Collectivity in small systems: a microscopic perspective

Christian Bierlich
bierlich@thep.lu.se

Lund University

Oct 9, 2017
Secondo incontro sulla fisica con ioni pesanti a LHC

Why is collectivity in small systems so interesting?

- Collectivity in small systems challenges two paradigms at once!
- On one hand: How far down in systems size does the "SM of heavy ions" remain?
- On the other hand: Can the standard tools for min bias pp (Pythia8, Herwig 7 etc) remain standard?

STANDARD MODEL (MODULES) of HEAVY-ION COLLISIONS

NEW: FLUCTUATIONS IN THE INITIAL STATE / EVENT-BY-EVENT HYDRO / FINAL-STATE FLUCTUATIONS
(Figure credit: W. Florkowski)

- When does the assumptions of deconfinement and thermalization break down?

Bottom up: The PyTHIA8 picture (Figure crediti: T . sjöstrand)

- Built on perturbative QCD + Lund strings.
- Works very well for most pp applications
- Really throw away 30 years of succesful phenomenology?

Bottom up: The PyTHIA8 picture (Figure crediti: T . sjöstrand)

- Built on perturbative QCD + Lund strings.
- Works very well for most pp applications
- Really throw away 30 years of succesful phenomenology?

Bottom up: The PyTHIA8 picture (Figure crediti: T . sjöstrand)

- Built on perturbative QCD + Lund strings.
- Works very well for most pp applications
- Really throw away 30 years of succesful phenomenology?

Bottom up: The PYTHIA8 picture (Figure credit: T . sjistrand)

- Built on perturbative QCD + Lund strings.
- Works very well for most pp applications
- Really throw away 30 years of succesful phenomenology?

Microscopic collectivity: Extending the Pythia8 picture

- Since last Friday Pythia8 has been extended to:
(1) Stacking multiple pp events to a $\mathrm{p} A$ or $A A$ event.
(2) Use "Rope Hadronization" to describe strangeness enhancement.
(3) Use "String Shoving" for long range correlations (the "ridge").
(9) Transistion period from Dipsy .
- This talk:
(1) Multiparticle production (MPI model and Lund string).
(2) Rope Hadronization (strangeness).
(3) String shoving (two particle correlations).
(3) Extending to heavy ion (Angantyr framework).
- Several other models in Pythia8 (colour reconnection, junctions, popcorn baryons, thermalized strings ...) - please ask me afterwards.
- Try it yourself: http://home.thep.lu.se/Pythia

Particle production: MPIs (sjistrand and Skands: axtiv:hep-ph/0402078)

- Several partons taken from the PDF (dilute proton wavefunction).
- Hard sub-collisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}} .
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- Number distribution narrower than Poissonian (momentum and flavour rescaling).
- Further emission by parton shower.

Concepts of String Hadronization (hep-ph//0063175)

- Linear confinement potential $V(r) \approx \kappa r$, confirmed on the lattice.
- Valid for large distances - for small distances perturbation theory should be valid.

Figure credit: T. Sjöstrand

- Very simple, but powerful, picture.

Lund String Hadronization (See eg. hep-ph/0603175)

- Non-perturbative phase of final state, produced by parton shower.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.

Lund String Hadronization (see eg. hep-ph/0603175)

- Non-perturbative phase of final state, produced by parton shower.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

Lund String Hadronization (see eg. hep-ph/0603175)

- Non-perturbative phase of final state, produced by parton shower.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.

Lund String Hadronization (see eg. hep-ph//6003175)

- Non-perturbative phase of final state, produced by parton shower.
- Confined colour fields \approx strings with tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.

Lund symmetric fragmentation function

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

a and b related to total multiplicity.
Flavours determined by relative probabilities

$$
\rho=\frac{\mathcal{P}_{\text {strange }}}{\mathcal{P}_{\text {u or d }}}, \xi=\frac{\mathcal{P}_{\text {diquark }}}{\mathcal{P}_{\text {quark }}}
$$

Probabilities related to κ by Schwinger equation.

Color reconnection in Pythia8

- Many partonic subcollisions \Rightarrow Many hadronizing strings.
- Parton shower + string does not describe pp data.
(1) Too much multiplicity.
(2) No $<p_{\perp}>\left(N_{c h}\right)$ dependence.
- Easy to merge low- p_{\perp} systems, hard to merge two hard- p_{\perp}.

$$
\mathcal{P}_{\text {merge }}=\frac{\left(\gamma p_{\perp 0}\right)^{2}}{\left(\gamma p_{\perp 0}\right)^{2}+p_{\perp}^{2}}
$$

Figure credit T. Sjöstrand

- Actual merging is decided by minimization of "potential energy":

$$
\lambda=\sum_{\text {dipoles }} \log \left(1+\sqrt{2} E / m_{0}\right)
$$

Best known effect: $<p_{\perp}>\left(N_{c h}\right)$ (Data ATLAS: axtiv:1012.5104 (hepe-ex)

- Pythia8 with CR describes this.
- Simple model enough to describe behaviour "on average".
- Flow-like behaviour from CR, but not enough to describe data (A. ortiz

Velasquez et al., Phys. Rev. Lett. 111 (2013) 0420001)

Lessons so far

- Strings are already a collective phenomenon, but not enough to describe even basic features of pp collisions, such as $d N / d \eta$ or $<p_{\perp}>\left(N_{c h}\right)$.

Lessons so far

- Strings are already a collective phenomenon, but not enough to describe even basic features of pp collisions, such as $d N / d \eta$ or $<p_{\perp}>\left(N_{c h}\right)$.
- (For an appropriate definition of "collectivity").

Lessons so far

- Strings are already a collective phenomenon, but not enough to describe even basic features of pp collisions, such as $d N / d \eta$ or $<p_{\perp}>\left(N_{c h}\right)$.
- (For an appropriate definition of "collectivity").
- "Colour reconnection" is an umbrella term for all types of correction of the $N_{c}=\infty$ approximation of the parton shower.
- More advanced models of CR exist (and are shown to have effects even in $e^{+} e^{-}$) (see eg. Christiansen and Skands: arXiv:1505.01681 [hep-ph], CB in arxi:1702.01329 [hep-ph]).

Lessons so far

- Strings are already a collective phenomenon, but not enough to describe even basic features of pp collisions, such as $d N / d \eta$ or $<p_{\perp}>\left(N_{c h}\right)$.
- (For an appropriate definition of "collectivity").
- "Colour reconnection" is an umbrella term for all types of correction of the $N_{c}=\infty$ approximation of the parton shower.
- More advanced models of CR exist (and are shown to have effects even in $e^{+} e^{-}$) (see eg. Christiansen and Skands: arXiv:1505.01681 [hep-ph], cB in arXi:1702.01329 [hep-ph]).
- Rest of the talk: Newer developments where strings are also allowed to interact.

- Hadronic flavour tuned to $e^{+} e^{-}$data.
- Description works well here (Data SLD, LEP and PDG avg.).

- Hadronic flavour tuned to $e^{+} e^{-}$data.
- Description works well here (Data sLD, LEP and PDG avg.).
- Not even inclusively in pp (Data: AtLas, Cms, alice, lhcb).

What to do in busy events?

- Even small system collisions are quite busy.
- Remember: Strings are flux tubes i.e. confined fields.
- Interference in overlap regions must be treated.

Rope hadronization

- The simplest example: Two $q \bar{q}$ pairs act coherently.
- Two distinct possibilities:

Case (a), $c_{1}=c_{2}$:

Case (b), $c_{1} \neq c_{2}$:

Three classes of effects

- Consider now the stacking of such pairs.
- SU(3) multiplet structure decided by random walk.

Three classes of effects

- Consider now the stacking of such pairs.
- SU(3) multiplet structure decided by random walk.

- Three options
(1) Highest multiplet.
(2) Lower multiplet (junction structure).
(3) Singlet.
- Focus on the highest multiplet.

Highest multiplet

- Go from overlapping strings (p and q) to highest multiplet.
- Hadronize highest multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

Highest multiplet

- Go from overlapping strings (p and q) to highest multiplet.
- Hadronize highest multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

$\mathrm{SU}(3)$ recursion relations

$$
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\}
$$

Highest multiplet

- Go from overlapping strings (p and q) to highest multiplet.
- Hadronize highest multiplet with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_{2} \Rightarrow \frac{\tilde{\kappa}}{\kappa_{0}}=\frac{C_{2}(\text { multiplet })}{C_{2}(\text { singlet })} .
$$

$\mathrm{SU}(3)$ recursion relations

$$
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\}
$$

- Transform to $\tilde{\kappa}=\frac{2 p+q+2}{4} \kappa_{0}$ and $2 N=(p+1)(q+1)(p+q+2)$.
- N serves as a state's weight in the random walk.

Effect on hadronization parameters

Large effect on hadron flavours

- Strange quark breakup suppression:

$$
\rho_{0}=\exp \left(-\frac{\pi\left(m_{s}^{2}-m_{u}^{2}\right)}{\kappa}\right) \rightarrow \tilde{\rho}(\kappa)=\rho_{0}^{\frac{\kappa_{0}}{\kappa}}
$$

Effect on hadronization parameters

Large effect on hadron flavours

- Strange quark breakup suppression:

$$
\rho_{0}=\exp \left(-\frac{\pi\left(m_{s}^{2}-m_{u}^{2}\right)}{\kappa}\right) \rightarrow \tilde{\rho}(\kappa)=\rho_{0}^{\frac{\kappa_{0}}{\kappa}} .
$$

Effect in pp Data: sTAR and cms

- Important to compare apples to apples.
- The Rivet framework provides this (arxiv:1003.0694 [hep-ph]).
- Precise predictions require precise comparisons.

Strangeness and system size (ALCE: Nature Phys. 13 (2017) 535-539)

- Own comparison - important with apples to apples comparison with data.
- Early sub-jet studies (Mangano and Nachman: arxiv:1708.08369 [hep-phl).

Strangeness and system size (ALLC: Nature Phys, 13 (2017) 535.539)

- Own comparison - important with apples to apples comparison with data.
- Early sub-jet studies (Mangano and Nachman: arxiv:1708.08369 [hep-ph]).

What about the ϕ meson?

Double suppression

- The ϕ is an excellent laboratory for strangeness effects.
- Two s-breaks means twice suppression and added sensitivity.

What about the ϕ meson?

Double suppression

- The ϕ is an excellent laboratory for strangeness effects.
- Two s-breaks means twice suppression and added sensitivity.

What about the ϕ meson?

Double suppression

- The ϕ is an excellent laboratory for strangeness effects.
- Two s-breaks means twice suppression and added sensitivity.

What about the ϕ meson?

Double suppression

- The ϕ is an excellent laboratory for strangeness effects.
- Two s-breaks means twice suppression and added sensitivity.

String shoving (CB etal. arxiv:10121.05132 [hep-ph)

- Overlapping strings push each other, generates transverse pressure.
- Earlier analytic + toy MC studies (Abramovsky et al. JETP Lett. 47 (1988) 337-339, Altsybeev arxiv:1502.03608 [hep-phl)
- Now in Pythia8 implementation: User can supply own IS model.

String shoving (CB etal. arxiv:10121.05132 [hep-ph)

- Overlapping strings push each other, generates transverse pressure.
- Earlier analytic + toy MC studies (Abramovsky et al. JETP Lett. 47 (1988) 337-339, Altsybeev arXiv:1502.03608 [hep-ph])
- Now in Pythia8 implementation: User can supply own IS model.

- No assumption of thermalized plasma.
- Not even deconfined plasma!

The shoving pressure

- p_{\perp} push on string segment, length δl, time interval δt.
- If everything starts in a point at $t=0$ then $\delta I=t \delta y$.

$$
\delta p_{\perp 12}=f_{12} \cdot \delta / \delta t=f_{12} \cdot t \delta y \delta t
$$

- The force is f; chromoelectric field of effective dual s.c. (lattice).
- Approximate with Gaussian:

$$
E_{I}=C_{0} \exp \left(-\frac{x_{\perp}^{2}}{2 R^{2}}\right)
$$

- Interaction energy between two vortex lines gives force:

$$
f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)
$$

(Cea et al. arXiv: 1404.1172 [hep-lat])

Time evolution

- Assume (crudely) three separate phases.
(1) Strings propagate freely.
(2) Strings shove each other.
(3) Strings hadronize at equilibrium size.
- Simulate field push as small excitation gluons.

Ridge

- Appeance of a ridge at high event multiplicity.

Ridge II

- One-dimensional projections in qualitative agreement with data.
- Own, qualitative, comparison to CMS (CMS arxiv:1009.4122 [hep-ex]).
- ...quantitative, common comparisons (Rivet) are needed.
- Efforts from ALICE ongoing.

Extrapolate to $A A$: Glauber + fluctuations (CB et al: arxiv:1007.04334

 [hep-ph])- Q: How can we extrapolate " minimum bias pp" to " minimum bias $\mathrm{p} A$ and $A A^{\prime \prime}$.
- Q: What do we need to reproduce "centrality" \propto forward particle production?
- Wounded nucleons updated to include fluctuations in target and projectile (SD + DD).

$$
\begin{gathered}
\Im\left(A_{e l}\right)=\frac{1}{2}\left(\left|A_{e l}\right|^{2}+P_{a b s}\right) ; T \equiv-i A_{e l} \Rightarrow \\
\frac{d \sigma_{e l}}{d^{2} b}=\langle T(b)\rangle^{2}, \frac{d \sigma_{t o t}}{d^{2} b}=2\langle T(b)\rangle \\
\frac{d \sigma_{a b s}}{d^{2} b}=2\langle T(b)\rangle-\langle T(b)\rangle^{2}
\end{gathered}
$$

The wounded cross section

- Fluctuations related to diffractive excitations: Good-Walker.

$$
\begin{gathered}
\frac{d \sigma_{t o t}}{d^{2} b}=2\langle T\rangle_{t, p}, \frac{d \sigma_{e l}}{d^{2} b}=\langle T\rangle_{t, p}^{2}, \frac{d \sigma_{S D,(p \mid t)}}{d^{2} b}=\left\langle\langle T\rangle_{(t \mid p)}^{2}\right\rangle_{(p \mid t)}-\langle T\rangle_{p, t}^{2} \\
\frac{d \sigma_{D D}}{d^{2} b}=\left\langle T^{2}\right\rangle_{p, t}-\left\langle\langle T\rangle_{t}^{2}\right\rangle_{p}-\left\langle\langle T\rangle_{p}^{2}\right\rangle_{t}+\langle T\rangle_{p, t}^{2}
\end{gathered}
$$

- The wounded cross section is the sum of:

$$
\frac{d \sigma_{w}}{d^{2} b}=\frac{d \sigma_{a b s}}{d^{2} b}+\frac{d \sigma_{S D, t}}{d^{2} b}+\frac{d \sigma_{D D}}{d^{2} b}=2\langle T\rangle_{p, t}-\left\langle\langle T\rangle_{t}^{2}\right\rangle_{p}
$$

- Contributions to "centrality" observable: absorptively wounded, diffractively wounded, NOT elastically scattered.
- We need now to calculate $T(b)$ - Glauber-Gribov approach (Alvioli and Strikman: arXiv:1301.0728 [hep-ph])..

Full final states: Angantyr framework (Included in

 Pythia8)- One absorptive collision contributes to full rapidity span.
- The rest contributes similarly to diffractive excitation (plus a colour exchange).
- Implementation in Pythia8, but idea is general.

- Very good agreement with centrality observable.
- "Absorptive" overshoots.
- Measuring the exact region where diffractive excitation is important.

Multiplicity in $\mathrm{p} A$

- Reproducing central collisions well.
- Comparison by own Rivet routine - implementation by exp. would be better.

Multiplicity in $A A_{\text {(Data: ALICE: arxiv:1012.1657 [nuct-ex) }}$

- Repeating the exercise for $A A$.
- Multiplicity at $\eta=0$ reproduced well.

Summary

- The Lund MC generators are built on parton showers and Lund string.
- Some collectivity is there from the beginning, but not enough.
- Extending with models built for pp (ongoing).
- Extrapolation to $A A$ (ongoing).

Thank you for your attention!

Bonus slides

What about the protons?

- Difference between "parameter level" and "particle level" predictions.
- Indeed the rise in p / π is very small.

What about the protons?

- Difference between "parameter level" and "particle level" predictions.
- Indeed the rise in p / π is very small.
- Pythia standard tune + changing popcorn parameter seems to solve problem
- Plugin still on "toy level" - full treatment to be included in Pythia8.
- Very preliminary comparison (Thanks to C. H. Christensen, ALICE).

The DIPSY model (Flensburg etal. axtiv:1103.4321 [hep-phl)

- Partonic model in impact parameter space: Dipole evolution in Impact Parameter Space and rapiditY.
- LL-BFKL with some corrections built on Mueller dipole model (Mueller and Patel arXiv:hep-ph/9403256).
- Proton/Nucleus structure built up dynamically from dipole splittings:

$$
\frac{d P}{d Y}=\frac{3 \alpha_{s}}{2 \pi^{2}} d^{2} \vec{z} \frac{(\vec{x}-\vec{y})^{2}}{(\vec{x}-\vec{z})^{2}(\vec{z}-\vec{y})^{2}}, f_{i j}=\frac{\alpha_{s}^{2}}{8}\left[\log \left(\frac{\left(\vec{x}_{i}-\vec{y}_{j}\right)^{2}\left(\vec{y}_{i}-\vec{x}_{j}\right)^{2}}{\left(\vec{x}_{i}-\overrightarrow{x_{j}}\right)^{2}\left(\overrightarrow{y_{i}}-\overrightarrow{y_{j}}\right)^{2}}\right)\right]^{2}
$$

- Optical theorem gives: $T(b)=1-\exp \left(-\sum_{i j} f_{i j}\right)$
- Builds up initial state + collision in impact parameter space.

