Open heavy-flavours: experimental view

Elena Bruna (INFN Torino)

Secondo incontro sulla fisica con ioni pesanti a LHC

9-10 October 2017 Universita' degli Studi di Torino - Aula Magna del Rettorato

Heavy Flavours: unique probes

- Produced in initial high-Q² processes \rightarrow calculable with pQCD
- Large mass → short formation time → experience medium evolution 1/2m_c (~0.07 fm/c) < QGP formation time (~0.1-1fm/c) << QGP life time (10 fm/c)
- Expected small rate of thermal production in the QGP ($m_{c,b} >> T$)

pp collisions: the benchmark system

- test for pQCD
- reference for p-A and AA
- study heavy-flavour (HF) production processes and hadronization

Charm and beauty in pp collisions

Cross sections at LHC energies well **described by pQCD predictions**. Charm cross-section on the upper side of the FONLL uncertainty band

INFN

Λ_c/D^0 and Ξ_c^0/D^0 ratios

 Λ_c^0/D^0 at mid-rapidity compatible in pp and p-Pb

- higher than theoretical calculations (PYTHIA8 with enhanced color reconnection closer to data)
- slightly higher wrt Λ_c^0/D^0 in p-Pb at forward rapidity (LHCb)

 Ξ_{c}^{0}/D^{0} at mid-rapidity: higher than theoretical calculations

 \rightarrow Crucial to constrain models of charm

hadronization: current lack of knowledge about fragmentation of charm into baryons

p-A collisions: the control experiment

- reference for cold nuclear matter (CNM) effects
 - nPDF, saturation and more effects
 - \circ ($k_{\rm T}$ broadening, energy loss)
- role of collision geometry/multiplicity density
- **collective effects** in small systems?

HF in pA: control experiment

 R_{pPb} ~1 for D mesons in p-Pb collisions ALICE-PUBLIC 2017-008

Models with:

- Cold Nuclear Matter effects describe data within uncertainties
- **Incoherent scatterings** describes data for $p_T > 5$ GeV/*c*
- Small-size QGP can describe data at low-intermediate p_T . Suppression larger than 10% in 5< p_T <12 GeV/*c* disfavored

Difference between models at low $p_T \rightarrow$ more precise pp reference needed

HF in pA: control experiment

CMS, PRL 116 (2016) 032301

 R_{pPb} ~1 for B mesons in p-Pb collisions

INFN

HF in pA: different rapidities at LHC

Different x regimes explored in different rapidity ranges with HF probes

Data described within uncertainties by the models with nPDF and other Cold Nuclear Matter effects

D-meson production in different p-Pb centrality classes

Ratio **central/peripheral Q**_{CP} (higher precision)

Q_{pPb} in for D mesons and **charged particles** agree within uncertainties

 Q_{CP} >1 in 3-8 GeV/c with ~1.5 σ

Initial- and/or final-state effects? Collective radial flow affecting HF particles in p-Pb?

Collectivity in pPb collisions?

HFe-h correlations

p-Pb collisions in two multiplicity ranges: 0-20% (high multiplicity) 60-100% (low multiplicity)

Jet contribution reduced by subtracting low-multiplicity events

(0-20%) - (60-100%)

Collectivity in pPb collisions?

1.5<*p*_T^e<2 GeV/*c*

Positive v_2 of electrons from HF, similar to charged particles within uncertainties.

Initial-state effects, collectivity ?

- B. Arbuzov et al, Eur.Phys.J. C71 (2011) 1730
- K. Dusling and R. Venugopalan, arXiv:1302.7018.
- S. Alderweireldt and P. Van Mechelen, arXiv:1203.2048
- K. Werner et al, P.R.L. 106 (2011) 122004

HFe-h correlations

(0-20%) - (60-100%)

 $C_{0-20}(\Delta \varphi) - C_{60-100}(\Delta \varphi) =$ a₀ (1+2 $v_{1\Delta} \cos(\Delta \varphi)$ +2 $v_{2\Delta} \cos(2\Delta \varphi)$)

A-A collisions

Heavy Flavours in Pb-Pb collisions

Energy loss of heavy-quarks (HQ) in the medium:

- Modifies their momentum distribution, and of final-state observables
- mechanisms: gluon radiation, elastic collisions
- depends on:
 - \circ Medium density, path-length $\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$
 - Colour-charge, parton mass $\Delta E_g > \Delta E_{u,d} > \Delta E_c > \Delta E_b$ "dead-cone" effect, Dokshitzer, Kharzeev, PLB 519 (2001) 199

Collective expansion of the system

- how do HQ pick up the "flow"
- at low p_T → information on the transport properties of the medium, collectivity and thermalization of HQ

Hadronization mechanism

Fragmentation vs coalescence of heavy quarks with low- p_T light quarks in the medium, hadronic re-scattering phase

D-meson R_{AA} at LHC in Run 2

Strong suppression of D⁰,D⁺,D^{*+} mesons in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV, increasing with increasing centrality

Similar suppression for D and charged hadrons at high p_T . Different suppression at low p_T ?

INFN

D and **B** R_{AA} at LHC in Run 2

Strong suppression of D^o,D⁺,D⁺ mesons in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV, increasing with increasing centrality

Similar suppression for B in the measured p_{T} range

D_s: sensitive to coalescence

ALICE-PUBLIC 2017-003

Hint for less suppression of D_s^+ than non-strange D at intermediate p_T^-

 expected if recombination with abundant strange quarks plays a role in charm hadronization

Transport models (TAMU, PHSD) predict higher Ds RAA wrt non-strangeD due to recombination with strangeness-enriched QGPPHSD PRC 93 (2016) 034906TAMU Phys. Lett. B735 (2014) 445

D-meson v₂ at the highest energy

Compatible v_2 for D^0, D^+, D^{*+}

Average D-meson $v_2 > 0$ in 30-50%: charm quarks interact with the medium and sensitive to its collective motion

First measurement of $D_s V_2$: compatible with non-strange D-meson V_2 within uncertainties

 v_2 and v_3 in different centralities

D-meson $v_2 > 0$ and $v_3 > 0$ in $p_T < 10$ GeV/*c* decreasing with centrality

- 10-30% and 30-50%: low p_T : v_2 (charged pions) slightly higher than v_2 (D)
- high $p_{\rm T}$: similar v_2 for D and charged hadrons

Event-shape engineering with D's

Measure D v_2 in events with different eccentricity to relate it to bulk v_2

Divide events on the basis of their eccentricity (q_2) :

- 20% of events with large q₂
- 60% of events with small q₂

Significant separation of D-meson v_2 in events with large and small q_2

Charm sensitive to collectivity of light-hadron bulk, and by event-by-event initial-state fluctuations

Event-shape engineering with D's

E. Bruna (INFN To)

Towards a quantitative picture with model comparison

Main approaches: pQCD-based models:

pQCD-inspired calculations of energy loss

Transport models:

Transport of HQ through medium (i.e. Brownian motion)

HQ are characterized by spatial diffusion coefficient

Main ingredients: energy loss (radiative and collisional), hadronization via vacuum fragmentation or recombination, hydrodyamic expansion, shadowing, initial conditions

TRANSPORT MODELS	Collisional energy loss	Radiative energy loss	Recombination	Hydro/ dynamics	nPDF
BAMPS J. Phys. G42 (2015) 115106	\checkmark	\checkmark	×	\checkmark	×
LBT arXiv:1703.00822	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PHSD PRC 93 (2016) 034906	\checkmark	×	\checkmark	\checkmark	\checkmark
POWLANG EPJC 75 (2015) 121	\checkmark	×	\checkmark	\checkmark	\checkmark
TAMU Phys. Lett. B735 (2014) 445	\checkmark	×	\checkmark	\checkmark	\checkmark

QCD-based energy-loss models

R_{AA} and v₂ : constraints to models

Models where charm quarks pick up collective flow via recombination and/or subsequent elastic collisions in expanding hydrodynamic medium do better at describing both R_{AA} and v_2 at low p_T (BAMPS elastic, LBT, MC@sHQ+EPOS, TAMU, POWLANG, PHSD)

Models provide:

- → Diffusion coefficient $2\pi T D_s(T) \approx 1.5-7$ at critical temperature T_c
- → Charm thermalization time τ_{charm} ~3-14 fm/c

R_{AA} and v₂ : constraints to models

E. Bruna (INFN To

Ongoing: theoretical effort through Bayesian analysis to calibrate model parameters via model-data comparison \rightarrow Find the optimal parameters that describe R_{AA} and v_2

What did we learn so far ?

HF in pp:

test for pQCD (and more)

HF in p-Pb:

- HF productions seems to be different in central and peripheral collisions
- v₂ of electrons from HF hadron decays
- → Collective motion and/or initial state effects?

HF in Pb-Pb

- Strong modification of HF production in PbPb collisions relative to pp
- Azimuthal anisotropy → charm takes part to collectivity
- → starting to put constraints to models !

Ongoing/next steps with HF

QUESTIONS?

QCD studies on HQ production:
→ Which mechanisms rule interplay between hard processes and underlying event?

→ Charm fragmentation properties?

Collective effects in small systems, also for HF ?

dq-q

dd

Mechanisms governing microscopic interactions of HQ in QGP ?

- → Contribution of radiative and collisional energy loss?
- → HQ thermalization?
- → Role of **coalescence** in hadronization?

and more...

Ongoing/next steps with HF

QUESTIONS?

QCD studies on HQ production: → Which mechanisms rule interplay between hard processes and underlying event?

Or Charm fragmentation properties?

Collective effects in small systems, also for HF ?

Pb-Pb

d-pb

dd

Mechanisms governing microscopic interactions of HQ in QGP ?

- → Contribution of radiative and collisional energy loss?
- → HQ thermalization?
- → Role of **coalescence** in hadronization?

and more...

HOW

LHC Run 2, 3, 4: more statistics, new detectors and machine upgrades

Smaller uncertainties, new differential measurements to **further constrain theory**

 \rightarrow A. Dainese's talk

Thank you!

INFN

Heavy flavours with ALICE

Non-prompt J/\psi measured with pseudo-proper decay length

Electrons: background (π^0 and η Dalitz decays, photon conversions) subtracted with invariant mass method (e+e-) and cocktail

Muons: background $(\pi, K \rightarrow \mu)$ subtracted with MC (pp) and datatuned MC cocktail (p-Pb, Pb-Pb)

 μ^+

Charmed baryons

Measurements in **pp** and **p-Pb** collisions:

- Further understanding of charm hadronization models
 - Lack of knowledge about fragmentation of charm into baryons !
- Reference for future charmed baryon measurements in **Pb-Pb** collisions
 - Hadronization via recombination ?

Charmed baryons

 $p_{_{\rm T}}\,({\rm GeV}/c)$

GM-VFNS: Eur. Phys. J. C41 (2005) 199-212, Eur. Phys. J. C72 (2012) 2082 POWHEG: JHEP 06 (2010) 043

by NLO theory at mid-rapidity (ALICE): **GM-VFNS**, POWHEG+PYTHIA

- \rightarrow describe well D mesons
- \rightarrow Fragmentation tuned to results from lower energy, e⁺e⁻ (GM-VFNS)

Comparison to LHCb

LHCb, p-Pb

E. Bruna (INFN To)

$\Lambda_{c} R_{pPb}$

$\Lambda_{c} R_{pPb}$ consistent with unity, with D R_{pPb} and with models:

- CNM effects: POWHEG+PYTHIA with CT10NLO+EPS09 PDF
- Hot medium effects: POWLANG with small-size QGP formation, collisional en. loss

LHCb: R_{FB}

- Different x regimes explored in different rapidity ranges
- → HF probe shadowing/saturation expected to be relevant at low $p_{\rm T}$ at the LHC

Data described within uncertainties by the models with CNM effects

h-µ correlations in p-Pb collisions

E. Bruna (INFN To) ALI-PUB-94936

 R_{pPb} of of primary charged π, K, p and multi- strange baryons Ξ and Ω at mid-rapidity

 \rightarrow Hint of mass dependent R_{pPb}

ALICE-PUBLIC 2017-008

R_{AA}: **D** mesons and charged hadrons

Comparison to RHIC energies

STAR: D⁰, ALICE: D⁰,D⁺,D^{*+} 1.8 1.6 1.4 1.2 ALICE, 0-10% Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ • Average D⁰, D⁺, D^{*+}, |y|<0.5 0.8 with pp p_-extrapolated reference 0.6 STAR, 0-10% Au-Au, VS_{NN} = 200 GeV $\square D^{\circ}$. |v| < 10.4 0.2 0¹ 25 30 35 20 40 15 p_{_} (GeV/*c*) STAR, PRL113 (2014) 142301 ALICE, JHEP1603 (2016) 081

Similar suppression in central A-A collisions at high p_T Differences at low p_T : radial flow? Shadowing? Recombination? Crucial to go to $p_T \sim 0$ at the LHC

INFN

D-meson R_{AA} at LHC in Run 2

Strong suppression of D⁰,D⁺,D^{*+} mesons in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV, increasing with increasing centrality

Higher precision and extended p_T reach with Run 2 data \rightarrow crucial to measure total charm cross section and constrain models !

Light flavour, charm and beauty R_{AA}

Test parton mass dependence of inmedium energy loss

D vs π : similar R_{AA} , but:

 $\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) \xrightarrow{P} R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

- different vacuum fragmentation of charm vs. light quarks
- different light/heavy quark p_T spectra

Non-prompt J/ ψ vs **D**: difference between **charm** and **beauty** suppression in central collisions \rightarrow parton mass dependence of inmedium energy loss

> ALICE, JHEP 1511 (2015) 205 CMS, EPJC 77 (2017) 252

43

Light flavour, charm and beauty R_{AA}

Test parton mass dependence of inmedium energy loss

Non-prompt J/ ψ vs **D**: difference between **charm** and **beauty** suppression in central collisions \rightarrow parton mass dependence of inmedium energy loss

Described by **model with mass** dependent energy loss:

b mass for non-prompt J/ψ

 $\Delta E(g) > \Delta E(uds) > \Delta E(c) > \Delta E(b) \xrightarrow{P} R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

c mass for non-prompt J/ψ

Difference comes from the different masses

M.Djordjevic, PRL 112, 042302 (2014)

J/ψ and D-meson elliptic flow

ALICE: arXiv:1707.01005 arXiv:1709.05260

If quarkonium formed by **recombination** of cc close in phase space, and charm is "flowing" $\rightarrow v_2(J/\psi)>0$

PRL 111 (2013) 162301

ALI-PUB-138837

Positive $J/\psi v_2$ in semi-central collisions (20-40%)

Similar v₂ values for **open** and **hidden** charm → Charm quarks take part in the collective motion of the system (via subsequent collisions)

ALI-PREL-135757

12

60% small-q

unbiased

 $-0.8 < \eta_D < 0$

 $0 < \eta_{q^{\text{TPC}}} < 0.8$

10

12

 $p_{_{\rm T}}$ (GeV/c)

20% large-q_TPC

ALICE after Run-2

ALICE Upgraded Inner Tracking System

Performance examples for HF signals

