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An eA collider: why use nuclei? 

Several open issues can be addressed and, may be, fixed at high density with A 
 
•  non-linear QCD dynamics (gluon recombination, multiple scattering, …) 
•  saturation:  partonic densities from power-like to logarithmic 
•  imaging 
•  nuclear PDFs 
•  breakdown of collinear factorization: dynamical generation of transverse 

momentum scale 
•  Essential input for heavy-ion programmes (initial conditions, hadronization, …) 

Incoming 

Electron Beam

DIS offers a clean 
experimental environment: 
•  Lower multiplicity, no 

pileups, fully constrained 
kinematics 

•  More controlled 
theoretical setup: most of 
the existing computations 
are in dilute-dilute and 
dilute-dense regime 
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Reaching predicted saturation 
scale in e-p needs very low x

→1-2 TeV machine

But...
in a high-E collision gluon 

density scales ~ nuclear radius

Boost

Need even lower x 
than HERA accessed

Density effects and not different 
physical mechanisms 
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Note this is a “Pocket Formula”, 
there’s more to it 
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Reaching predicted saturation 
scale in e-p needs very low x

→1-2 TeV machine

But...
in a high-E collision gluon 

density scales ~ nuclear radius

Boost

Need even lower x 
than HERA accessed

Amplification of non-linear effects 
at small-x 

Density effects and not different 
physical mechanisms 
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• Nuclear amplification 
of saturation scale

• “Effective x” is much 
smaller in nuclei

Nuclear amplification
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EIC @ WHEPP 2015 IIT Kanpur

How to explore/study this new phase of matter? 
(multi-TeV) e-p collider (LHeC) OR a (multi-10s GeV) e-A collider

31

Advantage of nucleus à

Decemeber 9, 2015
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The x, Q2  plane looks well 
mapped out, however …  
 
except for ℓ+A (νA)  
 
many of those have small A 
and very low statistics 

 eA landscape 



8 

The x, Q2  plane looks well 
mapped out, however …  
 
except for ℓ+A (νA)  
 
many of those have small A 
and very low statistics 

 eA landscape 

Terra incognita:  
small-x, Q ≈ Qs 

high-x, large Q2 
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nPDF: Kinematical space 
nPDFs 

Ax
8−10 7−10 6−10 5−10 4−10 3−10 2−10 1−10 1

)2
 (G

eV
2

Q

1−10

1

10

210

310

410

510

610

710

810

910

Pb(2750)+e(60)208

Pb(4920)+e(60)208

Pb(19700)+e(60)208

(x)2
sat,PbQ

Present
DIS+DY

dAu@

RHIC

7+2.75 TeV
=0,...,6.6

lab
y

50+19.7 TeV
=0,...,6.6

lab
y

EIC 
LHeC 
FCC-eh EIC @ √s=45 GeV 

EIC @ √s=90 GeV 

Extend reach far beyond the existing data  



nPDFs in heavy-ion data 

Eur. Phys. J. C (2016) 76: 107  

•  Large lack of data 
•  Large uncertainties for the nuclear PDFs à major limitation for extraction of 

QGP parameters 



nPDFs at present 
1612.05741 

Baseline includes EPS09 (fixed targets DIS, DY, RHIC)  
EPPS16: baseline + Chorus data + LHC (dijet, W, Z) pPb 

nPDFs :: current status

• new setup EPPS16 [1612.05741] 

• includes baseline (fixed target DIS, DY, RHIC) + neutrino and LHC (dijet, W, Z) pPb data  

• more flexible parametrization, flavour separation (Ru≠Rd)
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The uncertainties are 
artificially smaller 

 
Presently available 
LHC data don’t seem 
to have a large effect 
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● Large 
reduction of 
uncertainties, 
many 
improvements 
possible. uv dv ubar

dbar sbar g

EIC 

Large reduction of uncertainties, impossible to achieve at RHIC or LHC 
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Small-x and non-linear dynamics 

Determining the dynamics at small x has been a major subject at 
HERA, RHIC and the LHC both in pp, pA and AA 

Small x and non-linear dynamics:
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● At small x, alternatives to collinear approaches exist, some of them 
breaking collinear factorisation or including non-linear dynamics.

● Determining the dynamics at small x has been a major subject at 
HERA, and RHIC and the LHC both in pp, pA and AA.
● Non-linear resummation techniques (weak coupling but non-
perturbative - CGC) better for dilute-dense systems: pA, eA.

1702.00839 

Thomas Burton SQM 2013

Gluons at small x
• QCD interaction accounts for 

99% of proton mass

‣ c.f. 1% Higgs mass of quarks

• Gluon PDFs from DIS show 
explosive growth at small x

‣ must be tamed at some point

• non-linear evolution e.g. BK 
alternative to DGLAP, BFKL, 
account for gluon 
recombination

7

“Saturation 
scale” at which 

phenomena 
manifest

splitting recombination
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alternative to DGLAP, BFKL, 
account for gluon 
recombination
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“Saturation 
scale” at which 

phenomena 
manifest

splitting recombination
at Qs 

What tames the low-x rise? 

g
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o
n
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D

F 

DGLAP/BFKL (linear evolution):  
predicts Q2 but not A-dependence and x-dependence 
Saturation models (non-linear evolution: BK/JIMWLK):  
predict A-dependence and x-dependence but not Q2 

à Need: large Q2 lever-arm for fixed x, A-scan 

Several approaches have been developed to address small-x/high-density dynamics 
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First observation of gluon recombination effects in nuclei: 
àleading to a collective gluonic system! 
 
First observation of g-g recombination in different nuclei: 
à  Is this an universal property? 
à  Is the Color Glass Condensate the correct effective theory? 
à  Do we need a new evolution equation at low-x and moderate Q2?  

Determining the dynamics at small x has been a major subject at 
HERA, RHIC and the LHC both in pp, pA and AA 



Key measurement - Diffraction 
Smoking gun for the breakdown of the collinear factorization 

Small x: observables

10

● Simultaneous description of different inclusive observables (with 
different sensitivities to the gluon and the sea) in DGLAP may show 
tensions e.g. F2 and FL (see 1702.00839 for a first attempt in eA@EIC).

● Diffraction may be quite sensitive.

Diffractive physics plays a major role in 
eA.  
Surprisingly at HERA ~15% of DIS events 
were diffractive. 
It is expected 25-40% in eA ! 
 
 
Clear signature. Absence of activity 
over wide rapidity. 

Ideal to study gluons: σdiff≈[g(x,Q2)]2 

At LO, color-neutral exchange, e.g. 2 gluons (Pomeron) 
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Diffraction: saturation

•No saturation: 
eA/ep ratio ~ 1

• Saturation: 
enhances σdiff 
in eA vs. ep

‣ strong 
distinguishing 
power at 
eRHIC
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One would expect naively that suppression effects are larger when going from 
p to A in saturation than in collinear approaches. 
This is not generically so because the saturation due to the increase of density 
when going from p to A could be smaller for an already saturated proton 

both ep and eA are essential!!! 



Kinematical coverage for vector mesons
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Coverage of the saturation region
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What do the diffractive cross sections tell us
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PHYS. REV. D18 (1978) 1696

What do the diffractive cross sections tell us 

Does the low-x dynamics (Saturation) modify the transverse gluon distribution? 
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•Diffractive pattern for coherent (non-breakup) part 
•Saturation effects seen especially in light meson production  
•Need: t resolution, kinematical reach, luminosity for x binning

11

T. Toll and TU,  
PRC 87 (2013) 024913

Vector Meson Production in eA 
low sensitivity to saturation sensitive to saturation effects 



Spatial Gluon Distribution from dσ/dt
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Diffractive vector meson production: e + Au → e′ + Au′ + J/ψ

~
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•Momentum transfer t = |pAu-pAu′|2 conjugate to bT 

Can extract transverse profile of small-x gluons!

Spatial distribution from dσ/dt 



VM production 
•  Exclusive VM production ßà DVCS provides a transverse scan of the 

partonic structure of the hadron 

Transverse structure (I):
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● Exclusive VM meson 
production/DVCS 
provides a transverse scan 
of the partonic structure 
of the hadron, may also be 
sensitive to dynamics:
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Rezaeian•  Coherent vs incoherent diffraction can solve the issue that the gluonic density 
of the proton in the transverse plane is distributed around the constituent 
quarks (hot spots) relevant for fluctuations, azimuthal asym, definition of MPIs... 

Transverse structure (II):

12

● Coherent versus incoherent diffraction may help to solve the 
issue of the existence/number of hot spots in p and A, relevant for 
fluctuations, azimuthal asymmetries, definition of MPIs,…
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Hard probes 
Extremely successful self generated probes for QGP and pQCD in AA collisions, 
but with a lot of issues to be understood, e.g.: 
•  The traditional picture of semihard large angle gluon radiation (interference 

with several scattering centres) could be replaced by the interplay between 
the medium resolving power and the jet scale (radiation off from total to 
individual color charge) 

•  Hadronisation is assumed to happen outside the medium, except for QQbar   

Hard probes:

18

● The collision provides self-
generated probes with a large 
scale (pQCD): yield to be 
compared with that in pp and 
pA - benchmark.

● Hadronisation assumed to 
happen outside the medium 
(except for QQbar).

● I focus on jets but eA could 
offer information over HF/
QQbar production and the 
influence of ‘cold’ nuclear 
matter.

R =

measured in pA,AA

expected if no nuclear e↵ects

Caines
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What eA can do: jets

21

● Jets are not suppressed in pPb at the LHC: compatibility with 
other softer observables?
● Jets will be abundantly produced in eA colliders up to sizeable ET, 
they can be used to test factorisation and for precision studies of 
changes of QCD radiation in the nuclear environment.
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HP will be abundantly produced in eA colliders up 
to sizable ET … at least for LHeC. 
They can be used to test factorisation and for 
precision studies QCD radiation in the nuclear 
environment. 
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Conclusions 
ep/eA colliders offer huge possibilities not yet fully exploited: 
 
Ø  To provide most interesting information about QCD on their own: 

•  partonic structure 
•  new regimes of QCD 
•  transverse structure of hadrons and nuclei 
•  particle production and correlations 

Ø  To clarify aspects of pp, pA and AA collisions at high energy: 
•  initial conditions for macroscopic descriptions 
•  nature of collectivity 
•  uncertainties in the extraction of parameters of the QCD  

 Pasquale Di Nezza 
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For these and other reasons, ep and eA 
colliders would be highly desirable …but pay 

attention at the energy scale 
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