First INFN International School on Architectures, tools and methodologies for /)

‘ &w developing efficient large scale scientific computing applications INF

Ce.U.B. - Bertinoro - Italy, 12 - 17 October 2009 L/

Alfio Lazzaro: "Introduction to OpenMP”

= Section |

o Basic ideas and syntax concepts

o Getting started with the very first program
= Section I

o Getting parallelism and speed-up

o What can make life difficult: conflicts
= Section lll

o Some OpenMP clauses: reductions, critical sections, single sections
o Synchronization controls

Based on Sverre Jarp/CERN Openlab @ CERN Openlab Multi-Threading
and Parallelism Workshop (Material originally from Hans-Joachim Plum,
Intel GmbH)

15/10/2009 Alfio Lazzaro 1




‘ Reterences

= Books:

0 “Using OpenMP: Portable Shared
Memory Parallel Programming’,
Chapman, Jost, van der Pas,
http://www.amazon.com/Using-
OpenMP-Programming-
Engineering-Computation/dp
10262533022/

= Online tutorials:
o https://computing.linl.gov/tutorials/openMP/

= Reference page:
o http://www.openmp.org

15/10/2009 Alfio Lazzaro 2



Section |

m Basic ideas and syntax concepts

m Getting started with the very first
program

15/10/2009 Alfio Lazzaro



‘ What 1s OpenMP C_)PenMP

m Compiler directives and library calls for
multi-threaded programming

a

Easy to create threaded C/C++ and Fortran
codes

Explicit parallelization
m Especially oriented for loop parallelization

Supports the data parallelism model for shared
memory paradigm

Offers incremental parallelism

Combines serial and parallel code in a single
source

15/10/2009

Alfio Lazzaro



‘ What 1s OpenMP

CSOMP FLUSH #fpragma omp critical

C$SOMP THREADPRIVATE (/ABC/) CALL OMP_SET NUM THREADS (10)

11 lock (jlok
C$OMP parallel d call omp test lock(jlok)

SOMP MASTER
call OMP_IN

CSOMP SINGLE PR
namic”
CSOMP PARALLEL
CSOMP ORDERED

CSOMP PARALLE
ONS

#pragma omp parallel for private(A, B) 1SOMP B o
CSOMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX)
Nthrds = OMP_GET NUM PROCS () omp_set_lock (lck)

15/10/2009 Alfio Lazzaro 5



‘ Terminology

= \Variables can be

o Private: Visible to one thread only
= Change made in local data, is not seen by others
= Example: Local variables in a function that is executed in parallel

o Shared: Visible to all threads
= Change made in global data, is seen by all others
= Example: Global data
. OpenMP team: Master + Workers
o The master thread always has thread ID O
= A parallel region is a block of code executed by all
threads simultaneously

= A work-sharing construct divides the execution of the
enclosed code region among the members of the team

15/10/2009 Alfio Lazzaro



‘ Programming Model

= Fork-Join parallelism:
o Master thread spawns a team of threads as needed

o Parallelism is added incrementally: the sequential
program evolves into a parallel program

Parallel Task | Parallel Task Il Parallel Task Il

e

Master Thread
Parallel Regions
Parallel Task | Parallel Task Il Parallel Task IlI
Master Thread /T, -
et el .
Fork Join

15/10/2009 Alfio Lazzaro



‘ OpenMP pragma syntax

= Most constructs in OpenMP are compiler
directives or pragmas

o For C and C++, the pragmas take the form:

fpragma omp construct [clause [clause]..]

2o For example:

fpragma omp parallel for private (A, B)

| will use C++ in this lecture

15/10/2009 Alfio Lazzaro



Parallel Regions

Threads are created as “parallel”
when the pragma is crossed

Threads block at end of region

Data is shared among threads
unless specified otherwise

Parallel regions can be nested,
but support for this is
Implementation dependent

An if clause can be used to
guard the parallel region; in case
the condition evaluates to “false”,
the code is executed serially

C/C++ .

#pragma omp parallel

{
block

}

15/10/2009 Alfio Lazzaro




‘ Detining number of threads

= Set environment variable for number of
threads:

export OMP NUM THREADS=4

m [here is no standard default for this variable

2 Many systems:
s # of threads = # of CPUs as in “cat /proc/cpuinfo”
= Intel compilers use this default

15/10/2009 Alfio Lazzaro 10



‘ Getting Started: Hello World

#include <omp.h> // only in case you use openmp functions
#include <iostream>

int main() {
// Default, normal serial execution:

std: :cout << "Program running before parallel region" << std::endl;
int diagnostics = 7777;

#pragma omp parallel
// Now, the following block is executed by multiple threads:

{
std::cout << "Thread " << omp get thread num()

<< "/ " << omp get num threads() << ": "

<< "Thread running in parallel region " << diagnostics
<< std::endl;

}
// end omp parallel

// Back to normal serial execution:

std: :cout << "Program ending after parallel region" << std::endl;
}

15/10/2009 Alfio Lazzaro 11



‘ Compile and Run

= Compilation

a Intel
-bash-3.00$ icpc -openmp helloworld.cxx -o helloworld
helloworld.cxx(9) : (col. 1) remark: OpenMP DEFINED
REGION WAS PARALLELIZED.

o GNU (since version 4.2)
-bash-3.00$ g++ -fopenmp helloworld.cxx -o helloworld

m Decide #threads to run and run

-bash-3.00$ export OMP NUM THREADS=3

-bash-3.00$ ./helloworld

Program running before parallel region

Thread 0 / 3: Thread running in parallel region 7777
Thread 1 / 3: Thread running in parallel region 7777
Thread 2 / 3: Thread running in parallel region 7777
Program ending after parallel region

15/10/2009 Alfio Lazzaro 12



Section 11

m Getting parallelism and speed-up
= \What can make life difficult: conflicts

15/10/2009 Alfio Lazzaro



‘ Making 1t work 1n parallel

s Work-sharing construct:

o used to specify how to assign independent work to
one or all of the threads

o Must be enclosed in a parallel region
= Case of loops

o Splits loop iterations into threads
o Must precede the loop

#pragma omp parallel
{
#pragma omp for
for (1i=0; i<N; i++) {
Do Work (i) ;
}
}

15/10/2009 Alfio Lazzaro



‘ Work-sharing construct ¢

= Each thread is assigned an W

independent set of iterations #pragma omp for
= Threads must wait at the end of
the work-sharing construct

= Few restrictions:

o loop _variable must be signed integer

o not possible to use break to go out
from the loop

o Comparison in the form loop variable
<, <=, >, or >= |loop_invariant_integer
= Joop variable must increment

(decrement) on every iteration if the

Implicit barrier

condition is < or <= (> or >=)
o The increment portion must be either
, . , , #pragma omp for
iInteger addition or integer subtraction for(i = 0: i < 12; i+4)
and by a loop invariant value c[i] = a[i] + b[i]

#pragma omp parallel

15/10/2009 Alfio Lazzaro 15



‘ Example: An “easy loop”™

const int N = 500000;
double a[N], b[N];
// initialization of the vectors; skip

double stime = omp get wtime(); // start timer

#pragma omp parallel
// Now, the following block is executed by multiple threads:
{
#pragma omp for
for (int i = 0; 1 < N; i++) {
a[i] = exp(a[i])/exp(b[i]);
b[i] = 0.111+exp(a[i])+exp(b[1i]);
// other operations...
}
}

double etime = omp get wtime(); // end timer

std: :cout << "Time is " << (etime-stime)*1le3 << " milliseconds."
<< std::endl;

15/10/2009 Alfio Lazzaro 16



D

‘ Compile and run “the easy loop’

icpc -openmp easy loop.cxx -o easy loop

easy loop.cxx(1l7) : (col. 1) remark:
OpenMP DEFINED LOOP WAS PARALLELIZED.
easy loop.cxx(1l4) : (col. 1) remark:

OpenMP DEFINED REGION WAS PARALLELIZED.

-bash-3.00$ export OMP NUM THREADS=4
-bash-3.00$ ./easy loop

Time is 95.268 milliseconds.
-bash-3.00$ export OMP NUM THREADS=1
-bash-3.00$ ./easy loop

Time is 331.269 milliseconds.

=> speedup ~3.5

15/10/2009 Alfio Lazzaro



‘ An example that goes wrong!

double x, y;
int 1;

#pragma omp parallel
#pragma omp for = Who can explain?
for (i=0; i<N; i++) {

x = al[il*al[i];

y = b[i]*b[i];

b[i] = x + vy + x*y;
}
}

15/10/2009 Alfio Lazzaro 18



‘ Needed: the private clause

x and y cannot
be shared!

double x, y;
int 1;

#pragma omp parallel
{
#pragma omp for private(x,y)
for (1=0; i<N; i++) {
X al[il*al[i];
y = b[1]*b[1i];

b[i] = x + vy + x*y;
}
}

15/10/2009

Alfio Lazzaro

19



‘ The private clause

= Make a local copy of the variables for each
thread and use them as temporary variables

o Variables not initialized; C++ object is default
constructed

o the values are not maintained for use outside the
parallel region, i.e. any value external to the
parallel region is undefined

= What about the loop variable 17

o By default, the loop variables in the OpenMP loop
constructs are automatically private

15/10/2009 Alfio Tazzaro 20



‘ Data Environment

= Most variables are shared by default
(shared-memory programming model)

o Global variables are shared among threads
s C/C++: File scope variables, static
= But, in some cases, private is the default:
o Stack variables in functions called from parallel
regions
o Loop index variables (with some exceptions)

15/10/2009 Alfio Lazzaro

21



Section 111

= Some OpenMP clauses: reductions,
critical sections, single sections

= Synchronization controls

15/10/2009 Alfio Lazzaro

22



‘ Sums and Reductions

float dot prod(float* a, float* b, int N) {
float sum = 0.0;
#pragma omp parallel
#pragma omp for
for(int 1 = 0; i<N; i++) {
sum += a[i] * b[i];
}

return sum;

}

= Code is wrong due to conflicts on sum

= However, sum is not private, but a global
so-called reduction variable

15/10/2009 Alfio Lazzaro



‘ Sums and Reductions

= OpenMP provides a clause for such variables:

float dot prod(float* a, float* b, int N) ({
float sum = 0.0;
#pragma omp parallel
#pragma omp for reduction(+: sum)
for(int i=0; i<N; i++) {
sum += a[i] * b[1i];
}

return sum;

}

= Implicitly, there is a local copy of sum for each

thread

2 At the end, all local copies are added together and

stored in the original variable

15/10/2009 Alfio Lazzaro

24



‘ OpenMP reduction clause

reduction (op : var list)

= The variables in var 1list must be shared
In the enclosing parallel region

= |Inside work-sharing construct:

o A private copy of each list variable is created
and initialized depending on the op

o These copies are updated locally by threads

o At end of construct, local copies are combined
through op into a single value and combined
with the value in the original shared variable

15/10/2009 Alfio Lazzaro

25



‘ C/C++ reduction operations

= A range of associative and commutative
operators can be used with reduction

= Initial values are the ones that make sense

15/10/2009 Alfio Lazzaro

26



Control of mapping: Assigning Iterations

= Examples static:

#pragma omp for schedule (static, 8)
for (int i1 = start; i <= end; i += 2)
{ // work }

o Iterations are divided into chunks of 8

a If start = 3, then first chunk is
i={3,5,7,9,11,13,15,17}

o Chunks are executed round-robin by parallel
threads

15/10/2009 Alfio Lazzaro

27



Control of mapping: Assigning Iterations

= Examples dynamic:

#pragma omp for schedule (dynamic, 8)
for (int 1 = start; i <= end; i += 2 )

{ // work }

o As static, but chunks are always (dynamically)
assigned to the next free thread; can be useful
for uneven workloads

15/10/2009 Alfio Lazzaro 28



‘ OpenMP critical Construct

= When certain pieces of a parallel region must
be executed only one thread at a time

#pragma omp parallel
{
#pragma omp for
for (1i_el=0; i el<N elements; i el++) {

// major piece of parallel work
// involving the i el element

#pragma omp critical // One thread at a time
{

// minor piece of serial work
}
}
}

15/10/2009 Alfio Tazzaro 29




‘ OpenMP single Construct

= When certain pieces of a parallel region must
only be executed once; which thread does it,
doesn’'t matter

#pragma omp parallel
{

// do parallel work part 1
#pragma omp single

// only first-come thread executes

}
// do parallel work part 2

15/10/2009 Alfio Lazzaro 30



‘ Other OpenMP Constructs

m sections

o distribute different independent code sections to
threads (functional parallelism)

m master
o as the single pragma, but by master thread

m ordered

o As eritical, but stricter: threads must execute
serial and maintain the original order of the loop

= Advanced uses: atomic pragma and locks

o manually synchronized concurrent updates of
global variables

15/10/2009 Alfio Lazzaro

31



‘ Reterences

= Books:

0 “Using OpenMP: Portable Shared
Memory Parallel Programming’,
Chapman, Jost, van der Pas,
http://www.amazon.com/Using-
OpenMP-Programming-
Engineering-Computation/dp
10262533022/

= Online tutorials:
o https://computing.linl.gov/tutorials/openMP/

= Reference page:
o http://www.openmp.org

15/10/2009 Alfio Lazzaro 32



