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Bottomonium at the LHC

Do we understand what is going on?

pp collisions PbPb collisions
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* Do bound states melt?
» Complications with feed-down mechanism
* Are there in-medium modifications?

- Peaks very similar to the vacuum ones



Quarkonium dissociation
J/V suppression, [Matsui-Satz (86)]
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Quarkonium dissociation
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Interquark potential gets screened
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Quarkonium dissociation
J/V suppression, [Matsui-Satz (86)]

- Interquark potential gets screened

Potential develops an imaginary part = Dissociation
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Quarkonium regeneration

[Matsui (87), BraunMunzinger-Stachel (00),
Thews-Schroedter-Rafelski (01)]

Start of collision a Hadronization

statistical regeneration

sequential suppression
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High mobility of heavy quarks in the QGP = Regeneration



Different stages of the heavy-ion collision

Quarkonium production in heavy-ion collisions
Early-time dynamics

Dynamics in the quark gluon plasma <= Our focus
Hadronization

Vacuum feed-down



Open quantum systems



Environment
Henv

System
H

<
H int

Schrodinger equation for closed quantum system (heavy particles
-+ plasma)

O' o
A t(t) [Hiot, prot(1)] Hot = H® Ieny + I ® Heny + Hine

* prot is the density operator of the total (closed) system
« p(t) = |¢(1))(1p(t)| for a pure state



Lindblad equation

Master equation for open quantum system (heavy particles)

i 920) = Tram {[Hhots ps(D)]}

dt
[H, p(t)] + Trenv {[]I ® Henv + 'Llinh ptot(t)]}
= [H,p(0)] + i Dp(t)

P = TrenyProt



Lindblad equation

Master equation for open quantum system (heavy particles)

i 920) = Tram {[Hows pc(D)]}

at
[H, P(t)] + Trenv {[]I & Henv + 'Llinh ptot(t)]}
= [H. p()] +iDp(1)
P = TrenyProt

Most general master equation in the Markovian limit
= 1/mD ~ Teny K Tsys ™~ 1/AE = no memory effects
- AE < my like in effective-field-theory models [Brambilla et al. (10,13)]

: i 1
p=—7[H. A+ 52 > ([Lup, LT+ [Lus L)
nw

i LL are the Lindblad operators



Open quantum system approaches

* Lindblad equation (QED case, Singlet-Octet effective model in
QCD) [DDB (17), Akamatsu (15), Brambilla, Escobedo et al.
(16,17)]

- Comes directly from the gauge theory, contains diffusion,
dissipation and decoherence
- Langevin and Fokker-Planck dynamics in the classical limit

* Stochastic potential model [Akamatsu, Rothkopf (12)]
- Comes directly from the gauge theory, easier to simulate but
it does not contain dissipation (good only for short times)

* Schrédinger-Langevin equation [Katz, Gossiaux (16)]
- Easy to simulate, it contains dissipation but does not come
from the gauge theory



Abelian model
[Blaizot, DDB, Faccioli, Garberoglio (16), DDB (17)]

* Plasma in thermal equilibrium described by ), ¥

* N heavy quarks and antiquarks propagating out of equilibrium
in the plasma
- non relativistic heavy particles (neglect magnetic effects)
-m<LT<M

N
Ho = 21M_2(p,?+p?) + [ ax B0 (<iv'0s+ m) w0 +

1
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Coulomb interactions
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heavy quarks+-antiquarks

plasma fields
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Lindblad eqn for a qq pair  (CoM frame)

- W(r) is the imaginary part of the g potential. V/(r) is the real screened part.
- W has a correlation length of 1/my ~ 1/(gT)

r=3@q+q), y=3@Q-d)
Schrédinger

W(gtﬂy) _ ;\Z; . 8‘1 _ ih(V(r+y/2) — V(r-y/2))

—ghz(ZW(y) —2W(r)+ W(r+y)+ W(r—-y)—-2W(0))

diffusion, decoherence

_gPh (OW(y) 0 aW(r) &  9*W(r) (t.ry)
oMt \ oy oy or or  or ALEY

dissipation




Dissociation, recombination and quantum
decoherence

+ Probability of having the state |¢)) at time ¢
— To study qQ dissociation and recombination

Py, tlo, o) = [dq[dq'(q)v*(q)e(t. 9, 9)
* Linear entropy ( proxy of thermal entropy S = —Tr[pIn p] )
S, =Trp— Trp? =1 — Trp?

— To study how fast the system becomes classical
(quantum decoherence)



Dissociation, recombination and quantum
decoherence

+ Probability of having the state |¢)) at time ¢
— To study qQ dissociation and recombination

Py, tlo, o) = [dq[dq'(q)v*(q)e(t. 9, 9)
* Linear entropy ( proxy of thermal entropy S = —Tr[pIn p] )

S, =Trp— Trp? =1 — Trp?
— To study how fast the system becomes classical
(quantum decoherence)

Pure states p=p>=S =0
Non-pure states p#£,P=0<8S <1



Numerical results for a qq pair in 1D

Péschl-Teller potential:

T
W(x)=——=
() =5
T =0.8 GeV
- B =% [Gev]
= R -~ B,, = —2w[GeV]
#7 [\ —_ V(z) [GeV]
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The crucial quantity is the ratio )\Sys//eer

Agys = 0.16 fm

po(a. ') = vo(a)i (a')
Po(t), lenv = 0.74 fm
Po(t), leny = 0.25 fm
Py(t), lenv = 0.08 fm
Pi(t), leny = 0.74 fm
Pi(t), leny = 0.25 fm
Pi(t), leny = 0.08 fm
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Ground state melts with P =1 — Py — Py ~ 10% after At =5
fm/c when L,y = 0.25 fm



Starting off with a thermal scattering state

Pscare(X) ~ e_%(%)z—‘_%”} 6= /2(x2) = V2 Agys

h V2h
Ay = — = ——— =177fm m=1.2GeV
" bm VmT

®lenvy = 3.29 fm
®leny = 1.97 fm
®leny = 0.25 fm
®leny =0.12 fm




Stochastic potential model (Abelian case)

Yag(t + At) = exp [-iH(0)At] Yqg(t) = U(AL, 0)bgq(t)

RO —v—2+ V+o(t f)+0(t —5)
- m 2 T2

Evolution operator is unitary but contains an imaginary part:

O UALG) = 1— iH(O)AL+ At (W(r) — W(0))
( )1/2 D ——

diffusion, no dissipation



Stochastic potential model (Abelian case)

VYag(t + At) = exp [—iH(0) At] Yg5(t) = U(AL, 0)1gg(t)
RO —7: + V +6(t, g) +0(t, —g)

Evolution operator is unitary but contains an imaginary part:

L .
0~ (At )1/2 = U(At,0) =1 —iH(0)At + At (W(r) — W(0))
diffusion, no dissipation
Non-unitary evolution of averaged wavefunction:
(Yqg(t + At))g = (U(AL,0))o(Vqg(t))e
Density matrix (pgg(t, 9, q') = (Yqa(t, Q)¢ g5(t, @'))e):

pqa(t + At) = (U(AL,0)U*(At, 0))e pqg(t)

trace preserved




Classical level: Langevin and Fokker-Planck dynamics



Fokker-Planck and Langevin equations

Wigner function
p(t,r,p) = / dy p(t,r,y)e #PY
Fokker-Planck equation for one heavy quark (semiclassical limit):

[at = % : 8r - arvext(r) : ap] p(t7 I’, p) =7 [MTV’ZJ + ap ’ p p(t’ r’ p)



Fokker-Planck and Langevin equations

Wigner function

p(t,r,p) = / dy p(t,r,y)e #PY

Fokker-Planck equation for one heavy quark (semiclassical limit):

[at = % : ar - arvext(r) : ap] P(t7 r7 p) =7 [MTV’ZJ + ap ’ p p(t’ r’ p)

Corresponding Langevin equation for one heavy quark:
MY + MAr + Vi Vex(r) = n(r, 1) v~ W"(r=0)

(v is space-depent in the many-quark case)
Noise vector corresponds to a stochastic force

<77(r7 t)> =0, <77i(r7 t)nj(rv t/)> = 2M7T5U5(t - t/)



Langevin dynamics

Simulation for faintly bound qq pairs

* Pros: Cheap simulations, good approximation after a
decoherence time

c : Difficult to implement initial quantum conditions
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Conclusions and outlook

The language of open quantum systems is the appropriate one
to study real-time dynamics of quarkonium

Lindblad equation:

- comes from gauge theory (e.g. EFT, even non-perturbative

- quite difficult to simulate numerically

Stochastic potential:

- easier to simulate numerically

- comes from gauge theory but no friction (fine for short time
dynamics only)

Langevin/Fokker-Planck dynamics:

- easy numerical simulations for many heavy quarks

- comes from gauge theory (and Lindblad) in the classical limit
- fair description when quantum information is lost
(decoherence time can be short)

Can we input quantum initial conditions in the Langevin
approach?
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