Secondo incontro sulla fisica con ioni pesanti a LHC, 9-10 Ottobre 2017, Torino

Introduction to soft probes: an experimental overview

Chiara Oppedisano, INFN Torino

QCD matter

"Ordinary" matter locolor confinement

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

QCD matter

Ultra-relativistic heavy-ion physics > study QCD at high temperature and density (QCD thermodynamics)

Gluons interact with quarks and with gluons, leading to antiscreening with increasing Q

high Q, low α_S ♦ ASYMPTOTIC FREEDOM
free quarks and gluons at high energies
high Q, small α_S
♦ perturbative QCD applicable

low Q, high $\alpha_S \triangleright$ confinement

Gluons interact with quarks and with gluons, leading to antiscreening with increasing Q

high Q, low α_S ♦ ASYMPTOTIC FREEDOM
free quarks and gluons at high energies
high Q, small α_S
♦ perturbative QCD applicable

low Q, high $\alpha_S \triangleright$ confinement

Gluons interact with quarks and with gluons, leading to antiscreening with increasing Q

high Q, low α_S ♦ ASYMPTOTIC FREEDOM
free quarks and gluons at high energies
high Q, small α_S
♦ perturbative QCD applicable

low Q, high $\alpha_S \triangleright$ confinement

Gluons interact with quarks and with gluons, leading to antiscreening with increasing Q

high Q, low α_S ♦ ASYMPTOTIC FREEDOM
free quarks and gluons at high energies
high Q, small α_S
♦ perturbative QCD applicable

low Q, high $\alpha_S \triangleright$ confinement

SOFT = not hard! > small exchanged momentum Q > pQCD not applicable > effective theories, transport models, statistical models...

SOFT = harder!

Evolution of the collision

Observables

Global properties

CENTRAL COLLISIONS

small b, large N_{part} N_{coll} larger interaction volume larger produced multiplicity

PERIPHERAL COLLISIONS

large b, small N_{part} N_{coll} smaller interaction volume smaller produced multiplicity

Global properties

Global properties

 $\sqrt{s_{_{
m NN}}}$ (GeV)

Initial conditions

Density of gluons rises rapidly for decreasing x (increasing energy) Cross-sections at high energies rise slowly

- gluon must "fit" inside hadron size
- gluon density limited SATURATION

saturation scale ~ Q_s occupation number ~ α_s

Weakly interacting tightly packed small-x gluons strong color fields between nuclei

Color Glass Condensate (CGC): effective field theory describing universal properties of saturated gluons in hadron wave functions

CGC dynamics produces GLASMA gluon field configurations at early time

Chemical freeze-out

Assuming thermal and chemical equilibrium STATISTICAL HADRONIZATION (THERMAL) MODEL

GRAND-CANONICAL ENSEMBLE: large number of produced particles (>10⁴ full rapidity range at LHC) conservation on average of additive quantum numbers

Yield per species:

$$N_{i} = V \frac{g_{i}}{2\pi^{2}} \int \frac{p^{2} dp}{e^{\frac{E_{i} - \mu_{i}}{T}} \pm 1}$$
$$\mu_{i} = \mu_{B} B_{i} + \mu_{S} S_{i} + \mu_{I_{3}} I_{3,i}$$

Conservation laws to constrain V, µ_S, µ_{I3}

baryon number $V \sum_{i} n_{i}B_{i} = Z + N$

strangeness $V \sum_{i} n_i S_i = 0$

isospin charge $V \sum_{i} n_{i} I_{3,i} = \frac{Z-N}{2}$

- yields determined by 3 parameters: V, T, μ_B
- comparing particle ratios, V term cancels out $\chi^2 = \sum_{i} \frac{N_i^{aata} - N_i^{model}}{\sigma_i^2}$
- fit experimental data to extract T, μ_B

Secondo incontro sulla fisica con ioni pesanti a LHC, 9-10 Ottobre 2017, Torino C. Oppedisano

Statistical model: yields

hadron abundancies in reasonable agreement with a chemicallyequilibrated system

what is the origin of equilibrium?
general property of QCD
hadronization process?
hadron gas thermalizes through particle scattering in the high particle density environment?

Tensions for p[uud] (favour lower T_{ch}) Ξ [dss] (favour higher T_{ch})

- re-scattering in hadronic phase?
- flavor-dependent freeze-out?

Freeze-out and QCD phase diagram

T, μ_B from thermal fits to hadron yields at different collision energies √s_{NN}
♦ hadron freeze-out curve

at low µ_B chemical freeze-out T coincides with T_C
 hadron formation from deconfined matter

at LHC μ_B ~0: (anti)matter production as in early Universe

Kinetic equilibrium

pp collisions at low p_T show transverse mass (m_T=m²+p_T²) scaling ▶ thermal spectra

same inverse slope T_{slope} for all particles
 T_{slope} = T at kinetic freeze-out T_{fo}

INFN

Kinetic equilibrium

pp collisions at low p_T show transverse mass (m_T=m²+p_T²) scaling ♦ thermal spectra

- same inverse slope T_{slope} for all particles
 T_{slope} = T at kinetic freeze-out T_{fo}
- A-A collisions, low p_T: m_T scaling is broken ♦ harder spectra in A-A

heavier particles are shifted to larger pT (harder spectra)

Kinetic equilibrium

pp collisions at low p_T show transverse mass (m_T=m²+p_T²) scaling ♦ thermal spectra

 $\frac{dN}{m_T dm_T} \propto e^{-\frac{m_T}{T_{slope}}}$

same inverse slope T_{slope} for all particles
 T_{slope} = T at kinetic freeze-out T_{fo}

A-A collisions, low p_T: m_T scaling is broken ♦ harder spectra in A-A

heavier particles are shifted to larger pT (harder spectra)

Random thermal motion + collective motion of expanding system driven by pressure gradient RADIAL FLOW Particles moving in a common flow field

blue-shift

$$T_{slope} = T_{fo} \sqrt{\frac{1 + \beta_T}{1 - \beta_T}}$$

Hydrodynamic applicability) medium in local thermodynamic equilibrium, with mean free path $\lambda_{MFP} \ll 1$ size of the system L) small Knudsen number Kn = $\lambda_{MFP}/L \ll 1$

Energy-momentum conservation $\ \partial_{\mu}T^{\mu
u}=0$

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{mu\nu}$$

Hydrodynamic applicability \blacklozenge medium in local thermodynamic equilibrium, with mean free path $\lambda_{MFP} \ll 1$ size of the system L \blacklozenge small Knudsen number Kn = $\lambda_{MFP}/L \ll 1$

Energy-momentum conservation $\ \partial_{\mu}T^{\mu
u}=0$

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{mu\nu}$$

Equilibrium terms energy density and pressure related by EOS $P=P(\epsilon)$ microscopic DOF

Hydrodynamic applicability \blacklozenge medium in local thermodynamic equilibrium, with mean free path $\lambda_{MFP} \ll$ size of the system L \blacklozenge small Knudsen number Kn = $\lambda_{MFP}/L \ll$

Energy-momentum conservation
$$\partial_{\mu}T^{\mu\nu} = 0$$

 $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (p) + \Pi)\Delta^{\mu\nu} + \pi^{mu\nu}$
Equilibrium terms
energy density and pressure
related by EOS P=P(\epsilon)
microscopic DOF
 $\pi^{\mu\nu} = \pi\mu\nu(\eta)$
 $\eta = \text{shear viscosity}$
 $\eta = \text{shear viscosity}$

Hydrodynamic applicability \blacklozenge medium in local thermodynamic equilibrium, with mean free path $\lambda_{MFP} <<$ size of the system L \blacklozenge small Knudsen number Kn = $\lambda_{MFP}/L <<1$

Energy-momentum conservation
$$\partial_{\mu}T^{\mu\nu} = 0$$

 $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (p) + \Pi)\Delta^{\mu\nu} + \pi^{mu\nu}$
Equilibrium terms
energy density and pressure
related by EOS P=P(\epsilon)
microscopic DOF
 $\pi^{\mu\nu} = \pi\mu\nu(\eta)$
 $\eta = \text{shear viscosity}$
 $\eta = \text{shear viscosity}$

Hydrodynamic applicability \blacklozenge medium in local thermodynamic equilibrium, with mean free path $\lambda_{MFP} \ll$ size of the system L \blacklozenge small Knudsen number Kn = $\lambda_{MFP}/L \ll$

Energy-momentum conservation
$$\partial_{\mu}T^{\mu\nu} = 0$$

 $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (p) + \Pi)\Delta^{\mu\nu} + \pi^{mu\nu}$
Equilibrium terms
energy density and pressure
related by EOS P=P(\epsilon)
microscopic DOF
 $\pi^{\mu\nu} = \pi\mu\nu(\eta)$
 $\eta = \text{shear viscosity}$
 $\eta = \text{shear viscosity}$

C. Oppedisano

Secondo

Initial anisotropy gets transferred to momentum space

Secondo

Initial anisotropies are mapped in final hadron spectra, can be quantified through a Fourier decomposition of azimuthal distributions relative to RP:

$$\frac{dN}{d\phi} \sim 1 + 2\sum_{n} v_n cos \left[n \left(\phi - \Psi_{RP}\right)\right]$$

Fourier coefficients $v_n(p_T, y) = \langle cos[n(\phi - \Psi_{RP})] \rangle$

v₂ elliptic flow

related to the geometry of the overlap zone expansion tends to dilute initial space asymmetry (pressure gradients are stronger in the first stages)

Higher order coefficients due to fluctuations in the initial state Odd coefficients are expected vanish on average for a symmetric system

v₃ triangular flow

viscosity tends to suppress higher harmonics
sensitivity to initial conditions and to η/s ratio

Elliptic flow V2

Higher order harmonics

Viscosity tend to suppress higher order harmonics v_n sensitive to transport in the medium ♦ v₂(p_T) to constrain shear viscosity to entropy density ratio η/s

Higher order harmonics

INFN

INFŃ

Secondo incontro sulla fisica con ioni pesanti a LHC, 9-10 Ottobre 2017, Torino

INFN

Secondo incontro sulla fisica con ioni pesanti a LHC, 9-10 Ottobre 2017, Torino

INFN

ALICE Preliminary

Pb-Pb $s_{NN} = 5.02 \text{ TeV}$

|y| < 0.5

- Mass ordering for $p_T < 2$ GeV/c, particle
- type dependence for $p_T > 3 \text{ GeV/c}$

hydro at low-p_T and coalescence at intermediate p_T

Strangeness

Rafelski, Muller, PRL 48 (1982) 1066

Enhancement of strangeness production in QGP w.r.t. hadron gas

Enhancement of strange baryons production in A-A relative to pp (p-A) collisions

- \blacklozenge reduced with increasing \sqrt{s}
- increased with s quark content

Strangeness

Rafelski, Muller, PRL 48 (1982) 1066

Enhancement of strangeness production in QGP w.r.t. hadron gas

Strangeness

Rafelski, Muller, PRL 48 (1982) 1066

Enhancement of strangeness production in QGP w.r.t. hadron gas

C. Oppedisano

Distributions of relative angles $\Delta \phi$ and $\Delta \eta$ between pairs of particles: TRIGGER particle in a certain $p_{T,trig}$ interval and ASSOCIATED particles in a $p_{T,assoc}$ range

test long range correlations between particles

Long range correlations

n

Multi-particle correlations

Multi-particle correlations contribution from jet fragmentation strongly suppressed

Multi-particle correlations

Multi-particle correlations contribution from jet fragmentation strongly suppressed

Large elliptic flow already in small system as p-Pb and high multiplicity pp collision

- hydrodynamics at work or partonic interactions?
- \blacklozenge hydrodynamics assumptions at the edge of validity: $\lambda_{\text{MFP}}/L \sim 1$

Soft probes: what have we learnt?

- \square matter formed in the collision has very low η /s ratio, close to minimum value I/4 π
- early thermalization
- multi-particle anisotropic flow + soft particles flow
- Iong-range correlation in anisotropic flow
 system collective response to initial fluctuations
 - A strongly coupled nearly perfect liquid > sQGP

Soft probes: what can we learn?

pre-equilibrium: weakly or strongly coupled system? mechanism driving fast thermalization? QCD medium transport properties deviations from perfect fluid to understand underlying physics perfect fluid for all probes? Hard probes flow origin of strangeness enhancement? Flavor-dependent freeze-out? QGP in small systems? Same physic origin or only similar appearance? Do we need different models or different physics? ...what else?

C. Oppedisano

Secondo/indontro súlla As

Soft probes: what can we learn?

pre-equilibrium: weakly or strongly coupled system? mechanism driving fast thermalization? QCD medium transport properties deviations from perfect fluid to understand underlying physics perfect fluid for all probes? Hard probes flow origin of strangeness enhancement? Flavor-dependent freeze-out? QGP in small systems? Same physic origin or only similar appearance? Do we need different models or different physics? ...what else?

Secondo/indontro sulla Ais

C. Oppedisano

26

The end...

Centrality determination

Centrality determination

Measured charged particle multiplicity N_{ch} assuming <N_{ch}>(b) increases monotonically with decreasing b Glauber fit model Define centrality classes selecting percentile of the measured distribution

Statistical models

Statistical models

Kinetic freeze-out

Fit particle spectra to disentangle thermal component from collective motion T_{fo} , β_T from simultaneous fit to p, K, π

- → average radial flow velocity $<\beta_T> \sim 0.65$ (10% larger than at RHIC)
- ➡ kinetic freeze-out temperature T_{fo}~100 MeV (compatible with RHIC within errors)

Blast wave description

• Consider a thermal Boltzman source

$$E \frac{\mathrm{d}^3 N}{\mathrm{d}p^3} \propto E \, e^{-E/T} \qquad E = m_{\mathrm{T}} \cosh(y)$$

• Boost source radially with velocity β and evaluate at midrapidity

$$\frac{1}{m_{\rm T}} \frac{{\rm d}N}{{\rm d}m_{\rm T}} \propto m_{\rm T} I_0 \left(\frac{p_{\rm T} {\rm sinh}(\rho)}{T}\right) K_1 \left(\frac{m_{\rm T} {\rm cosh}(\rho)}{T}\right)$$

with $\rho = {\rm tanh}^{-1} \left(\beta\right)$

• Consider a uniform sphere of radius R

$$\frac{1}{m_{\rm T}} \frac{\mathrm{d}N}{\mathrm{d}m_{\rm T}} \propto \int_0^R \mathrm{d}r \, m_{\rm T} \, I_0 \left(\frac{p_{\rm T} \mathrm{sinh}(\rho(r))}{T}\right) \, K_1 \left(\frac{m_{\rm T} \mathrm{cosh}(\rho(r))}{T}\right)$$

parametrize surface velocity with $\beta\left(r\right)=\beta_{\mathrm{s}}\left(r/R\right)^{n}$

3 parameters: T, β_S and n

eccentricity

elliptic flow V2

Two-particle correlations in p-Pb

Subtraction of the contribution from jet fragmentation: 0-20% - 60-100% ♦ justified by the observation that the near side peak yield does not depend on particle multiplicity

Two-particle correlations in p-Pb

symmetric double ridge observed in p-Pb collisions where collective behaviors were not expected (no flowing medium formed)!

Shear viscosity

