
15 Oct 2009 Fabrizio Furano 1

The most common pitfall: “Everything is just the same”

A little provocation

Optimizing code is good, often not enough

Latency

Latency in local IO

Path of the data

Latency in networked IO

Path of the data

Techniques to higher the I/O performance

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Fabrizio Furano: “From IO-less to Networks”

Focus of the lecture

The mid-high level aspects of I/O
As seen by a competent user (= programmer of the final app)

Generic issues with I/O
Which are much heavier with networks

Then switch to networked I/O
Why is it particular

We will not treat the low-level specifics
E.g. system calls for TCP/IP, exotic flags, etc.

99% of the times these are encapsulated by some product which we use to
exchange data

The focus is how to write generic applications which will perform well
By using some sane encapsulation of the TCP-related things

And becoming able to see what’s really wrong to do

15 Oct 2009 Fabrizio Furano 2

A little provocation

Suppose you are now a “Jedi code writer”

And your code is optimized to perfection

Multicore – SSEx etc

Will it run as fast as the CPU(s) can?

It depends on what it does

Most of the HEP tasks can be classified as “I/O

intensive”

The softwares read and write a lot of data

No processing can take place without input

Also, some output has to written

15 Oct 2009 Fabrizio Furano 3

A little provocation

There is really the chance that your

application wastes more time in waiting than

in computing

Simple measure of it: the CPU time / Wall time

Let’s have a look at a simple real case

Which is absolutely good, but still inspiring.

It’s very difficult to perform better at a large scale.

15 Oct 2009 Fabrizio Furano 4

A little provocation

15 Oct 2009 Fabrizio Furano 5

A little provocation

A small selection of ALICE sites

The ALICE computing by now is very efficient
This means that other’s situations can be much worse

We see nice peaks of 90-95% efficiency

But also lower values

A delusion?
We spent months optimizing the code and now it runs
at 70-80% in average

Don’t be frustrated enough, with other apps and other
environments you may find 40% and even much less

Just look around

15 Oct 2009 Fabrizio Furano 6

What can we do

First: “Be prepared”
In order not to get frustrated

Know very well the specifics of I/O

performance
Throughput, latency and transaction rate

Disk I/O and networked I/O as well

Design your app with this in mind

Or be prepared to (painfully) fix it

15 Oct 2009 Fabrizio Furano 7

What’s behind the scenes

An application doing

simple I/O (r/w)

Your favorite OS

Your local disk

15 Oct 2009 Fabrizio Furano 8

DiskOS

Cache

App

Better to start from this extreme simplification, just to see where we are going

The application

We can consider it as a producer of requests

File opens

And then a sequence of couples

(offset, length) [+data if it wants to write]

For each file it accesses

Every request asks the storage to do something

Typically it’s composed by disks

It can be reading or writing

And typically waits for the response because it

needs it to proceed with the computation

15 Oct 2009 Fabrizio Furano 9

The disk in 30 seconds

We know how a disk works
See the previous lecture by A.Hanushevsky

Some time is spent to find the data

Some time is spent to send (or write)

It can be an ultra-fast Solid State Disk

Or a cheap floppy disk

It will always work like that

The difference is in how these times are related to

the computing phase of the app

15 Oct 2009 Fabrizio Furano 10

Reading and writing

In general, reading data is a bit harder than

writing data

In a simple case (rules of thumb):

Write case: the app has to produce buffers as fast as it

can

The bigger the buffer, the faster it will be

We can also accumulate many buffers and flush them later

(delayed write, very well known also for USB pendrives)

Read case: if the app needs a chunk of data, it will wait

until it has come. No option for the ingenuous

programmer.

15 Oct 2009 Fabrizio Furano 11

A key factor: the OS cache

Modern OSs are very smart

For each read request they remember the result

They also remember what’s in the proximity

So, they can just fool us

By making us believe that our sw is very efficient

Just because we execute it more than once in our disk

Let’s have an inspiring quick try

Believing that our app is efficient (while it is

not) is the first big mistake we can make

15 Oct 2009 Fabrizio Furano 12

An example: the forward reader

int f = open("/tmp/bigfile.dat", O_RDONLY);
 if (f < 0) {

printf("Error: %s", strerror(errno));
exit(-1);

 }

 long long offs = 0;
 struct stat st;
 if (fstat(f, &st)) {

printf("Error: %s", strerror(errno));
exit(-1);

 }

 long long filelen = st.st_size;
 printf("File length: %lld\n", filelen);
 char buf[1024];
 while (offs < filelen) {
 int n = pread(f, &buf, 1024, offs);
 if (n <= 0) {

printf("Error: %s", strerror(errno));
exit(-1);

 }

 offs += (10240-1024);
 }

15 Oct 2009 Fabrizio Furano 13

An example: the forward reader

It reads 1KB every 10KB

For a 2GB file it reads 200MB

Somebody might think that the disk is able to get

20-50MB/s, hence it should take 10s

Instead it takes 5 minutes (in my machine)

It takes a few seconds only at the second run (and

not always)

15 Oct 2009 Fabrizio Furano 14

An example: the forward reader

It runs very fast, yes… apparently

Unless you clear the OS cache with the given
tool ‘clearcache’

And then it has (in my laptop) an efficiency of 4%

To make it fast (the second time) the OS uses a lot of
memory

The OS uses for that the unallocated memory

It can cache gigabytes in common hardware

If there are many users or the app consumes it all, it
will not run so fast

This program is very inefficient, but you might think it’s
not

Conclusion (for now): don’t be fooled

15 Oct 2009 Fabrizio Furano 15

Even worse

In the real life your app is almost never alone

Disk manufacturers declare “very” low times

to execute a (read) transaction

But often between two transactions there are

many others (from other users/processes)

15 Oct 2009 Fabrizio Furano 16

Let’s suppose that it takes 5ms for a disk to pick up the requested chunk

In those 5ms the disk bus could read AT LEAST 5ms*266Mbit = >1GByte

Instead it does nothing.
In those 5ms a cheap hard disk could read 5ms*50MB/s = 250KB

Instead our test app is idle in order to read 1KB each time

Another example: the backward reader

We can be amazed by how many things in
OSs and disk hardware/firmware are
optimized for increasing offsets

What happens if we read the same data chunks
backwards?

The performance (with and without) OS caching
gets much lower. Try!

Conclusion (for now): this is one more way to
make our tiny program even more inefficient.

At least, we are starting wondering some of the things to
avoid, and the true goal of this lecture

15 Oct 2009 Fabrizio Furano 17

Conclusion (for now)

There are several ways to do the same I/O
operations

We are focusing on reads: often more ‘difficult’ than writes

E.g. getting some chunks of data to process

Some ways are much more efficient than others

To avoid having highly inefficient applications we have to:
Know very well the details of the technology (hw and sw) we use

Exploit it in order to always choose the best opportunities

And know the possibilities we have

Hence, some important choices are:
The sequence of the operations (e.g. the lengths@offsets to
read)

The moment in which a request is issued.

15 Oct 2009 Fabrizio Furano 18

The enemy: Latency

Simply speaking: The time it takes to get the response
to a data request

More precisely: the time it takes to start getting it

Typically the throughput is very high

It is present and measurable also in our very simple
examples

It can DOMINATE your computation also in simple
cases (e.g. 1 app, 1 user with 1 disk)

Like the forward/backward reader

It will do it much more in the multiprocess case

In all the cases we saw, we never reached the
maximum available data throughput from disk

So, for now that’s not a problem, we don’t need a faster disk

It may become later, but that’s problem #2

15 Oct 2009 Fabrizio Furano 19

Latency: A sequence graph

15 Oct 2009 Fabrizio Furano 20

Latency

“Latency” can be anything which makes the

client wait

Network latency

Time to move the disks heads

Server congestion

Which makes it process the requests slowly

<put your reason here>

15 Oct 2009 Fabrizio Furano 21

Closer to HEP apps. An example.

An app can read 1M chunks of 2KB each
2GByte, a typical HEP file

If it takes 1ms of latency per chunk (highly optimistic!) the
app will do nothing for 1000 seconds (~20min)

If, in average, the app computes 1ms per read chunk the
efficiency will be ~50%

Very common case
Remember that we are still speaking of local disks

Supposed to be the easy case

Instead we might have been just fooled by the OS

This makes us not very confident in our super-optimized
application anymore

Again, that was NOT wasted time

15 Oct 2009 Fabrizio Furano 22

Where’s the network?

We are able to successfully measure the (in)efficiency of
our app even in a simple case, i.e. a local disk.

With networks the things can become more problematic
Because latency plays an even greater role

Because we do not have the hope that a new technology will
save us. With networks we are fighting against the speed of light.

New technologies will higher the throughput, but here we saw that the
worst enemy is latency

Let’s see why and how.
This will give us a basic additional insight. Later on, we will look
at a few techniques to reduce such a heavy negative impact

And get our performance

15 Oct 2009 Fabrizio Furano 23

The data flows: local and network

Just with a quick look:
Many steps = Many places for latency

Still space for low throughputs as well

Some of the steps can be really problematic

Here, we suppose that the software quality is at its best
Which, unfortunately, often is not the case

15 Oct 2009 Fabrizio Furano 24

DiskOS

Cache

App

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Networked case: information flow

Potentially every step can cause a slowdown

The base mechanism in the app is still the same
Send request + get response

Both request and response follow the same steps
(reversed)

Need to know the characteristics of each step
To have an idea about its impact

With respect to the used technologies

Let’s have a deeper look

15 Oct 2009 Fabrizio Furano 25

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Networked case: information flow

The application asks for a chunk to read

It asks for it to its client

Can be the client of NFS/AFS/GPFS/XROOTD/

RFIO/ORACLE/MYSQL etc.

Common clients immediately forward it (but not

necessarily) by invoking the proper OS primitives

15 Oct 2009 Fabrizio Furano 26

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Possible source of slowdowns (beside a slow app):

•The client takes too much to translate the request and to pass it forward

Networked case: information flow

The OS forwards the request’s parts to the network part
Depending on the settings, this can be delayed

Ref: the TCP_NODELAY socket option for example

The quality of the implementation of such client may be important
But typically it is not up to the user… good and bad clients come bundled
with something else.

15 Oct 2009 Fabrizio Furano 27

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Possible source of slowdowns:

•A single request can be unreasonably big or demanding for the OS to treat it
•The client app translates simple requests into super-complicated interactions

Networked case: information flow

The network can be:
High latency by itself (e.g. 0.1ms for a LAN up to a 300ms

RTT WAN)

Too slow (takes time just to send the bytes composing the

request)

Very loaded (collisions make the OS/Ethernet retry/wait)

15 Oct 2009 Fabrizio Furano 28

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Possible source of slowdowns:

•Size of the data or number of chunks composing the request
•Characteristics of the network

•The latency here can be EXTREMELY variable (0.1ms -> 150ms)

Networked case: information flow

The OS can be:

Incorrectly tuned (happens very often for WANs)

Can suffer from the excessive fragmentation of

the request

15 Oct 2009 Fabrizio Furano 29

Possible source of slowdowns:

•Latency+throughput: typically bad TCP settings in the OS

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Networked case: information flow

The server (in the TCP side) can be a problem.
The software quality here plays a major role and offers
a very broad range of inefficiencies

These can be linked with latency, throughput and
stability

Yes, restarting everything manually is a form of latency as
well!

15 Oct 2009 Fabrizio Furano 30

Possible source of slowdowns:

•Ingenuous, scholastic programming in the server

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Networked case: information flow

When there is a server we are never alone using
it

There can be many other connections (O(103))

Not all the implementations/products are equal
In fact we are surrounded by so many of them

Also here software quality makes the difference

15 Oct 2009 Fabrizio Furano 31

Possible source of slowdowns:

•Ingenuous, scholastic programming in the server

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Networked case: information flow

OS+Disks: we already spoke about this

Taken alone it can cause unacceptable

inefficiencies in the data flow

They are just one among others now…

15 Oct 2009 Fabrizio Furano 32

Possible source of slowdowns:

The stream of requests is not compatible with disk access, which becomes very
inefficient

Disk
OS

Cache

App
Server

app

OS

TCP/IP

OS

TCP/IP

Ether

net

Ether

net

Client

app

Let’s simplify

From this point on we suppose that:
All the softwares of the blocks in the prev. slide
are “perfect software”

Perfectly tuned

No slowdowns due to poor sw quality

Note that this is a very strong assumption

We already have enough troubles

Anyway we’ll have a better insight useful to spot
bad softwares in the future

15 Oct 2009 Fabrizio Furano 33

Latency again

This time we

know that the

latency may be

a sum of many

things

The result does

not change, this

is what the

client (and the

app) see

15 Oct 2009 Fabrizio Furano 34

What to do?

We don’t have to get depressed

We don’t have to stop (or avoid) optimizing our
code

There are some ways to deal with latency
They must be implemented in the data access
framework (e.g. ROOT+xrootd)

But the app must be a bit aware of that
In order to exploit them

The programmers must know how it works

In the next part we will explore what’s possible
And how it works

15 Oct 2009 Fabrizio Furano 35

