INFN

First INFN International School on Architectures, tools and methodologies for /)
@09 developing efficient large scale scientific computing applications
. Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009 L/

Fabrizio Furano: “"From I0O-less to Networks”

= The most common pitfall: “Everything is just the same”
o Alittle provocation

= Optimizing code is good, often not enough

= Latency
o Latency in local 10
o Path of the data
o Latency in networked IO
o Path of the data

= Techniques to higher the I/O performance

15 Oct 2009 Fabrizio Furano 1

Focus of the lecture

= The mid-high level aspects of 1/0

o As seen by a competent user (= programmer of the final app)
m Generic issues with 1/0O

o Which are much heavier with networks
= Then switch to networked 1/O

o Why is it particular

= We will not treat the low-level specifics
o E.g. system calls for TCP/IP, exotic flags, etc.

o 99% of the times these are encapsulated by some product which we use to
exchange data

= The focus is how to write generic applications which will perform well
o By using some sane encapsulation of the TCP-related things
o And becoming able to see what's really wrong to do

15 Oct 2009 Fabrizio Furano

‘ A little provocation

= Suppose you are now a “Jedi code writer”

o And your code is optimized to perfection
= Multicore — SSEX etc

o Will it run as fast as the CPU(s) can?
= |t depends on what it does

o Most of the HEP tasks can be classified as “I/O
Intensive”
= The softwares read and write a lot of data
= No processing can take place without input
= Also, some output has to written

15 Oct 2009 Fabrizio Furano

‘ A little provocation

= There is really the chance that your
application wastes more time in waiting than
In computing
o Simple measure of it: the CPU time / Wall time

o Let's have a look at a simple real case
= Which is absolutely good, but still inspiring.
= It's very difficult to perform better at a large scale.

15 Oct 2009 Fabrizio Furano

‘ A little provocation

Jobs efficiency (cpu time / wall time)

Efficiency [%]

, "Y’ TS

= CERN-L = CNAF = NIHAM -=-Torino-CREAM

15 Oct 2009

Fabrizio Furano

‘ A little provocation

= A small selection of ALICE sites
= The ALICE computing by now is very efficient

o This means that other’s situations can be much worse
o We see nice peaks of 90-95% efficiency
o But also lower values

= A delusion?

o We spent months optimizing the code and now it runs
at 70-80% in average

o Don’t be frustrated enough, with other apps and other
environments you may find 40% and even much less
= Justlook around

15 Oct 2009 Fabrizio Furano

‘ What can we do

= First: "Be prepared”
= |n order not to get frustrated

= Know very well the specifics of I/O

performance
= Throughput, latency and transaction rate
= Disk I/O and networked I/O as well

= Design your app with this in mind
o Or be prepared to (painfully) fix it

15 Oct 2009 Fabrizio Furano

‘ What’s behind the scenes

= An application doing
simple 1/O (r/w)

= Your favorite OS
= Your local disk

Better to start from this extreme simplification, just to see where we are going

15 Oct 2009 Fabrizio Furano 8

‘ The application

= We can consider it as a producer of requests
a File opens

o And then a sequence of couples
= (offset, length) [+data if it wants to write]
= For each file it accesses
o Every request asks the storage to do something
= Typically it's composed by disks
= |t can be reading or writing

o And typically waits for the response because it
needs it to proceed with the computation

15 Oct 2009 Fabrizio Furano

‘ The disk in 30 seconds

= We know how a disk works
= See the previous lecture by A.Hanushevsky

o Some time is spent to find the data
o Some time is spent to send (or write)

= |t can be an ultra-fast Solid State Disk
= Or a cheap floppy disk

= |t will always work like that

o The difference is in how these times are related to
the computing phase of the app

15 Oct 2009 Fabrizio Furano 10

‘ Reading and writing

= In general, reading data is a bit harder than
writing data

o In a simple case (rules of thumb):

= Write case: the app has to produce buffers as fast as it
can
o The bigger the buffer, the faster it will be
0 We can also accumulate many buffers and flush them later
(delayed write, very well known also for USB pendrives)

= Read case: if the app needs a chunk of data, it will wait
until it has come. No option for the ingenuous
programmer.

15 Oct 2009 Fabrizio Furano 11

‘ A key tactor: the OS cache

= Modern OSs are very smart
o For each read request they remember the result
o They also remember what's in the proximity

= S0, they can just fool us

o By making us believe that our sw is very efficient
= Just because we execute it more than once in our disk
= Let's have an inspiring quick try

= Believing that our app is efficient (while it is
not) is the first big mistake we can make

15 Oct 2009 Fabrizio Furano

12

An example: the forward reader

int £ = open("/tmp/bigfile.dat"”, O_RDONLY);
if (£ < 0) {
printf ("Error: %s", strerror(errno));
exit(-1);
}

long long offs = 0;

struct stat st;

if (fstat(f, &st)) {

printf ("Error: %s", strerror(errno));
exit(-1);

}

long long filelen = st.st_size;
printf("File length: %11d\n", filelen);
char buf[1024];
while (offs < filelen) {

int n = pread(f, &buf, 1024, offs);

if (n <= 0) {

printf ("Error: %s", strerror(errno));

exit(-1);

}

offs += (10240-1024);

15 Oct 2009 Fabrizio Furano

13

‘ An example: the forward reader

= |t reads 1KB every 10KB

m For a 2GB file it reads 200MB

o Somebody might think that the disk is able to get
20-50MB/s, hence it should take 10s

o Instead it takes 5 minutes (in my machine)

o It takes a few seconds only at the second run (and
not always)

15 Oct 2009 Fabrizio Furano 14

‘ An example: the forward reader

= It runs very fast, yes... apparently

= Unless you clear the OS cache with the given
tool ‘clearcache’

o And then it has (in my laptop) an efficiency of 4%

o To make it fast (the second time) the OS uses a lot of
memory
= The OS uses for that the unallocated memory
= It can cache gigabytes in common hardware

o If there are many users or the app consumes it all, it
will not run so fast

o This program is very inefficient, but you might think it's
not

o Conclusion (for now): don’t be fooled

15 Oct 2009 Fabrizio Furano 15

Even worse

= In the real life your app is almost never alone

= Disk manufacturers declare “very” low times
to execute a (read) transaction

o But often between two transactions there are
many others (from other users/processes)

Let’s suppose that it takes 5ms for a disk to pick up the requested chunk

In those 5ms the disk bus could read AT LEAST 5ms*266Mbit = >1GByte
Instead it does nothing.

In those 5ms a cheap hard disk could read 5ms*50MB/s = 250KB
Instead our test app is idle in order to read 1KB each time

15 Oct 2009 Fabrizio Furano 16

‘ Another example: the backward reader

= We can be amazed by how many things in
OSs and disk hardware/firmware are
optimized for increasing offsets

o What happens if we read the same data chunks
backwards?

o The performance (with and without) OS caching
gets much lower. Try!

o Conclusion (for now): this is one more way to
make our tiny program even more inefficient.

0 At least, we are starting wondering some of the things to
avoid, and the true goal of this lecture

15 Oct 2009 Fabrizio Furano 17

‘ Conclusion (for now)

= There are several ways to do the same |/O
operations

o We are focusing on reads: often more ‘difficult’ than writes
o E.g. getting some chunks of data to process

o Some ways are much more efficient than others

Q

To avoid having highly inefficient applications we have to:
= Know very well the details of the technology (hw and sw) we use
= Exploit it in order to always choose the best opportunities
0 And know the possibilities we have
o Hence, some important choices are:

= The sequence of the operations (e.g. the lengths@offsets to
read)

= The moment in which a request is issued.

15 Oct 2009 Fabrizio Furano 18

‘ The enemy: Latency

o Simply speaking: The time it takes to get the response
to a data request
= More precisely: the time it takes to start getting it
= Typically the throughput is very high

o Itis present and measurable also in our very simple
examples

o It can DOMINATE your computation also in simple
cases (e.g. 1 app, 1 user with 1 disk)
= Like the forward/backward reader
= It will do it much more in the multiprocess case

a In all the cases we saw, we never reached the
maximum available data throughput from disk
= So, for now that’s not a problem, we don’t need a faster disk
= |t may become Ilater, but that’s problem #2

15 Oct 2009 Fabrizio Furano 19

Latency: A sequence graph

Client

'

Server

Client

e
|
|

Data
Processing

Prepare
next
step

]

Server

: /%

I~

Latency

Latency

—E M

15 Oct 2009

Fabrizio Furano

20

Latency

= “Latency” can be anything which makes the
client wait
o Network latency
a Time to move the disks heads

0 Server congestion
= Which makes it process the requests slowly

o <put your reason here>

15 Oct 2009 Fabrizio Furano

21

‘ Closer to HEP apps. An example.

= An app can read 1M chunks of 2KB each
o 2GByte, a typical HEP file

o If it takes 1ms of latency per chunk (highly optimistic!) the
app will do nothing for 1000 seconds (~20min)

o If, in average, the app computes 1ms per read chunk the
efficiency will be ~50%
= \Very common case
= Remember that we are still speaking of local disks
0 Supposed to be the easy case
0 Instead we might have been just fooled by the OS

= This makes us not very confident in our super-optimized
application anymore

0 Again, that was NOT wasted time

15 Oct 2009 Fabrizio Furano 22

‘ Where’s the network?

= We are able to successfully measure the (in)efficiency of
our app even in a simple case, i.e. a local disk.

= With networks the things can become more problematic
o Because latency plays an even greater role

o Because we do not have the hope that a new technology will
save us. With networks we are fighting against the speed of light.
= New technologies will higher the throughput, but here we saw that the

worst enemy is latency

= Let's see why and how.

o This will give us a basic additional insight. Later on, we will look
at a few techniques to reduce such a heavy negative impact
= And get our performance

15 Oct 2009 Fabrizio Furano

‘ The data flows: local and network

= Just with a quick look:
o Many steps = Many places for latency
o Still space for low throughputs as well
o Some of the steps can be really problematic
d

Here, we suppose that the software quality is at its best
= Which, unfortunately, often is not the case

15 Oct 2009 Fabrizio Furano 24

‘ Networked case: information flow

>

= Potentially every step can cause a slowdown

= The base mechanism in the app is still the same
o Send request + get response

o Both request and response follow the same steps
(reversed)

o Need to know the characteristics of each step
= To have an idea about its impact

= With respect to the used technologies
m Let's have a deeper look

15 Oct 2009 Fabrizio Furano 25

‘ Networked case: information flow

= The application asks for a chunk to read

m |t asks for it to its client

o Can be the client of NFS/AFS/GPFS/XROOTD/
RFIO/ORACLE/MYSQL etc.

o Common clients immediately forward it (but not
necessarily) by invoking the proper OS primitives

Possible source of slowdowns (beside a slow app):
*The client takes too much to translate the request and to pass it forward

15 Oct 2009 Fabrizio Furano 26

‘ Networked case: information flow

= The OS forwards the request’s parts to the network part
o Depending on the settings, this can be delayed
= Ref:the TCP_NODELAY socket option for example

o The quality of the implementation of such client may be important

= But typically it is not up to the user... good and bad clients come bundled
with something else.

Possible source of slowdowns:
A single request can be unreasonably big or demanding for the OS to treat it
*The client app translates simple requests into super-complicated interactions

15 Oct 2009 Fabrizio Furano 27

‘ Networked case: information flow

= The network can be:
0 High latency by itself (e.g. 0.1ms for a LAN up to a 300ms
RTT WAN)
0 Too slow (takes time just to send the bytes composing the

request)
0 Very loaded (collisions make the OS/Ethernet retry/wait)

Possible source of slowdowns:
Size of the data or number of chunks composing the request

*Characteristics of the network
*The latency here can be EXTREMELY variable (0.1ms -> 150ms)

15 Oct 2009 Fabrizio Furano 28

‘ Networked case: information flow

o Incorrectly tuned (happens very often for WANS)

o Can suffer from the excessive fragmentation of
the request

= The OS can be:

Possible source of slowdowns:
Latency+throughput: typically bad TCP settings in the OS

15 Oct 2009 Fabrizio Furano 29

‘ Networked case: information flow

(O
TCP/IP

= The server (in the TCP side) can be a problem.

o The software quality here plays a major role and offers
a very broad range of inefficiencies

o These can be linked with latency, throughput and
stability

= Yes, restarting everything manually is a form of latency as
well!

Possible source of slowdowns:
*Ingenuous, scholastic programming in the server

15 Oct 2009 Fabrizio Furano 30

‘ Networked case: information flow

= When there is a server we are never alone using
it
a There can be many other connections (O(103))

2 Not all the implementations/products are equal
= In fact we are surrounded by so many of them

o Also here software quality makes the difference

Possible source of slowdowns:
*Ingenuous, scholastic programming in the server

15 Oct 2009 Fabrizio Furano 31

‘ Networked case: information flow

» OS+Disks: we already spoke about this

o Taken alone it can cause unacceptable
inefficiencies in the data flow

o They are just one among others now...

Possible source of slowdowns:
The stream of requests is not compatible with disk access, which becomes very
inefficient

15 Oct 2009 Fabrizio Furano 32

Let’s simplity

= From this point on we suppose that:

o All the softwares of the blocks in the prev. slide
are “perfect software”

o Perfectly tuned
o No slowdowns due to poor sw quality

= Note that this is a very strong assumption

o We already have enough troubles

o Anyway we’'ll have a better insight useful to spot
bad softwares in the future

15 Oct 2009 Fabrizio Furano 33

Latency again

« This time we Client Client| |Server
knOW that the ‘ Ei\ i]: Latency
latency may be B! i T
a sum of many
things § i T vatency
o The result does T
not change, this Data_ing | I :
IS what the orecare
client (and the — ;‘f;‘E
app) see

15 Oct 2009 Fabrizio Furano 34

‘ What to do?

= We don’t have to get depressed

o W% don’t have to stop (or avoid) optimizing our
code
= There are some ways to deal with latency

o They must be implemented in the data access
framework (e.g. ROOT+xrootd)

o But the app must be a bit aware of that
= In order to exploit them

o The programmers must know how it works

= In the next part we will explore what's possible
2 And how it works

15 Oct 2009 Fabrizio Furano 35

