Physics with heavy ion collisions at LHC beyond Run-2

Andrea Dainese
(INFN Padova, Italy)
Outline

- Timeline of future HI running
- HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions
- Summary
Timeline of HI running at the LHC

- **Run 2:**
 - Pb-Pb: few/nb (0.7/nb in 2015, ~1/nb in 2018), at $\sqrt{s_{NN}} = 5$ TeV
 - p-Pb at 5 and 8 TeV (in 2016)
 - pp reference at Pb-Pb energy (5 TeV, Nov 2017)

- **LS2:**
 - LHC injector upgrades; bunch spacing reduced to 50 ns (possibly 25); Pb-Pb interaction rate up to 50 kHz (now <10 kHz)
 - Experiments upgrades (LS2 and LS3)

- **Runs 3+4:**
 - Experiments request for **Pb-Pb: >10/nb** (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - In line with projections by machine group (Chamonix 2017): 3.1/nb/month
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs

- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables
HL-LHC Programme (AA)\(^{(\text{not exhaustively})}\)

- **Jets:** characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs
 - Differential studies of jets, b-jets, di-jets, \(\gamma/Z\)-jet at very high \(p_T\)
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables

- **Heavy flavour:** colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high \(p_T\)
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs
 - Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
 - Multi-differential studies of Υ states
HL-LHC Programme (AA)

- **Jets:** characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs
 - Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- **Heavy flavour:** colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- **Quarkonium:** precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
 - Multi-differential studies of Υ states
- **Low-mass di-leptons:** thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs
- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
- Production and elliptic flow of several HF hadron species from 0 to high p_T

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
- Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
- Multi-differential studies of Υ states

Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
- Low-mass di-electrons and di-muons

“Light” nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
- Yield and flow harmonics of (anti-)nuclei and hypernuclei
Outline

- Timeline of future HI running
- HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions
- Summary
Detector upgrades most relevant to HI

- **ALICE (LS2)**
 - New inner tracker: precision and efficiency at low p_T
 - New pixel forward muon tracker: precise tracking and vertexing for μ
 - New TPC readout chambers, upgraded readout for other detectors and new integrated Online-Offline: x50 faster readout (up to 50 kHz for Pb-Pb)

- **ATLAS (LS2/LS3)**
 - Completely new tracker (LS3): tracking and b-tag
 - Fast tracking trigger (LS2): high-multiplicity tracking
 - Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

- **CMS (mainly LS3)**
 - Completely new tracker (LS3): tracking and b-tag up to $\eta=4$
 - Extension of forward muon system (LS2): muon acceptance
 - Upgrade forward calorimeter (LS3): forward jets in HI

- **LHCb (LS2)**
 - New vertexing and tracking detectors: full-rate readout in Pb-Pb; track reconstruction being verified
 - Fixed-target programme with SMOG + possible extensions
ALICE (and LHCb) trigger/readout

- Main focus on “untriggerable” signals (extremely low S/B)
- Trigger approach: write all events at 50 kHz in Pb-Pb
 - e.g. ALICE: ~1.1 TB/s \(\text{O}^2 \text{ facility} \) ~90 GB/s (50 kHz)
 - increase of minimum-bias sample \(x_{50-100} \) wrt Run-2

ATLAS and CMS trigger/readout

- Main focus on muon, jet, displaced track triggers
- Trigger approach: strong event number reduction
 - e.g. CMS: 50 kHz L1 ~ few kHz HLT ~ 100 Hz
 - increase of (rare-trigger) sample \(x_{10} \) wrt Run-2
Timeline of future HI running

HI physics programme beyond Run-2

Experiment upgrades and strategies

Selected performance studies

Besides Pb-Pb: pA, pp reference, light ions

Summary
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs

- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high \(p_T \)
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties

- Production and elliptic flow of several HF hadron species from 0 to high \(p_T \)

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature

- Low-\(p_T \) charmonia (\(J/\psi \) and \(\psi(2S) \)) and their elliptic flow
- Multi-differential studies of \(\Upsilon \) states

Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of \(\rho \) spectral function and chiral symmetry restoration at \(\mu_B = 0 \)

- Low-mass di-electrons and di-muons

“Light” nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons

- Yield and flow harmonics of (anti-)nuclei and hypernuclei
Jet quenching: (some) future directions

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ-jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

E.g.: b-tagged di-jets \rightarrow select quark-quark state and compare with g-g
Jet quenching: (some) future directions

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ-jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

E.g.: Z-jet \rightarrow “select” initial jet energy

Run-2 2015 (0.4/nb)

- $p_T^Z > 100$, $p_T^{\text{jet}} > 25$ GeV, $\Delta\varphi > 7\pi/8$
 - 3/nb
 - 1.5/nb
 - 150/µb

CMS, arXiv:1702.01060

E.g.: CMS

CMS Projection

ATLAS MC

HL-LHC (10/nb)

CMS, PAS-FTR-13-025
Jet quenching: (some) future directions

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ-jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

E.g.: Z-jet \rightarrow “select” initial jet energy

Run-2 2015 (0.4/nb)

$\mathbf{p_T^Z > 100, p_T^{jet} > 25 GeV, \Delta \phi > 7\pi/8}$

$\mathbf{3/nb}$

$\mathbf{1.5/nb}$

$\mathbf{150/\mu b}$

ATLAS MC

Q: can this become one of the main ways to search for jet quenching in high-mult pp or $p-Pb$? how much L_{int}?
Jet quenching: (some) future directions

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- Fragmentation functions (FF) and substructure measurements for jets with leading (identified) light and heavy flavour hadrons

E.g.: D-in-jet FF → select quark jet and study flavour-dependence of FF modification
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density

- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties

- Production and elliptic flow of several HF hadron species from 0 to high p_T

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature

- Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
- Multi-differential studies of Υ states

Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$

- Low-mass di-electrons and di-muons

“Light” nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons

- Yield and flow harmonics of (anti-)nuclei and hypernuclei
Heavy flavour R_{AA} after LS2

Present data (example)

\Rightarrow Large uncertainties for D $p_T \to 0$ and no measurement for B $p_T \to 0$

Upgrade: Charm and beauty R_{AA} down to $p_T \sim 0$ using D^0 and B-decay J/ψ

ALICE, CERN-LHCC-2013-024
Heavy flavour R_{AA} after LS2

Present data (example)

Upgrade: Charm and beauty R_{AA} down to $p_T \sim 0$ using D^0 and B-decay J/ψ

Q: how can we disentangle different E-loss dependencies and different radial flow effects for π, D and B?
Heavy flavour v_2 after LS2

Present data (example)

Upgrade: Charm and beauty v_2 down to $p_T \sim 0$ using prompt and B-decay D^0

→ Need it also for beauty, which can be calculated more accurately in lattice QCD

ALICE, CERN-LHCC-2013-024

+ v_3, ESE ($\rightarrow v_2^D$ vs v_2^π), new studies being done
In-medium heavy-flavour hadronization?

- From RHIC and LHC data, some hints that charm *could* recombine in the medium (J/ψ regeneration, D meson flow, D_s, R_{AA} in ALICE, $Λ_c/D$ in STAR)
- Precise measurements of HF mesons (non-strange and strange) and baryons

Example: charm recombination

- enhancement of $Λ_c/D$ (also $D_s/D^{0,+}$ and $Λ_b/B$)

Plumari et al. SQM2017
HF “hadrochemistry” after LS2

◆ ALICE inner tracker upgrade and x100 min.bias Pb-Pb sample
 - Λ_c and D_s ($c\tau=60$ and $150\,\mu$m) will be measured with good precision for $p_T>2\,\text{GeV/c}$
 - Λ_b ($c\tau=450\,\mu$m) accessible for $p_T>7\,\text{GeV/c}$

D0 and D0 R_{AA}

Λ_c/D “enhancement”

Λ_b significance

ALICE, CERN-LHCC-2013-024
HF "hadochemistry" after LS2

- ALICE inner tracker upgrade and x100 min.bias Pb-Pb sample
 - Λ_c and D_s ($c\tau=60$ and 150 μm) will be measured with good precision for $p_T>2$ GeV/c
 - Λ_b ($c\tau=450$ μm) accessible for $p_T>7$ GeV/c

- **Q:** if recombination is at play, which observables are more informative on its dynamics?
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
- Production and elliptic flow of several HF hadron species from 0 to high p_T

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
- Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
- Multi-differential studies of Υ states

Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
- Low-mass di-electrons and di-muons

“Light” nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
- Yield and flow harmonics of (anti-)nuclei and hypernuclei
J/ψ v₂: Run-2 vs. Upgrade

- Is J/ψ v₂ consistent with that of D mesons in a regeneration scenario?
- J/ψ v₂ with expected precision better than 0.005 (x3 better than in Run-2), also for *prompt* J/ψ (more direct comparison with models)

Q: puzzle at high p_T? which other measurements could shed light?
Low-p_T charmonium: Run 1 vs. Upgrade

- Low-p_T ψ'/ψ could allow to discriminate between models of recombination (transport vs. statistical)

$$R_{AA}(\psi')/R_{AA}(\psi)$$

Run 2: limited precision for $R_{AA}(\psi')$

Upgrade: precision <10%

Q: is ψ' too fragile to be informative about in-medium effects? (see p-Pb high-mult)
Quarkonium suppression

- First hint of sequential pattern

- Sensitivity to η/s?

High statistics → precise multi-differential measurements. E.g. (CMS, 10/nb):

<table>
<thead>
<tr>
<th>$Y(1s)$</th>
<th>$Y(2s)$</th>
<th>$Y(3s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>270k</td>
<td>40k</td>
<td>7k</td>
</tr>
</tbody>
</table>

+ ALICE&LHCb at forward rapidity

Q: is it still conceivable to extract “a” temperature from quarkonium data? Is it still the goal?
Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density

- Differential studies of jets, b-jets, di-jets, γ/Z-jet at very high p_T
- (Flavour-dependent) in-medium fragmentation functions and jet structure observables

Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties

- Production and elliptic flow of several HF hadron species from 0 to high p_T

Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature

- Low-p_T charmonia (J/ψ and $\psi(2S)$) and their elliptic flow
- Multi-differential studies of Υ states

Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$

- Low-mass di-electrons and di-muons

“Light” nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons

- Yield and flow harmonics of (anti-)nuclei and hypernuclei
Light multi-baryon bound states

- Abundant (hyper)nuclei and (strange) exotica
 - Dynamical coalescence vs. statistical thermal production (dynamics?)
 - Sensitivity to freeze-out temperature

- Discovery potential
 - (anti-)(hyper-)nuclei with $A = 4$ ($A = 5$?)
 - Discovery/exclusion for $\Lambda\Lambda$ and Λn dibaryon beyond currently set limit [PLB 752 (2016) 267]
 - Search for strange dibaryon $\Xi\Xi$, $\Omega\Omega$

- Precision
 - (improved) precision measurement of the $^3\Lambda H$ lifetime and spectrum
Outline

- Timeline of future HI running
- HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions
- Summary
Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- p-Pb at high luminosity: explore partonic structure of high-energy nuclei → also to disentangle cold nuclear matter effects for the QGP studies
Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- p-Pb at high luminosity: explore partonic structure of high-energy nuclei → also to disentangle cold nuclear matter effects for the QGP studies

Constrain high-Q^2 and high-x nPDFs with W,Z, top production in p-Pb
Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- p-Pb at high luminosity: explore partonic structure of high-energy nuclei → also to disentangle cold nuclear matter effects for the QGP studies

Constrain low-Q^2 and low-x nPDFs and search for onset of saturation with charm, quarkonia, photons, di-hadrons at low p_T and forward rapidity in p-Pb (+UPC)

Forward direct γ → ALICE FoCal?

Forward D meson in LHCb

arXiv:1707.02750
Small systems – high multiplicity

- pp 14 TeV (and p-Pb 8 TeV)
 - Higher statistics for already covered multiplicity region → charm?
 - Extension to higher multiplicities
 - 5-6 x \(<N_{ch,pp} > \) with Run-2
 - 10 x \(<N_{ch,pp} > \) with Run-3 (~10 /pb)
 - 15 x \(<N_{ch,pp} > \) needs > 1/fb; out of reach?

Figure by J.F. Grosse-Oetringhaus

Small systems: looking for small signals

- Very large statistics at few $x < N_{ch}$ in pp and p-Pb, together with the upgraded detectors:
 - Precise measurements of “flow-like” effects for open HF and quarkonia

HF (decay lepton) v_2

J/ψ v_2

ALICE and ATLAS, Initial Stages 2017

ALICE, arXiv:1709.06807
Small systems: looking for small signals

- Very large statistics at few $x < N_{ch}$ in pp and p-Pb, together with the upgraded detectors:
 - Searches for two of the classical hot-medium signals in small systems, namely parton energy loss (γ-jet?) and thermal radiation.

![Graphs showing R_{AA}^{jet} and dN_{ee}/dM for p-Pb and Pb-Pb collisions.](Tywoniuk, NPA926(2014)85)

![Graphs showing CMS PbPb data (preliminary) and ALICE Preliminary results for p-Pb(5.02 TeV).](Tywoniuk, NPA926(2014)85)
Running with lighter ions at LHC?

- Lighter ions would allow to reach higher inst. luminosity than Pb-Pb
 - BFPP cross section drops with Z^7, EMD cross section with Z^4
 - Increase in lumi is larger than decrease in N_{coll} (x0.5 from Pb-Pb to Xe-Xe) → higher yields for hard processes
 - No detailed machine studies yet, first estimates in this thesis
 - Nucleon-nucleon lumi ($L_{NN}=A^2 \times L_{AA}$) – hard yields scale with L_{NN} –
 - $L_{NN}^{\text{XeXe (cons)}} \sim 1.5 \ L_{NN}^{\text{PbPb}}$; $L_{NN}^{\text{ArAr (cons)}} \sim 4.5 \ L_{NN}^{\text{PbPb}}$
- Physics?
 - Xe-Xe: similar QGP as Pb-Pb, but no large gain in yields?
 - Ar-Ar: lower size/density QGP
 - → smaller jet quenching signals
 - → interesting overlap in N_{ch} with pp, p-Pb, Pb-Pb, but needed?
 - → additional constraints for quarkonium suppression vs. regeneration?
 - Pilot Xe-Xe run in two days will help to clarify the LHC performance and (partly) the physics motivation
Summary

- Beyond LS2: fully exploit the potential of the machine as a high-luminosity HI collider

- Rich **baseline** programme prepared by the experiments
 - Upgraded detectors, very large samples, diverse trigger approaches

- LHC findings in small systems / high-mult have opened many new questions that need luminosity and precision
 - Now it is the time to optimize the future programme to address these

HL-LHC Physics WS (Oct 30-Nov 1)

https://indico.cern.ch/event/647676/
EXTRA SLIDES
Available Documents

- ALICE Upgrade LOI: CERN-LHCC-2012-012
 - Addendum (Muon Forward Tracker): CERN-LHCC-2013-014
- ALICE inner tracker upgrade TDR: CERN-LHCC-2013-024
- ALICE muon tracker upgrade TDR: CERN-LHCC-2015-001
- Presentations at the Heavy Ion Town Meeting (June 2012):
 - http://indico.cern.ch/event/HItownmeeting
- Inputs by ALICE, ATLAS, CMS to the ESPG meeting Cracow (Sep 2012)
 - http://indico.cern.ch/confdId=182232
 - HI community presentation (H. Appelshaueueser): http://indico.cern.ch/getFile.py/access?contribId=16&sessionId=2&resId=0&materialId=slides&confdId=182232
Jet quenching: where are we?

- Some lessons from LHC data on jets:
 - Hadron and jet R_{AA} (AA/pp) “suppressed” out to $p_T \sim 1$ TeV/c
 - First direct observation of energy loss via di-jet momentum balance
 - “Lost energy” goes to low p_T particles at large angles (“out of cone”)
 - Moderate modification of fragm. functions and little/no mod. of jet shapes
 - Can tag parton energy and flavour: γ/Z-jet balance, b-jet tagging

- Lively theoretical development, first studies to extract QGP properties

Di-jet imbalance

Transport coeff. $\hat{q} \sim \sigma \cdot \rho$
Heavy flavour: where are we?

- Suppression of D mesons measured up to 100 GeV/c, similar to charged hadrons (pions) above 5 GeV/c
- First indication of mass dependence of energy loss: $R_{AA}^{J/\psi}$ from B > R_{AA}^D

→ Large uncertainties for D $p_T \rightarrow 0$ and no measurement for B $p_T \rightarrow 0$

Heavy flavour: where are we?

- D mesons have elliptic flow $\nu_2 > 0$
- QGP expansion transmitted to charm quarks via multiple scatterings (diffusion mechanism)

u D mesons have elliptic flow $\nu_2 > 0$
QGP expansion transmitted to charm quarks via multiple scatterings (diffusion mechanism)

- Model calculations extract c-quark diffusion coefficient in the QGP: can be compared with first-principle QCD calculations on the lattice

\rightarrow Need it also for beauty, which can be calculated more accurately in lattice QCD

Catania group, arXiv:1707.05452
Azimuthal anisotropy: collective flow

- System geometry asymmetric in non-central collisions
- Expansion under azimuth-dep. pressure gradient results in azimuth-dep. momentum distributions
- Measured by the elliptic flow parameter $v_2(p_T)$

\[
\frac{dN}{Nd\phi} \sim 1 + 2v_2 \cos \left(2(\phi - \Psi_{RP})\right) + \text{higher harmonics } (v_3, v_4, \ldots)
\]

- v_2 at low p_T provides a measure of the strength of collectivity (mean free path of outgoing partons)
In-medium heavy-flavour hadronization?

- From LHC Run 1 data, some hints that charm could recombine in the medium
- Precise measurements of HF mesons (non-strange and strange) and baryons
- Precise measurements of their ν_2 (+ that of J/ψ, discussed later)

Λ_c/D

- Rapp et al., based on PRL110 (2013)

Λ_c/D

- Greco et al. PRD90 (2014)

Λ_c/D and Λ_b/B

- Ko et al. PRC79 (2008)
QGP temperature: where are we?

- Temperature from QGP radiation
 - Additional handle on temperature from quarkonium melting (not discussed today)

- First measurement at LHC from soft exponential component of photon p_T spectrum: $T \approx 300$ MeV

An effective temperature, averaged over system evolution (and cooling)
Temperature evolution: low-mass di-leptons

- Measurement of low-mass di-leptons allows mapping the temperature during the system evolution.

Di-leptons from real and virtual photons $\gamma \rightarrow e^+e^-$

Complex measurement: need to disentangle all di-lepton sources.

0-10%

$dN_{ch}/d\eta = 1750$

$N_{coll} = 1625$
Temperature evolution: low-mass di-leptons

- Measurement of low-mass di-leptons allows mapping the temperature during the system evolution

Di-leptons from real and virtual photons $\gamma \rightarrow e^+e^-$

High masses \rightarrow high T, early stage
Intermediate masses
Low masses \rightarrow low T, late stage
Low-mass di-leptons after LS2

- **ALICE:** lighter tracker + **dedicated run at low B (0.2 T)**
 - electron acceptance down to $p_T = 50$ MeV/c
 - Needs minimum-bias trigger (low S/B)
 - **HL-LHC = 100x Run2 stat.**

Di-electron mass spectrum after bkg subtraction:

Run 1

Run 2 (MC)

Precision of ~10% on the inverse slope $\Rightarrow T$

ALICE, CERN-LHCC-2013-024
Study for a forward calorimeter in ALICE

- FoCal: R&D for a high-granularity calorimeter at $\eta \sim 3-5$ with focus on saturation physics studies
 - Possible installation during LS3
- Benchmark measurement: direct photons $\eta \sim 4-5$ in p-Pb ($x \sim 10^{-5}$)
 - Sensitive to Shadowing vs. Saturation

![Theoretical predictions chart](chart1.png)

Projected performance

- Direct Photons $\gamma = 4$
 - p+Pb $\sqrt{s} = 8.8$ TeV
- JETPHOX with EPS09 at NLO, $R_{\text{iso}} = 0.4$
- CGC (A. Rezaeian)
- Theoretical predictions

- ALICE simulation
 - $4.0 < \eta < 5.0$
- FoCal upgrade
- Statistical
- Systematic (PYTHIA)
- Systematic (JETPHOX)

- p-Pb, $L_{\text{int}} = 50$/nb