Physics with heavy ion collisions at LHC beyond Run-2

Andrea Dainese (INFN Padova, Italy)

INFN (

Outline

- Timeline of future HI running
- HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions

Summary

Timeline of HI running at the LHC

- > Pb-Pb: few/nb (0.7/nb in 2015, ~1/nb in 2018), at $\sqrt{s_{NN}}$ = 5 TeV
- p-Pb at 5 and 8 TeV (in 2016)
- pp reference at Pb-Pb energy (5 TeV, Nov 2017)
- LS2:
 - LHC injector upgrades; bunch spacing reduced to 50 ns (possibly 25); Pb-Pb interaction rate up to 50 kHz (now <10 kHz)</p>
 - Experiments upgrades (LS2 and LS3)
- Runs 3+4:
 - Experiments request for Pb-Pb: >10/nb (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - In line with projections by machine group (Chamonix 2017): 3.1/nb/month

Andrea Dainese

HL-LHC Programme (AA)^(not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - > (Flavour-dependent) in-medium fragmentation functions and jet structure observables

HL-LHC Programme (AA) (not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - > (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T

HL-LHC Programme (AA) (not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states

HL-LHC Programme (AA) (not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states
- Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons

HL-LHC Programme (AA)^(not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density &dofs
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states
- Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons
- "Light" nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
 - Yield and flow harmonics of (anti-)nuclei and hypernuclei

Outline

- Timeline of future HI running
- HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions

Summary

Torino, 10.10.2017

Detector upgrades most relevant to HI $\mathcal{C}^{\mathsf{MF}}$

ALICE (LS2)

- New inner tracker: precision and efficiency at low p_T
- > New pixel forward muon tracker: precise tracking and vertexing for μ
- New TPC readout chambers, upgraded readout for other detectors and new integrated Online-Offline: x50 faster readout (up to 50 kHz for Pb-Pb)

ATLAS (LS2/LS3)

- Completely new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- > Calorimeter and muon upgrades (LS2): electron, γ , muon triggers

CMS (mainly LS3)

- > Completely new tracker (LS3): tracking and b-tag up to η =4
- Extension of forward muon system (LS2): muon acceptance
- Upgrade forward calorimeter (LS3): forward jets in HI
- LHCb (LS2)
 - New vertexing and tracking detectors: full-rate readout in Pb-Pb; track reconstruction being verified
 - Fixed-target programme with SMOG + possible extensions

Andrea Dainese

ALICE (and LHCb) trigger/readout

- Main focus on "untriggerable" signals (extremely low S/B)
- → Trigger approach: write all events at 50 kHz in Pb-Pb e.g. ALICE: ~1.1 TB/s O² facility ~90 GB/s (50 kHz)
- increase of minimum-bias sample x50-100 wrt Run-2

ATLAS and CMS trigger/readout

Main focus on muon, jet, displaced track triggers

- Trigger approach: strong event number reduction
 e.g. CMS: 50 kHz
 L1
 Few kHz
 HLT
 ~ 100 Hz
- → increase of (rare-trigger) sample x10 wrt Run-2

Outline

- Timeline of future HI running
- ♦ HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions

Summary

HL-LHC Programme (AA)^(not exhaustive!)

jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of medium density & dofs

- > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T
- > (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states

• Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$

- Low-mass di-electrons and di-muons
- "Light" nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
 - Yield and flow harmonics of (anti-)nuclei and hypernuclei

Jet quenching: (some) future directions $\mathcal{C}^{\mathcal{F}}$

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ-jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

CMS, PAS-HI-16-005

CMS, PAS-FTR-13-025

Jet quenching: (some) future directions \mathcal{C}

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ -jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

E.g.: Z-jet \rightarrow "select" initial jet energy

CMS, arXiv:1702.01060

CMS, PAS-FTR-13-025

Jet quenching: (some) future directions \mathcal{C}

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- High precision γ -jet, Z-jet, di-jet correlations, also with b-jets (quark tag)

E.g.: Z-jet \rightarrow "select" initial jet energy

Q: can this become one of the main ways to search for jet quenching in high-mult pp or p-Pb? how much L_{int}?

Torino, 10.10.2017

Jet quenching: (some) future directions \mathcal{C}^{MFN}

- Increased luminosity and detector upgrades enable:
 - Increased precision
 - More exclusive and theoretically well-defined final states
- Fragmentation functions (FF) and substructure measurements for jets with leading (identified) light and heavy flavour hadrons
 - E.g.: D-in-jet FF \rightarrow select quark jet and study flavour-depence of FF modification

HL-LHC Programme (AA)^(not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
 - **Fieavy flavour:** colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states
- Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons
- "Light" nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
 - Yield and flow harmonics of (anti-)nuclei and hypernuclei

Heavy flavour R_{AA} after LS2

→ Large uncertainties for D $p_T \rightarrow 0$ and no measurement for B $p_T \rightarrow 0$ NFN

Heavy flavour R_{AA} after LS2

Q: how can we disentangle different E-loss dependencies and different radial flow effects for π , D and B?

Andrea Dainese

Heavy flavour v_2 after LS2

Present data (example)

Upgrade: Charm and beauty v_2 down to $p_{\rm T}$ ~0 using prompt and B-decay D⁰

which can be calculated more accurately in lattice QCD

being done

NFN

In-medium heavy-flavour hadronization? \mathcal{C}^{MFN}

- From RHIC and LHC data, some hints that charm *could* recombine in the medium $(J/\psi$ regeneration, D meson flow, D_s R_{AA} in ALICE, Λ_c/D in STAR)
- Precise measurements of HF mesons (non-strange and strange) and baryons

Example: charm recombination \rightarrow enhancement of Λ_c/D (also $D_s/D^{0,+}$ and Λ_b/B)

HF 'hadrochemistry' after LS2

ALICE inner tracker upgrade and x100 min.bias Pb-Pb sample

- > Λ_c and D_s ($c\tau$ =60 and 150 μ m) will be measured with good precision for p_T >2 GeV/c
- > $\Lambda_{\rm b}$ ($c\tau$ =450 μ m) accessible for $p_{\rm T}$ >7 GeV/c

ALICE, CERN-LHCC-2013-024

| N F N

HF 'hadrochemistry' after LS2

ALICE inner tracker upgrade and x100 min.bias Pb-Pb sample

- > Λ_c and D_s ($c\tau$ =60 and 150 μ m) will be measured with good precision for p_T >2 GeV/c
- > $\Lambda_{\rm b}$ ($c\tau$ =450 μ m) accessible for $p_{\rm T}$ >7 GeV/c

Torino, 10.10.2017

NFN

HL-LHC Programme (AA)^(not exhaustive!)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HE hadron species from 0 to high p_T
 - **Quarkonium:** precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states
- Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons
- "Light" nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons
 - Yield and flow harmonics of (anti-)nuclei and hypernuclei

$J/\psi v_2$: Run-2 vs. Upgrade

• Is $J/\psi v_2$ consistent with that of D mesons in a regeneration scenario?

• $J/\psi v_2$ with expected precision better than 0.005 (x3 better than in Run-2), also for *prompt* J/ψ (more direct comparison with models)

Torino, 10.10.2017

26

N F N

Low-p_T charmonium: Run I vs. Upgrade

• Low- $p_T \psi'/\psi$ could allow to discriminate between models of recombination (transport vs. statistical)

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}(\psi')/\mathsf{R}_{\mathsf{A}\mathsf{A}}(\psi)$

Quarkoniun suppression

First hint of sequential pattern

Sensitivity to η /s?

CMS, arXiv:1208.2826 and PRL 109 (2012) 222301

High statistics \rightarrow precise multi-differential measurements. E.g. (CMS, 10/nb):

7k

CMS. PAS-FTR-13-025

+ ALICE&LHCb at forward rapidity

Q: is it still conceivable to extract "a" temperature from quarkonium data? Is it still the goal?

Torino, 10.10.2017

Andrea Dainese

HL-LHC Programme (AA)^{(not exhaustive!}

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ /Z-jet at very high p_T
 - (Flavour-dependent) in-medium fragmentation functions and jet structure observables
- Heavy flavour: colour charge and mass dependence of E loss, HQ thermalization and hadronization, as a probe of QGP transport properties
 - Production and elliptic flow of several HF hadron species from 0 to high p_T
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia (J/ ψ and ψ (2S)) and their elliptic flow
 - Multi-differential studies of Y states
- Low-mass di-leptons: thermal radiation to map time-dep. of temperature; modification of ρ spectral function and chiral symmetry restoration at $\mu_B=0$
 - Low-mass di-electrons and di-muons

"Light" nuclear states: production mechanisms of multi-baryon bound states (recombination? coalescence?); search for exotic states with hyperons

Yield and flow harmonics of (anti-)nuclei and hypernuclei

Light multi-baryon bound states

Abundant (hyper)nuclei and (strange) exotica

- Dynamical coalescence vs. statistical thermal production (dynamics?)
- Sensitivity to freeze-out temperature
- Discovery potential
 - > (anti-)(hyper-)nuclei with A = 4 (A = 5?)
 - Discovery/exclusion for AA and An dibaryon beyond currently set limit [PLB 752 (2016) 267]
 - > Search for strange dibaryon $\Xi\Xi$, $\Omega\Omega$

Precision

(improved) precision measurement of the ³_AH lifetime and spectrum

Statistical model: 10/nb

Particle	Yield
Anti-alpha ⁴ He	3.0×10^4
Anti-hypertriton ${}^3_{\bar{\Lambda}}\overline{H}~(\bar{\Lambda}\bar{p}\bar{n})$	3.0×10^5
${}^4_{\bar{\Lambda}}\overline{H}~(\bar{\Lambda}\bar{p}\bar{n}\bar{n})$	8.0×10^2
${}^{5}_{\bar{\Lambda}}\overline{\mathrm{H}}~(\bar{\Lambda}\bar{\mathrm{p}}\bar{\mathrm{n}}\bar{\mathrm{n}}\bar{\mathrm{n}})$	3.0
${}^4_{\bar{\Lambda}\bar{\Lambda}}\overline{H}~(\bar{\Lambda}\bar{\Lambda}\bar{p}\bar{n})$	3.4×10^1
${}^5_{\bar{\Lambda}\bar{\Lambda}}\overline{\mathrm{H}}~(\bar{\Lambda}\bar{\Lambda}\bar{\mathrm{p}}\bar{\mathrm{n}}\bar{\mathrm{n}})$	0.2
H-Dibaryon $(\Lambda\Lambda)$	5.0×10^6
[H]	1.5×10^5
Λn	8.0×10^7

Outline

- Timeline of future HI running
- ♦ HI physics programme beyond Run-2
- Experiment upgrades and strategies
- Selected performance studies
- Besides Pb-Pb: pA, pp reference, light ions
- Summary

Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- ◆ p-Pb at high luminosity: explore partonic structure of high-energy nuclei
 → also to disentangle cold nuclear matter effects for the QGP studies

Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- ◆ p-Pb at high luminosity: explore partonic structure of high-energy nuclei
 → also to disentangle cold nuclear matter effects for the QGP studies

Small systems: pp, p-Pb

- pp reference at 5.5 TeV required by all experiments
- ◆ p-Pb at high luminosity: explore partonic structure of high-energy nuclei
 → also to disentangle cold nuclear matter effects for the QGP studies

10⁹

Constrain low-Q² and low-x nPDFs and search for onset of saturation with charm, quarkonia, photons, di-hadrons at low p_T and forward rapidity in p-Pb (+UPC)

Forward D meson in LHCb Forward direct γ \rightarrow ALICE FoCal?

1 1 1 1 1 1 1 1 1

Torino, 10.10.2017

35

Small systems – high multiplicity

- pp 14 TeV (and p-Pb 8 TeV)
 - ➢ Higher statistics for already covered multiplicity region → charm?
 - Extension to higher multiplicities
 - \circ 5-6 x <N_{ch,pp}> with Run-2
 - $_{\odot}$ 10 x <N_{ch,pp}> with Run-3 (~10 /pb)
 - \circ 15 x <N_{ch,pp}> needs > 1/fb; out of reach?

Small systems: looking for small signals \mathcal{C}

- Very large statistics at few x <N_{ch}> in pp and p-Pb, together with the upgraded detectors:
 - Precise measurements of "flow-like" effects for open HF and quarkonia

HF (decay lepton) v₂

 $J/\psi v_2$

ALICE and ATLAS, Initial Stages 2017

Small systems: looking for small signals \mathcal{C}

- Very large statistics at few x <N_{ch}> in pp and p-Pb, together with the upgraded detectors:
 - Searches for two of the classical hot-medium signals in small systems, namely parton energy loss (γ-jet?) and thermal radiation

Running with lighter ions at LHC ?

- Lighter ions would allow to reach higher inst. luminosity than Pb-Pb
 - > BFPP cross section drops with Z^7 , EMD cross section with Z^4
 - Increase in lumi is larger than decrease in N_{coll} (x0.5 from Pb-Pb to Xe-Xe)
 → higher yields for hard processes
 - No detailed machine studies yet, first estimates in this thesis <u>http://cds.cern.ch/record/2241364/files/CERN-THESIS-2016-230_3.pdf</u>
 - > Nucleon-nucleon lumi ($L_{NN}=A^2 * L_{AA}$) hard yields scale with L_{NN} –

 \circ L_{NN}^{XeXe} (cons) ~ 1.5 L_{NN}^{PbPb}; L_{NN}^{ArAr} (cons) ~ 4.5 L_{NN}^{PbPb}

- Physics?
 - Xe-Xe: similar QGP as Pb-Pb, but no large gain in yields?
 - Ar-Ar: lower size/density QGP
 - $\circ \rightarrow$ smaller jet quenching signals
 - → interesting overlap in N_{ch} with pp, p-Pb, Pb-Pb, but needed?
 - \circ \rightarrow additional constraints for quarkonium suppression vs. regeration?
 - Pilot Xe-Xe run in two days will help to clarify the LHC performance and (partly) the physics motivation

Summary

- Beyond LS2: fully exploit the potential of the machine as a high-luminosity HI collider
- Rich <u>baseline</u> programme prepared by the experiments
 > Upgraded detectors, very large samples, diverse trigger approaches
- LHC findings in small systems / high-mult have opened many new questions that need luminosity and precision
 Now it is the time to optimize the future programme to address these

HL-LHC Physics WS (Oct 30-Nov 1)

https://indico.cern.ch/event/647676/

EXTRA SLIDES

Torino, 10.10.2017

Andrea Dainese

Available Documents

- ♦ ALICE Upgrade LOI: CERN-LHCC-2012-012
 - Addendum (Muon Forward Tracker): CERN-LHCC-2013-014
- ◆ ALICE inner tracker upgrade TDR: CERN-LHCC-2013-024
- ALICE muon tracker upgrade TDR: CERN-LHCC-2015-001
- CMS HI HL-LHC projections: CMS-PAS-FTR-13-025
- Presentations at the Heavy Ion Town Meeting (June 2012):
 - http://indico.cern.ch/event/Hltownmeeting
- Inputs by ALICE, ATLAS, CMS to the ESPG meeting Cracow (Sep 2012)
 - http://indico.cern.ch/confld=182232
 - HI community presentation (H. Appelshaeueser)<u>http://indico.cern.ch/getFile.py/access?contribId=1</u> <u>6&sessionId=2&resId=0&materiaIId=slides&confId=182232</u>

Jet quenching: where are we ?

- Some lessons from LHC data on jets:
 - > Hadron and jet R_{AA} (AA/pp) "suppressed" out to $p_T \sim 1 \text{ TeV/c}$
 - First direct observation of energy loss via di-jet momentum balance
 - > "Lost energy" goes to low p_T particles at large angles ("out of cone")
 - Moderate modification of fragm. functions and little/no mod. of jet shapes
 - > Can tag parton energy and flavour: γ/Z -jet balance, b-jet tagging
- Lively theoretical development, first studies to extract QGP properties

ATLAS, PRL105 (2010) 252303, CMS, PLB712(2012) 176

JET Coll., PRC90(2014)014909

Heavy flavour: where are we ?

- Suppression of D mesons measured up to 100 GeV/c, similar to charged hadrons (pions) above 5 GeV/c
- First indication of mass dependence of energy loss:
 R_{AA} J/ψ from B > R_{AA}D

ALICE, JHEP 1511(2015)205, ALICE-PUBLIC-2017-003, CMS, EPJC77(2017)252, arXiv:1708.04962

 \rightarrow Large uncertainties for D p_T \rightarrow 0 and no measurement for B p_T \rightarrow 0

Heavy flavour: where are we ?

- D mesons have elliptic flow v₂>0
- QGP expansion transmitted to charm quarks via multiple scatterings (diffusion mechanism)

ALICE, arXiv:1707.01005, CMS, arXiv:1708.03497

→ Need it also for beauty, which can be calculated more accurately in lattice QCD

 Model calculations extract c-quark diffusion coefficient in the QGP: can be compared with first-principle QCD calculations on the lattice

Catania group, arXiv:1707.05452 Also: Duke group, Nucl.Phys. A967 (2017) 668

Azimuthal anisotropy: collective flow

- System geometry asymmetric in noncentral collisions
- Expansion under azimuth-dep. pressure gradient results in azimuthdep. momentum distributions
- Measured by the elliptic flow parameter v₂(p_T)

 $\frac{dN}{Nd\phi} \sim 1 + 2v_2 \cos\left(2(\phi - \Psi_{RP})\right) + \text{ higher harmonics } (v_3, v_4, \ldots)$

 v₂ at low p_T provides a measure of the strength of collectivity (mean free path of outgoing partons)

In-medium heavy-flavour hadronization?

- From LHC Run 1 data, some hints that charm could recombine in the medium
- Precise measurements of HF mesons (non-strange and strange) and baryons
- \rightarrow Precise measurements of their v_2 (+ that of J/ ψ , discussed later)

QGP temperature: where are we ?

INFN

Temperature from QGP radiation

- Additional handle on temperature from quarkonium melting (not discussed today)
- ◆ First measurement at LHC from soft exponential component of photon p_T spectrum: *T* ≈ 300 MeV An effective temperature

An effective temperature, averaged over system evolution (and cooling)

ALICE, PLB754 (2016) 235

Torino, 10.10.2017

Temperature evolution: low-mass di-leptons

- Measurement of low-mass di-leptons allows mapping the temperature during the system evolution

Di-leptons from real and virtual photons $\gamma \rightarrow e^+e^-$

 Measurement of low-mass di-leptons allows mapping the temperature during the system evolution

- ALICE: lighter tracker + dedicated run at low B (0.2 T)
 - \rightarrow electron acceptance down to $p_{\rm T}$ = 50 MeV/*c*
 - Needs minimum-bias trigger (low S/B) \rightarrow HL-LHC = 100x Run2 stat.

Di-electron mass spectrum after bkg subtraction:

Study for a forward calorimeter in ALICE

- FoCal: R&D for a high-granularity calorimeter at η~3-5 with focus on saturation physics studies
 - Possible installation during LS3
- Benchmark measurement: direct photons η~4-5 in p-Pb (x~10⁻⁵)
 - Sensitive to Shadowing vs. Saturation

Torino, 10.10.2017