00490284
$$$ total_elapsed: 2.15532
$$$ totalbytesreadperfile: 132851819
$$$ maxbytesreadpersecperfile: 6.21653e+07
$$$ effbytesreadpersecperfile: 6.16389e+07
$$$ readscountperfile: 95651
$$$ openedkofilescount: 1

A practical evaluation: Async readv

Apparently just a bit slower then the previous.
2.7s. In this case the latency has been “cut” and then “hidden”

Hiding it needs a little more CPU

Remember that here we only read, no time is spent in processing anything

Hence, there is no place to hide the latency under

Here there is an advantage which we like.
And we are going to discuss it.

16 Oct 2009 Fabrizio Furano 18

>./bin/TestXrdClient_read root://lxfsrc2802//cfs/fs10/fabrizio/h1huge.root 0 50000000 3 0 < ~/
offsetlen_nurcan2.txt
Read style: Asynchronous readv.
<snip>
--- Freeing buffer
Summary ----------------------------
$$$ starttime: 1.25414e+09
$$$ lastopentime: 1.25414e+09
$$$ closetime: 1.25414e+09
$$$ endtime: 1.25414e+09
$$$ open_elapsed: 0.0133181
$$$ data_xfer_elapsed: 2.6645
$$$ close_elapsed: 0.00909686
$$$ total_elapsed: 2.68691
$$$ totalbytesreadperfile: 132851819
$$$ maxbytesreadpersecperfile: 4.986e+07
$$$ effbytesreadpersecperfile: 4.9444e+07
$$$ readscountperfile: 95651
$$$ openedkofilescount: 1

A practical evaluation: sync vs async

Let’s make the appication “think” and process the
data (still in my laptop, reading from a robust server)

i.e. using CPU cycles between reads, e.g. 10ms every 100
reads

And the scenario becomes more clear:
Silly sync reads: 153s , CPU usage=30% (please remember that
this technique is what 3 of the 4 LHC experiments use)

Sync readv: 12.7 seconds, CPU usage>100%

Async readv: 10.5 seconds (2.2 secs less), CPU usage>100%
So, why is this now faster? Before it was a bit slower.

Because it:

Cuts the latency by a factor by aggregating reads, then,

Transfers the next bunch of chunks while the app is crunching
numbers

So it also can use CPU cycles from another CPU core.

16 Oct 2009 Fabrizio Furano 19

What’s happening

16 Oct 2009 Fabrizio Furano 20

App (2 thr) Server

CPU Overhead

Server+ disk

latency

Data taken

from internal

buffers

Efficient processing

Few cycles are wasted

Request many chunks at once

A practical evaluation: sync vs async

One more side effect is that this works amazingly
well also in WAN if there is enough bandwidth

Yes, because now, finally the only limiting factor left
is bandwidth. For that, we need only:

A sane network design

Very powerful disk systems to give enough throughput

A lot of money

But now we can use it productively, in both LAN and
WAN.

And, YES, when we are here, all the other CPU-
based optimizations start making a lot of sense

All that effort is worth the time. Do it.

16 Oct 2009 Fabrizio Furano 21

Last considerations

Doing asynchronous things generates in general
more CPU overhead

If this is shorter (in time) than a latency hit then we gain
anyway

A pure readv is very efficient
But to process the first requested chunk we must wait for all
of them to come

And they come serially (very fast, however)

Very often, for very sparse patterns readv is a very
good choice

For less sparse patterns often not quite

But typically analysis applications generate extremely
sparse pseudo-random patterns

16 Oct 2009 Fabrizio Furano 22

Last considerations

When multiple users hit the same disk, that

disk ‘sees’ a truly random pattern.

Hence its performance decreases

It can decrease really a lot

There’s not much that we can do for now

Buy better disks

Avoid RAIDs if you can (they move more heads/drives to

do the same job)

16 Oct 2009 Fabrizio Furano 23

But… Wait… Is that possible?

In both cases we are requested to know the

future

In the form of the data chunks which will be needed

The client API and the servers must support the

techniques of course

But… Is knowing the future a realistic thing?

How can an app which needs the (n)th chunk also

suggest that it will need the (n+X)th ?

16 Oct 2009 Fabrizio Furano 24

Feeding the communication pipe

Basically there are two techniques to make it
possible:

Guessing the future
Applying statistics-based ideas

Typically Read Ahead/Prefetching. We read data in
advance, hoping that it will be useful to a sufficient extent
for the next requests.

Knowing the future exactly
A list of (offset, length) which will be needed

This is what any cp-like program can do (read everything!)

This is what ROOT can do (TTree/TTreeCache)

But not every app uses ROOT, and sometimes, if they use it,
they do not use it in that way

16 Oct 2009 Fabrizio Furano 25

Feeding the communication pipe

We don’t need necessarily complicated things

For example, we know what our forward reader
app needs

1KB every 10KB

So we might, in principle
Produce this list of chunks at the beginning

Fire it to the disk

Loop on the results

But the devil is in the details
The sw machinery to do this is not so simple, e.g. we must
remember that from a 10 lines program we might go to 100
with only such a simple scenario

16 Oct 2009 Fabrizio Furano 26

You also need the right API

In the POSIX calls there is a way to “suggest”
actions to be done in parallel

O_NONBLOCK

The app must deal directly with that complexity
And explicitly keep track of what’s pending, what arrived, what
will be requested

Here we are using the Xrootd client, which was
built to do that

And the complexity was hidden in it

I am not aware of other similar APIs (probably my
fault)

Even if the principles are 20 years old

16 Oct 2009 Fabrizio Furano 27

Read ahead

In simple words it means:
“Read something which will likely be useful in the near
future, and store it somewhere for fast lookup”

There’s a caveat:
We rely on statistics, not on exact knowledge

We could read a lot of useless data.

We could miss what the app really needs

To be statistically significant, we need a lot of memory to
keep it, except in the trivial cases (e.g. purely sequential)

These are the limits of this technique in its common
implementations.

16 Oct 2009 Fabrizio Furano 28

Read ahead: the simplest strategy

Given a read request to satisfy, trim it to a
bigger block and store the whole result

This is what typically the OS does for disks.
The request is enlarged in order to cover the minimum
number of pages which contain the needed data

The request can also be enlarged much more, typically
forward (even tenths of megabytes)

It’s an algorithm like many others
Which should be smart enough to AVOID
requesting the same data more than once

Not very easy

16 Oct 2009 Fabrizio Furano 29

Read ahead: another strategy

Given a read request to satisfy, make sure that
the data in the internal buffers arrives up to the
location offset+N

Eventually requesting what’s missing as an unique big
block

And purging something else

We can call this also “look ahead”
The last byte requested in advance is always at offset
+N

Very efficient for sequential access
The data stream can never stop

16 Oct 2009 Fabrizio Furano 30

Read ahead: one more flavour

We compute the average offset of the last accesses

We try to keep in memory a “window” of data around
this average

Hoping that the next accesses will hit inside it

The window slides forward with the average offset
Allowing some accesses to be outside it

Reading (ahead) in steps of 1MB

Dropping the block with the least offset

Good for not so sparse patterns which slowly
proceed through the file length

16 Oct 2009 Fabrizio Furano 31

A snippet of a data analysis (ATLAS

AOD)
Index of the read on the X, offset on the Y

It’s “random”, but not quite

Even by looking at it we can almost predict where

it goes

16 Oct 2009 Fabrizio Furano 32

A snippet of a data analysis (ATLAS

AOD)
A histogram of the first 1000 offsets is even

more suspect

With a buffer holding data from 235M to 255M we

can accommodate the majority of the (very small)

first 1000 reads

16 Oct 2009 Fabrizio Furano 33

Do they work in practice?

Sometimes yes, sometimes no
They can gain a lot or loose, depending on the case or on the
class of applications

We measure their efficiency like a cache:
Miss rate: the ratio between the number of times a chunk is correctly
prefetched with the number of times it has to be requested

Byte overhead: how many useless bytes are read

For a copy-like sequential read
Missrate=0 and overhead=0

For a generic application it depends
A hit saves one interaction (hence, one latency hit also in the disk)

The byte overhead (given the maximum throughput) must be lighter than
the time (and resources) saving due to the hits

The application consumes more CPU, because of the overhead due to
the internal bookkeeping and calculations

Keeping track of what’s outstanding is not cheap

16 Oct 2009 Fabrizio Furano 34

