
  Section I
  Basic ideas and syntax concepts
  Getting started with the very first program

  Section II
  Getting parallelism and speed-up
  What can make life difficult: conflicts

  Section III
  Some OpenMP clauses: reductions, critical sections, single sections
  Synchronization controls

Based on Sverre Jarp/CERN Openlab @ CERN Openlab Multi-Threading
and Parallelism Workshop (Material originally from Hans-Joachim Plum,
Intel GmbH)

First INFN International School on Architectures, tools and methodologies for
developing efficient large scale scientific computing applications

Ce.U.B. – Bertinoro – Italy, 12 – 17 October 2009

Alfio Lazzaro: “Introduction to OpenMP”

15/10/2009 Alfio Lazzaro 1

References
  Books:

  “Using OpenMP: Portable Shared
 Memory Parallel Programming”,
Chapman, Jost, van der Pas,
http://www.amazon.com/Using-
OpenMP-Programming-
Engineering-Computation/dp
/0262533022/

  Online tutorials:
  https://computing.llnl.gov/tutorials/openMP/

  Reference page:
  http://www.openmp.org

15/10/2009 Alfio Lazzaro 2

Section I

  Basic ideas and syntax concepts
  Getting started with the very first

program

Alfio Lazzaro 3 15/10/2009

What is OpenMP

  Compiler directives and library calls for
multi-threaded programming
  Easy to create threaded C/C++ and Fortran

codes
  Explicit parallelization

  Especially oriented for loop parallelization

  Supports the data parallelism model for shared
memory paradigm

  Offers incremental parallelism
  Combines serial and parallel code in a single

source

Alfio Lazzaro 4 15/10/2009

What is OpenMP

Alfio Lazzaro 5

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

http://www.openmp.org
Current spec is OpenMP 3.0

 326 Pages

(combined C/C++ and Fortran)

15/10/2009

Terminology
  Variables can be

  Private: Visible to one thread only
  Change made in local data, is not seen by others
  Example: Local variables in a function that is executed in parallel

  Shared: Visible to all threads
  Change made in global data, is seen by all others
  Example: Global data

  OpenMP team: Master + Workers
  The master thread always has thread ID 0

  A parallel region is a block of code executed by all
threads simultaneously

  A work-sharing construct divides the execution of the
enclosed code region among the members of the team

15/10/2009 Alfio Lazzaro 6

Programming Model
  Fork-Join parallelism:

  Master thread spawns a team of threads as needed
  Parallelism is added incrementally: the sequential

program evolves into a parallel program

Alfio Lazzaro 7

Parallel Regions

15/10/2009

Fork Join

OpenMP pragma syntax

  Most constructs in OpenMP are compiler
directives or pragmas
  For C and C++, the pragmas take the form:

  For example:

I will use C++ in this lecture

Alfio Lazzaro 8

#pragma omp construct [clause [clause]…]

#pragma omp parallel for private(A, B)

15/10/2009

Parallel Regions
  Threads are created as “parallel”

when the pragma is crossed
  Threads block at end of region
  Data is shared among threads

unless specified otherwise
  Parallel regions can be nested,

but support for this is
implementation dependent

  An if clause can be used to
guard the parallel region; in case
the condition evaluates to “false”,
the code is executed serially

Alfio Lazzaro 9

#pragma omp parallel

Thread

1
Thread

2
Thread

3

 C/C++ :
#pragma omp parallel
 {
 block
 }

15/10/2009

Defining number of threads
  Set environment variable for number of

threads:
export OMP_NUM_THREADS=4

  There is no standard default for this variable
  Many systems:

  # of threads = # of CPUs as in “cat /proc/cpuinfo”
  Intel compilers use this default

Alfio Lazzaro 10 15/10/2009

Getting Started: Hello World

Alfio Lazzaro 11

#include <omp.h> // only in case you use openmp functions
#include <iostream>

int main() {
 // Default, normal serial execution:
 std::cout << "Program running before parallel region" << std::endl;
 int diagnostics = 7777;

#pragma omp parallel
 // Now, the following block is executed by multiple threads:
{
 std::cout << "Thread " << omp_get_thread_num()
 << " / " << omp_get_num_threads() << ": "
 << "Thread running in parallel region " << diagnostics
 << std::endl;
}
 // end omp parallel

 // Back to normal serial execution:
 std::cout << "Program ending after parallel region" << std::endl;
}

15/10/2009

Compile and Run
  Compilation

  Intel
 -bash-3.00$ icpc -openmp helloworld.cxx -o helloworld
 helloworld.cxx(9) : (col. 1) remark: OpenMP DEFINED
REGION WAS PARALLELIZED.

  GNU (since version 4.2)
 -bash-3.00$ g++ -fopenmp helloworld.cxx -o helloworld

  Decide #threads to run and run
 -bash-3.00$ export OMP_NUM_THREADS=3
 -bash-3.00$./helloworld
 Program running before parallel region
 Thread 0 / 3: Thread running in parallel region 7777
 Thread 1 / 3: Thread running in parallel region 7777
 Thread 2 / 3: Thread running in parallel region 7777
 Program ending after parallel region

15/10/2009 Alfio Lazzaro 12

Section II

  Getting parallelism and speed-up
  What can make life difficult: conflicts

Alfio Lazzaro 13 15/10/2009

Making it work in parallel
  Work-sharing construct:

  used to specify how to assign independent work to
one or all of the threads

  Must be enclosed in a parallel region
  Case of loops

  Splits loop iterations into threads
  Must precede the loop

Alfio Lazzaro 14

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i<N; i++) {

 Do_Work(i);
 }
}

15/10/2009

Work-sharing construct
  Each thread is assigned an

independent set of iterations
  Threads must wait at the end of

the work-sharing construct
  Few restrictions:

  loop_variable must be signed integer
  not possible to use break to go out

from the loop
  Comparison in the form loop_variable

<, <=, >, or >= loop_invariant_integer
  loop_variable must increment

(decrement) on every iteration if the
condition is < or <= (> or >=)

  The increment portion must be either
integer addition or integer subtraction
and by a loop invariant value

Alfio Lazzaro 15

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

#pragma omp parallel
#pragma omp for
 for(i = 0; i < 12; i++)
 c[i] = a[i] + b[i]

15/10/2009

Example: An “easy loop”

Alfio Lazzaro 16

const int N = 500000;
double a[N], b[N];
// initialization of the vectors; skip

double stime = omp_get_wtime(); // start timer

#pragma omp parallel
// Now, the following block is executed by multiple threads:
{
 #pragma omp for
 for (int i = 0; i < N; i++) {
 a[i] = exp(a[i])/exp(b[i]);
 b[i] = 0.111+exp(a[i])+exp(b[i]);
 // other operations...
 }
}

double etime = omp_get_wtime(); // end timer

std::cout << "Time is " << (etime-stime)*1e3 << " milliseconds."
 << std::endl;

15/10/2009

Compile and run “the easy loop”

Alfio Lazzaro 17

icpc -openmp easy_loop.cxx -o easy_loop
easy_loop.cxx(17) : (col. 1) remark:
OpenMP DEFINED LOOP WAS PARALLELIZED.
easy_loop.cxx(14) : (col. 1) remark:
OpenMP DEFINED REGION WAS PARALLELIZED.

-bash-3.00$ export OMP_NUM_THREADS=4
-bash-3.00$./easy_loop
Time is 95.268 milliseconds.
-bash-3.00$ export OMP_NUM_THREADS=1
-bash-3.00$./easy_loop
Time is 331.269 milliseconds.

 => speedup ~3.5

15/10/2009

An example that goes wrong!

  Why?
  Who can explain?

Alfio Lazzaro 18

double x, y;
int i;

#pragma omp parallel
{
#pragma omp for
 for(i=0; i<N; i++) {
 x = a[i]*a[i];
 y = b[i]*b[i];

 b[i] = x + y + x*y;
 }
}

15/10/2009

Needed: the private clause

Alfio Lazzaro 19 15/10/2009

x and y cannot
be shared!

double x, y;
int i;

#pragma omp parallel
{
#pragma omp for private(x,y)
 for(i=0; i<N; i++) {
 x = a[i]*a[i];
 y = b[i]*b[i];

 b[i] = x + y + x*y;
 }
}

The private clause

  Make a local copy of the variables for each
thread and use them as temporary variables
  Variables not initialized; C++ object is default

constructed
  the values are not maintained for use outside the

parallel region, i.e. any value external to the
parallel region is undefined

  What about the loop variable i?
  By default, the loop variables in the OpenMP loop

constructs are automatically private

Alfio Lazzaro 20 15/10/2009

Data Environment

  Most variables are shared by default
(shared-memory programming model)
  Global variables are shared among threads

  C/C++: File scope variables, static

  But, in some cases, private is the default:
  Stack variables in functions called from parallel

regions
  Loop index variables (with some exceptions)

Alfio Lazzaro 21 15/10/2009

Section III

  Some OpenMP clauses: reductions,
critical sections, single sections

  Synchronization controls

Alfio Lazzaro 22 15/10/2009

Sums and Reductions

  Code is wrong due to conflicts on sum
  However, sum is not private, but a global

so-called reduction variable

Alfio Lazzaro 23

float dot_prod(float* a, float* b, int N) {
 float sum = 0.0;
 #pragma omp parallel
 #pragma omp for
 for(int i = 0; i<N; i++) {
 sum += a[i] * b[i];
 }
 return sum;
}

15/10/2009

Sums and Reductions
  OpenMP provides a clause for such variables:

  Implicitly, there is a local copy of sum for each
thread
  At the end, all local copies are added together and

stored in the original variable
Alfio Lazzaro 24

float dot_prod(float* a, float* b, int N) {
 float sum = 0.0;
 #pragma omp parallel
 #pragma omp for reduction(+: sum)
 for(int i=0; i<N; i++) {
 sum += a[i] * b[i];
 }
 return sum;
}

15/10/2009

OpenMP reduction clause

  The variables in var_list must be shared
in the enclosing parallel region

  Inside work-sharing construct:
  A private copy of each list variable is created

and initialized depending on the op
  These copies are updated locally by threads
  At end of construct, local copies are combined

through op into a single value and combined
with the value in the original shared variable

Alfio Lazzaro 25

reduction (op : var_list)

15/10/2009

C/C++ reduction operations

  A range of associative and commutative
operators can be used with reduction

  Initial values are the ones that make sense

Alfio Lazzaro 26

Operator Initial Value

+ 0

* 1

- 0

^ 0

Operator Initial Value

& ~0

| 0

&& 1

|| 0

15/10/2009

Control of mapping: Assigning Iterations
  Examples static:

  Iterations are divided into chunks of 8
  If start = 3, then first chunk is
i={3,5,7,9,11,13,15,17}

  Chunks are executed round-robin by parallel
threads

Alfio Lazzaro 27

#pragma omp for schedule (static, 8)
 for (int i = start; i <= end; i += 2)
 { // work }

15/10/2009

Control of mapping: Assigning Iterations

  Examples dynamic:

  As static, but chunks are always (dynamically)
assigned to the next free thread; can be useful
for uneven workloads

Alfio Lazzaro 28

#pragma omp for schedule (dynamic, 8)
 for (int i = start; i <= end; i += 2)
 { // work }

15/10/2009

OpenMP critical Construct
  When certain pieces of a parallel region must

be executed only one thread at a time

Alfio Lazzaro 29

#pragma omp parallel
{
 #pragma omp for
 for (i_el=0; i_el<N_elements; i_el++) {

 // major piece of parallel work
 // involving the i_el element

 #pragma omp critical // One thread at a time
 {
 // minor piece of serial work
 }
 }
}

15/10/2009

OpenMP single Construct
  When certain pieces of a parallel region must

only be executed once; which thread does it,
doesn’t matter

Alfio Lazzaro 30

#pragma omp parallel
{
 // do parallel work part 1

 #pragma omp single
 {
 // only first-come thread executes
 }

 // do parallel work part 2

}

15/10/2009

Other OpenMP Constructs
  sections

  distribute different independent code sections to
threads (functional parallelism)

  master
  as the single pragma, but by master thread

  ordered
  As critical, but stricter: threads must execute

serial and maintain the original order of the loop
  Advanced uses: atomic pragma and locks

  manually synchronized concurrent updates of
global variables

Alfio Lazzaro 31 15/10/2009

References
  Books:

  “Using OpenMP: Portable Shared
 Memory Parallel Programming”,
Chapman, Jost, van der Pas,
http://www.amazon.com/Using-
OpenMP-Programming-
Engineering-Computation/dp
/0262533022/

  Online tutorials:
  https://computing.llnl.gov/tutorials/openMP/

  Reference page:
  http://www.openmp.org

15/10/2009 Alfio Lazzaro 32

