On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies

by A. Le Fèvre1, Y. Leifels1, C. Hartnack2 and J. Aichelin2,3

1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
2SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France
3FIAS, Frankfurt University, Germany

On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies

by A. Le Fèvre¹, Y. Leifels¹, C. Hartnack² and J. Aichelin²,³

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
²SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France
³FIAS, Frankfurt University, Germany

Introduction

The Quantum Molecular Dynamics approach

Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State

Survey of the reaction

Collisions versus mean field

Incident energy dependance

Summary
Introduction

![Graph showing v_2 vs. beam energy (GeV/nucleon)](image)

- Out-of-plane
- In-plane

Key Experiments:
- FOPI
- EOS
- E895
- E877
- CERES
- NA49
- STAR
- Phenix
- Phobos
The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.
The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years. It has been predicted in hydrodynamical simulations of heavy ion reactions.
The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years. It has been predicted in hydrodynamical simulations of heavy ion reactions

The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years. It has been predicted in hydrodynamical simulations of heavy ion reactions

and has later been found experimentally by the Plastic Ball collaboration

The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years. It has been predicted in hydrodynamical simulations of heavy ion reactions

and has later been found experimentally by the Plastic Ball collaboration

At ultra-relativistic energies: measured v_2 and centrality dependence \Leftrightarrow expansion of initially highly compressed almond shaped fireball $\Rightarrow v_2 > 0$ as predicted by hydrodynamics

![Elliptic flow graph](image-url)
The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years. It has been predicted in hydrodynamical simulations of heavy ion reactions:

and has later been found experimentally by the Plastic Ball collaboration:

At ultra-relativistic energies, v_2 and centrality depend on the expansion of initially highly compressed almond shaped fireball.

Flows at high density in heavy-ion collisions:

$$\frac{dN}{d(\phi - \phi_R)}(y, p_t) = \frac{N_0}{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos n(\phi - \phi_R) \right)$$

- y = rapidity
- p_t = transverse momentum
- Φ_R = reaction plane azimuthal angle

V_1 = 'side/directed flow', $\cos(\Phi-\Phi_R)$ mode

$V_2(y, p_t) = \left(\begin{array}{c} p_x^2 - p_y^2 \\ p_t^2 \end{array} \right)$

'Elliptic flow': $\cos(2(\Phi-\Phi_R))$ mode, competition between 'in-plane' ($V_2>0$) and 'out-of-plane' ejection ($V_2<0$).
Introduction
At lower energies: various experimental groups
At lower energies: various experimental groups

and later the FOPI collaboration
At lower energies: various experimental groups

and later the FOPI collaboration

\[v^2 \] a negative \(v^2 \) coefficient up to \(E_{\text{inc}} \approx 6 \text{ AGeV} \)
At lower energies: various experimental groups

and later the FOPI collaboration

- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

⇒ a negative v_2 coefficient up to $E_{inc} \approx 6$ AGeV

⇒ with a minimum at around 0.4-0.6 AGeV

Introduction

\[V_2 \quad \text{(GeV/nucleon)} \]

- FOPI
- EOS
- E895
- E877
- CERES
- NA49
- STAR
- Phenix
- Phobos

Out-of-plane vs. in-plane
The elliptic flow has to be of different origin at these energies.
The elliptic flow has to be of different origin at these energies.

It has been suggested in
The elliptic flow has to be of different origin at these energies.

It has been suggested in P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592 that the v_2 values are negative at low energies because the compressed matter expands while the spectator matter is still present and blocks the in-plane emission = «shadowing».
The elliptic flow has to be of different origin at these energies.

It has been suggested in P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592 that the v_2 values are negative at low energies because the compressed matter expands while the spectator matter is still present and blocks the in-plane emission = « shadowing ».

At higher incident energies: the expansion takes place after the spectator matter has passed the compressed zone $\Rightarrow v_2$ is determined by the shape of the overlap region only $\Rightarrow v_2 > 0$.

![Graph showing elliptic flow v_2 vs. beam energy](image-url)
The elliptic flow has to be of different origin at these energies. It has been suggested in P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592 that the \(v_2 \) values are negative at low energies because the compressed matter expands while the spectator matter blocks the in-plane emission = « shadowing ». At higher incident energies the expansion takes place after the spectator matter has passed the compressed zone \(\Rightarrow v_2 > 0 \).
Introduction

\[V_2 \]

\[\text{beam energy (GeV/nucleon)} \]

- FOPI
- EOS
- E895
- E877
- CERES
- NA49
- STAR
- Phenix
- Phobos

out-of-plane

in-plane
Minimum of $v_2 \iff$ maximum nuclear stopping
with high baryon densities reached.
Minimum of v_2 \iff maximum nuclear stopping with high baryon densities reached.

Contrary to higher beam energies: no convincing experimental evidence that event-by-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.
Minimum of $v_2 \iff$ maximum nuclear stopping with high baryon densities reached.

Contrary to higher beam energies: no convincing experimental evidence that event-by-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

Most probable reasons:
Minimum of $v_2 \iff$ maximum nuclear stopping with high baryon densities reached.

Contrary to higher beam energies: no convincing experimental evidence that event-by-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

Most probable reasons:
• interactions with spectator matter
Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

Contrary to higher beam energies: no convincing experimental evidence that event-by-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

Most probable reasons:
• interactions with spectator matter
• much longer collision times.
Minimum of $v^2 \iff$ maximum nuclear stopping with high baryon densities reached.

Contrary to higher beam energies: no convincing experimental evidence that event-by-event fluctuations contribute to v^2 between 0.4 and 2 A GeV.

Most probable reasons:
• interactions with spectator matter
• much longer collision times.

At even lower incident energies: v^2 becomes positive again: attractive NN forces outweigh the repulsive NN collisions.
The Quantum Molecular Dynamics approach
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions -> single-particle Wigner density:

\[f_i(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^3 \hbar^3} e^{-\frac{2}{L^2} (\mathbf{r} - \mathbf{r}_i(t))^2} e^{-\frac{L}{2\hbar^2} (\mathbf{p} - \mathbf{p}_i(t))^2} \]

The total one-body Wigner density is the sum of the Wigner densities of all nucleons
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

\[V(\mathbf{r}_i, \mathbf{r}_j, \mathbf{p}_i, \mathbf{p}_j) = G + V_{\text{Coul}} \]
\[= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + V_{\text{sym}} + V_{\text{Coul}} \]
\[= t_1 \delta(\mathbf{r}_i - \mathbf{r}_j) + t_2 \delta(\mathbf{r}_i - \mathbf{r}_j)\rho^{-1}(\mathbf{r}_i) + \]
\[t_3 \exp\left\{ -\frac{||\mathbf{r}_i - \mathbf{r}_j||}{\mu} \right\} + \]
\[t_4 \ln^2(1 + t_5 (\mathbf{p}_i - \mathbf{p}_j)^2) \delta(\mathbf{r}_i - \mathbf{r}_j) + \]
\[t_6 \frac{1}{\rho_0} T_i T_j \delta(\mathbf{r}_i - \mathbf{r}_j) + \frac{Z_i Z_j e^2}{||\mathbf{r}_i - \mathbf{r}_j||}. \]

Convolution of the distribution functions \(f_i \) and \(f_j \) → single-particle potential (« mean-field ») = \(V_{\text{Skyrme}} + V_{\text{mdi}} \) (local interactions + momentum dependence)

\[U_i(\mathbf{r}_i, t) = \alpha \left(\frac{\rho_{\text{int}}}{\rho_0} \right)^{\gamma} + \beta \left(\frac{\rho_{\text{int}}}{\rho_0} \right)^{\gamma} + \delta \ln^2 \left(\frac{\varepsilon (\Delta \mathbf{p})}{\rho_0} \right) \]

In nuclear matter \(t_1, t_2, t_4, t_6 \) uniquely related \(\alpha, \beta, \delta, \) and \(\varepsilon \) and \(\delta \) : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma : 2 \) are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \text{ MeV} \) at \(\rho_0 \).

<table>
<thead>
<tr>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (GeV(^2))</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
</tr>
</tbody>
</table>
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions

single-particle Wigner density:

\[f_i(r, p, t) = \frac{1}{\pi^3 h^3} e^{-\frac{2}{\hbar^2} (r - r_i(t))^2} e^{-\frac{L}{2\hbar^2} (p - p_i(t))^2} \]

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

\[V(r_i, r_j, p_i, p_j) = G + V_{\text{Coul}} + V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + V_{\text{sym}} + V_{\text{Coul}} \]

\[= t_1 \delta(r_i - r_j) + t_2 \delta(r_i - r_j) \rho^{\gamma-1} + \]

\[t_3 \exp\left\{ -\frac{|r_i - r_j|}{\mu} \right\} + \]

\[t_4 \ln^2 \left(1 + t_5 (p_i - p_j)^2 \right) \delta(r_i - r_j) + \]

\[t_6 \frac{1}{\varrho_0} T_i^i T_j^j \delta(r_i - r_j) + \frac{Z_i Z_j e^2}{|r_i - r_j|} . \]

Convolution of the distribution functions \(f_i \) and \(f_j \) → single-particle potential (« mean-field ») = \(V_{\text{Skyrme}} + V_{\text{mdi}} \) (local interactions + momentum dependence)

\[U_i(r_i, t) = \alpha \left(\frac{\rho_{\text{int}}}{\rho_0} \right) + \beta \left(\frac{\rho_{\text{int}}}{\rho_0} \right)^\gamma + \delta \ln^2 \left(\varepsilon (\Delta p)^2 + 1 \right) \left(\frac{\rho_{\text{int}}}{\rho_0} \right) \]

In nuclear matter \(t_1, t_2, t_4, t_6 \) uniquely related \(\alpha, \beta, \delta, \) and \(\varepsilon \) \(\varepsilon \) and \(\delta \) : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma \) : 2 are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \text{ MeV at } \rho_0 \).

<table>
<thead>
<tr>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (MeV)</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
</tr>
</tbody>
</table>
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions:

\[f_i(r, p, t) = \frac{1}{\pi^{3/2} \hbar^3} e^{-\frac{1}{2} (r-r_i(t))^2} e^{-\frac{L}{2\hbar^2} (p-p_i(t))^2} \]

The total one-body Wigner density is the sum of the Wigner densities of all nucleons:

The potential consists of several terms:

\[V(r_i, r_j, p_i, p_j) = G + V_{\text{Coul}} + V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + V_{\text{sym}} + V_{\text{Coul}} \]

\[= t_1 \delta(r_i - r_j) + t_2 \delta(r_i - r_j) \rho^{-1}(r_i) \]

\[+ \frac{\exp\{-|r_i - r_j|/\mu\}}{|r_i - r_j|/\mu} + t_3 \ln^2(1 + t_4 (p_i - p_j)^2) \delta(r_i - r_j) + \]

\[t_5 \frac{1}{\rho_0} T_3^i T_3^j \delta(r_i - r_j) + Z_i Z_j e^2 |r_i - r_j| \]

Convolution of the distribution functions \(f_i \) and \(f_j \) → single-particle potential (« mean-field ») \(= V_{\text{Skyrme}} + V_{\text{mdi}} \) (local interactions + momentum dependence):

\[U_i(r_i, t) = \alpha \left(\frac{\rho_{\text{int}}}{\rho_0} \right) + \beta \left(\frac{\rho_{\text{int}}}{\rho_0} \right)^\gamma + \delta \ln^2 \left(\varepsilon (\Delta p)^2 + 1 \right) \left(\frac{\rho_{\text{int}}}{\rho_0} \right) \]

In nuclear matter \(t_1, t_2, t_4, t_5 \) uniquely related \(\alpha, \beta, \gamma, \delta, \varepsilon \) and \(\varepsilon \) and \(\delta \) : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma : 2 \) are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \text{ MeV} \) at \(\rho_0 \).

<table>
<thead>
<tr>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (GeV(^{-2}))</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM -390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>HM -130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
<td>376</td>
</tr>
</tbody>
</table>
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental benchmark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS.

Nucleons are represented as Gaussian wave functions

$\psi_i(r, p, t) = \frac{1}{\pi^3} e^{-\frac{2}{\hbar^2} (r-r_i(t))^2 - \frac{L}{2\hbar^2} (p-p_i(t))^2}$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

$W(r) = \sum_i \psi_i^*(r) \psi_i(r)$

The potential consists of several terms:

$V(r_i, r_j, p_i, p_j) = G + V_{Coul}$

$= V_{Skyrme} + V_{Yuk} + V_{mdn} + V_{sym} + V_{Coul}$

$= t_1 \delta(r_i - r_j) + t_2 \delta(r_i - r_j) \rho^{\gamma-1}(r_i) + t_3 \exp\{ -|r_i - r_j|/\mu \}$

$+ t_4 \ln^2(1 + t_5 (p_i - p_j)^2) \delta(r_i - r_j) + t_6 \frac{1}{\varrho_0} T_i T_j \delta(r_i - r_j) + \frac{Z_i Z_j \epsilon^2}{|r_i - r_j|}$

Convolution of the distribution functions f_i and f_j to single-particle potential ($\text{\textit{mean-field}}$) = $V_{Skyrme} + V_{mdn}$ (local interactions + momentum dependence)

$U_i(r_i, t) = \alpha \left(\frac{\rho_{int}}{\rho_0} \right) + \beta \left(\frac{\rho_{int}}{\rho_0} \right)^\gamma + \delta \ln^2 \left(\frac{\epsilon (\Delta p)^2 + 1}{\rho_0} \right)$

In nuclear matter, t_1, t_2, t_4, t_5 uniquely related $\alpha, \beta, \delta, \epsilon$ and ϵ, δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

$\alpha, \beta, \gamma, \delta, \epsilon, \varrho_0$ are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0.

<table>
<thead>
<tr>
<th></th>
<th>α (MeV)</th>
<th>β (MeV)</th>
<th>γ</th>
<th>δ (MeV)</th>
<th>ϵ (MeV)</th>
<th>K (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
<td>376</td>
</tr>
</tbody>
</table>

Comparisons to experimental benchmark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS.

Nucleons are represented as Gaussian wave functions

$\psi_i(r, p, t) = \frac{1}{\pi^3} e^{-\frac{2}{\hbar^2} (r-r_i(t))^2 - \frac{L}{2\hbar^2} (p-p_i(t))^2}$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

$W(r) = \sum_i \psi_i^*(r) \psi_i(r)$

The potential consists of several terms:

$V(r_i, r_j, p_i, p_j) = G + V_{Coul}$

$= V_{Skyrme} + V_{Yuk} + V_{mdn} + V_{sym} + V_{Coul}$

$= t_1 \delta(r_i - r_j) + t_2 \delta(r_i - r_j) \rho^{\gamma-1}(r_i) + t_3 \exp\{ -|r_i - r_j|/\mu \}$

$+ t_4 \ln^2(1 + t_5 (p_i - p_j)^2) \delta(r_i - r_j) + t_6 \frac{1}{\varrho_0} T_i T_j \delta(r_i - r_j) + \frac{Z_i Z_j \epsilon^2}{|r_i - r_j|}$

Convolution of the distribution functions f_i and f_j to single-particle potential ($\text{\textit{mean-field}}$) = $V_{Skyrme} + V_{mdn}$ (local interactions + momentum dependence)

$U_i(r_i, t) = \alpha \left(\frac{\rho_{int}}{\rho_0} \right) + \beta \left(\frac{\rho_{int}}{\rho_0} \right)^\gamma + \delta \ln^2 \left(\frac{\epsilon (\Delta p)^2 + 1}{\rho_0} \right)$

In nuclear matter, t_1, t_2, t_4, t_5 uniquely related $\alpha, \beta, \delta, \epsilon$ and ϵ, δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

$\alpha, \beta, \gamma, \delta, \epsilon, \varrho_0$ are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0.

<table>
<thead>
<tr>
<th></th>
<th>α (MeV)</th>
<th>β (MeV)</th>
<th>γ</th>
<th>δ (MeV)</th>
<th>ϵ (MeV)</th>
<th>K (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
<td>376</td>
</tr>
</tbody>
</table>
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions

\[f_i(r, p, t) = \frac{1}{\pi^{3/2} \hbar^3} e^{-\frac{r^2}{2\hbar^2}} e^{-\frac{(p - p_i(t))^2}{2\hbar^2}} \]

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

\[V(r_i, r_j, p_i, p_j) = G + V_{\text{Coul}} \]

\[= V_{\text{Skyrme}} + V_{Yuk} + V_{\text{md}} + \frac{V_{\text{sym}} + V_{\text{Coul}}}{t_3} \]

\[t_1 \delta(r_i - r_j) + t_2 \delta(r_i - r_j) \rho^{\gamma-1}(r_i) + \]

\[t_3 \exp\{-|r_i - r_j|/\mu\} + t_4 \ln^2(1 + t_5 (p_i - p_j)^2) \delta(r_i - r_j) + \]

Convolution of the distribution functions \(f_i \) and \(f_j \) → single-particle potential (« mean-field ») = \(V_{\text{Skyrme}} + V_{\text{md}} \) (local interactions + momentum dependence)

\[U_i(r_i, t) = \alpha \left(\frac{\rho_{\text{int}}}{\rho_0} \right) + \beta \left(\frac{\rho_{\text{int}}}{\rho_0} \right)^\gamma + \delta \ln^2 \left(\frac{\varepsilon (\Delta p)^2 + 1}{\rho_0} \right) \]

In nuclear matter \(t_1, t_2, t_4, t_5 \) uniquely related \(\alpha, \beta, \delta, \) and \(\epsilon \) \(\varepsilon \) and \(\delta \) : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma : 2 \) are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \) MeV at \(\rho_0 \).

<table>
<thead>
<tr>
<th></th>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (MeV)</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
<td>376</td>
</tr>
</tbody>
</table>
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in

Comparisons to experimental benchmark data measured in the incident energy region under consideration are published in
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions

The potential consists of several terms:

\[V(\mathbf{r}_i, \mathbf{r}_j, \mathbf{p}_i, \mathbf{p}_j) = G + V_{\text{Coul}} \]
\[= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + +V_{\text{sym}} + V_{\text{Coul}} \]
\[= t_1 \delta(\mathbf{r}_i - \mathbf{r}_j) + t_2 \delta(\mathbf{r}_i - \mathbf{r}_j)\rho^{\gamma - 1}(\mathbf{r}_i) + \]
\[t_3 \exp\left\{-\frac{|\mathbf{r}_i - \mathbf{r}_j|}{\mu}\right\} + t_4 \ln^2(1 + t_5 (\mathbf{p}_i - \mathbf{p}_j)^2)\delta(\mathbf{r}_i - \mathbf{r}_j) + \]
\[t_6 \frac{1}{\mu^2} T_i T_j \delta(\mathbf{r}_i - \mathbf{r}_j) \]

Convolution of the distribution functions \(f_i \) and \(f_j \) → single-particle potential (« mean-field ») = \(V_{\text{Skyrme}} + V_{\text{mdi}} \) (local interactions + momentum dependence)

\[U_i(\mathbf{r}_i, t) = \alpha \left(\frac{\rho_{\text{int}}}{\rho_0} \right) + \beta \left(\frac{\rho_{\text{int}}}{\rho_0} \right) + \delta \ln^2 \left(\varepsilon (\Delta \mathbf{p})^2 + 1 \right) \left(\frac{\rho_{\text{int}}}{\rho_0} \right) \]

In nuclear matter \(t_1, t_2, t_4, t_6 \) uniquely related \(\alpha, \beta, \delta, \) and \(\varepsilon \) : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma : 2 \) are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \text{ MeV} \) at \(\rho_0 \).

<table>
<thead>
<tr>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (GeV(^{-2}))</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>-390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
</tr>
<tr>
<td>HM</td>
<td>-130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
</tr>
</tbody>
</table>

Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy
The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) approach have been published in:

Comparisons to experimental benchmark data measured in the incident energy region under consideration are published in:
- W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS.

Nucleons are represented as Gaussian wave functions:

\[f_i(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^3 \hbar^3} e^{-\frac{2}{L^2} (\mathbf{r} - \mathbf{r}_i(t))^2} e^{-\frac{L}{2\hbar^2} (\mathbf{p} - \mathbf{p}_i(t))^2} \]

The total one-body Wigner density is the sum of the Wigner densities of all nucleons:

\[\sum_i f_i(\mathbf{r}, \mathbf{p}, t) \]

The potential consists of several terms:

\[\kappa + V_{\text{mdi}} + V_{\text{sym}} + V_{\text{Coul}} + t_2 \delta(\mathbf{r}_i - \mathbf{r}_j) \rho^{-1}(\mathbf{r}_i) + \frac{\mathbf{r}_i}{\mu} + \frac{\mathbf{r}_j}{\mu} + (\mathbf{r}_i - \mathbf{r}_j)^2 \delta(\mathbf{r}_i - \mathbf{r}_j) + Z_i Z_j e^2 \mathbf{r}_i \mathbf{r}_j |r_i - r_j| \]

In nuclear matter, \(t_1, t_2, t_4, t_5 \) uniquely related \(\alpha, \beta, \delta, \) and \(\varepsilon \) and \(\delta \) are given by fits to the optical potential extracted from elastic scattering data in pA collisions.

\(\alpha, \beta, \gamma : 2 \) are constrained by volume energy has a minimum of \(E/A(\rho_0) = -16 \text{ MeV} \) at \(\rho_0 \).

<table>
<thead>
<tr>
<th>(\alpha) (MeV)</th>
<th>(\beta) (MeV)</th>
<th>(\gamma)</th>
<th>(\delta) (MeV)</th>
<th>(\varepsilon) (MeV)</th>
<th>(K) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM -390</td>
<td>320</td>
<td>1.14</td>
<td>1.57</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>HM -130</td>
<td>59</td>
<td>2.09</td>
<td>1.57</td>
<td>500</td>
<td>376</td>
</tr>
</tbody>
</table>
Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State

Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State

Elliptic flow at mid-rapidity:
the strongest sensitivity to the Nuclear Equation of State

Complete shape of $v_2(y_0)$: a new observable:

$$v_{2n} = |v_{20}| + |v_{22}|,$$

from fit

$$v_2(y_0) = v_{20} + v_{22} \cdot y_0^2$$

Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State

$v_{2n}(E_{\text{beam}})$ varies by a factor ≈ 1.6, $>>$ measured uncertainty (≈ 1.1)

\Rightarrow clearly favors a ‘soft’ EOS.

Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State

$\rightarrow v_{2n}(E_{\text{beam}})$ varies by a factor ≈ 1.6, \gg measured uncertainty (≈ 1.1)

\rightarrow clearly favors a 'soft' EOS.

Survey of the reaction

Only protons are considered in the following, Au+Au with b=6 fm as illustration

z: beam direction
x: impact parameter direction
y: perpendicular to reaction plane

\(t_{\text{pass}} \) = passing time

IQMD (SM) \(^{197}\text{Au} + ^{197}\text{Au} \) at 1.5 AGeV, \(b = 6 \text{ fm} \)

yield/event/fm²

reaction plane

transversal plane
Survey of the reaction

Only protons are considered in the following, Au+Au with $b=6$ fm as illustration:

- z: beam direction
- x: impact parameter direction
- y: perpendicular to reaction plane
- t_{pass} = passing time

Central (participant) matter is highly compressed at max. overlap ($t = 0.5t_{\text{pass}}$).
Survey of the reaction

Only protons are considered in the following, Au+Au with b=6 fm as illustration.

- **z**: beam direction
- **x**: impact parameter direction
- **y**: perpendicular to reaction plane

\(t_{\text{pass}} = \text{passing time} \)

Central (participant) matter is highly compressed at max. overlap (\(t = 0.5t_{\text{pass}} \)).

Projectile and target remnants stay connected for longer than \(t_{\text{pass}} \) by a ridge with a quite high particle density. This ridge will disintegrate when projectile and target remnants separate further.
Survey of the reaction

Only protons are considered in the following, Au+Au with b=6 fm as illustration.

- z: beam direction
- x: impact parameter direction
- y: perpendicular to reaction plane
- \(t_{\text{pass}} = \) passing time

Central (participant) matter is highly compressed at max. overlap (\(t = 0.5t_{\text{pass}} \)).

Projectile and target remnants stay connected for longer than \(t_{\text{pass}} \) by a ridge with a quite high particle density. This ridge will disintegrate when projectile and target remnants separate further.

The importance of this ridge can be seen in the zy plane at max. overlap \(\rightarrow \) the highest density at \(z=0 \), in the ridge.
Survey of the reaction

The choice of the EoS influences the reaction scenario predicted by the model \(\Rightarrow\) reflected by the difference (SM-HM) of the proton densities projected onto the \(ij\) plane,

\[
\Delta \rho_{ij} = \rho_{ij}^{SM} - \rho_{ij}^{HM} \text{ (event}^{-1}\text{fm}^{-2})
\]
Survey of the reaction

The choice of the EoS influences the reaction scenario predicted by the model \(\Rightarrow \) reflected by the difference (SM-HM) of the proton densities projected onto the \(ij \) plane,

\[
\Delta \rho_{ij} = \rho_{ij}^{SM} - \rho_{ij}^{HM} \text{ (event}^{-1}\text{fm}^{-2})
\]

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS.
At larger distances from the reaction center: higher density for a hard EoS.
Survey of the reaction

The choice of the EoS influences the reaction scenario predicted by the model \(\Rightarrow \) reflected by the difference (SM-HM) of the proton densities projected onto the \(ij \) plane,

\[
\Delta \rho_{ij} = \rho_{ij}^{SM} - \rho_{ij}^{HM} \text{ (event}^{-1}\text{fm}^{-2})
\]

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS.
At larger distances from the reaction center: higher density for a hard EoS

At 0.6 AGeV: this surplus in the density for a hard EoS is larger in \(x \)-direction, but it becomes rather isotropic at 1.5 AGeV
The choice of the EoS influences the reaction scenario predicted by the model ⇒ reflected by the difference \((SM-HM)\) of the proton densities projected onto the \(ij\) plane,

\[
\Delta \rho_{ij} = \rho_{ij}^{SM} - \rho_{ij}^{HM} \text{ (event}^{-1}\text{fm}^{-2})
\]

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS. At larger distances from the reaction center: higher density for a hard EoS.

At 0.6 AGeV: this surplus in the density for a hard EoS is larger in \(x\)-direction, but it becomes rather isotropic at 1.5 AGeV.

The excess in \(x\)-direction has its origin in the in-plane flow of the spectator matter expressed by a finite directed flow \((v1)\):

\(v1\) (hard) >> \(v1\) (soft)
Survey of the reaction

The choice of the EoS influences the reaction scenario predicted by the model \(\Rightarrow \) reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

\[
\Delta \rho_{ij} = \rho_{ij}^{SM} - \rho_{ij}^{HM} \text{ (event}^{-1}\text{fm}^{-2})
\]

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS.
At larger distances from the reaction center: higher density for a hard EoS

At 0.6 AGeV: this surplus in the density for a hard EoS is larger in x-direction, but it becomes rather isotropic at 1.5 AGeV

The excess in x-direction has its origin in the in-plane flow of the spectator matter expressed by a finite directed flow \((v_1)\):
\(v_1\text{ (hard)} \gg v_1\text{ (soft)}\)

In y-direction the surplus in density of the hard EoS is concentrated at around \(z=0\), being less extended but stronger at higher energies. The emission of these particles is caused by a stronger density gradient (and hence a stronger force) in y-direction for a hard (HM) EoS as compared to a soft (SM) one.
Survey of the reaction at t_{pass}

In velocity space we observe a complementary distribution.
Survey of the reaction

In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS
Survey of the reaction at t_{pass}

In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS.

This is due to a smaller acceleration yielding a weaker in-plane flow and hence a smaller velocity in x-direction.
Survey of the reaction at t_{pass}

In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS.

This is due to a smaller acceleration yielding a weaker in-plane flow and hence a smaller velocity in x-direction.

The soft EoS leads also to less stopping.
We select now fast moving particles in the transverse direction at mid-rapidity: $|y_0| < 0.2$, $ut_0 > 0.4$ (used by the FOPI collaboration for the v_2 investigation) in color. Compared to all (black contours).
We select now fast moving particles in the transverse direction at mid-rapidity:

$$|y_0| < 0.2, u_t > 0.4$$ (used by the FOPI collaboration for the v_2 investigation) in color. Compared to all (black contours).

At full overlap:

- the innermost participants = a dense almond shaped core, out-of-plane elongated, compression is highest.
We select now fast moving particles in the transverse direction at mid-rapidity:

\[|y_0| < 0.2, \ u_{t0} > 0.4 \] (used by the FOPI collaboration for the v2 investigation) in color. Compared to all (black contours).

At full overlap:

- the innermost participants = a dense almond shaped core, out-of-plane elongated, compression is highest.

- the outermost participants = more dilute, extending in-plane, aligned with the spectator distribution.
Survey of the reaction

We select now fast moving particles in the transverse direction at mid-rapidity:

\[|y_0| < 0.2, u_t > 0.4 \] (used by the FOPI collaboration for the \(v_2 \) investigation) in color. Compared to all (black contours).

At full overlap:

- the innermost participants = a dense almond shaped core, out-of-plane elongated, compression is highest.
- the outermost participants = more dilute, extending in-plane, aligned with the spectator distribution.

At passing time, the innermost (compressed) participants expand in-plane, but not with enough pressure to produce a positive elliptic flow \(v_2 \) (seen later), in contrast to higher bombarding energies.
Survey of the reaction

Formation of an in-plane ridge between the bulk of the spectators.
Incident energy $\uparrow \Rightarrow$ ridge & initial almond core density \uparrow
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

at mid-rapidity
The elliptic flow time evolution

\[v_2(t) = \frac{p_x(t) - p_y(t)}{p_x(t) + p_y(t)} \]

\[v_2 \text{ starts to develop after approximately max. overlap and evolves rapidly.} \]

at mid-rapidity

\[0.6 \text{ A GeV} \]

\[0.1 \]

\[0.05 \]

\[0 \]

\[-0.05 \]

\[-0.1 \]

\[1.5 \text{ A GeV} \]

\[0.1 \]

\[0.05 \]

\[0 \]

\[-0.05 \]

\[-0.1 \]
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

- \(v_2 \) starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, \(v_2 \) reaches its final value.

at mid-rapidity
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

- \(v_2 \) starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, \(v_2 \) reaches its final value.
- Negative for most of the collision times and for both energies.

\[0.1 \quad -0.05 \quad -0.05 \quad 0 \quad 0.05 \quad 0.05 \]
\[0.6 \text{ A GeV} \]

\[0 \quad 20 \quad 40 \quad 60 \]

\[1.5 \text{ A GeV} \]
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

- \(v_2 \) starts to develop after approximately max. overlap and evolves rapidly.

- After twice the passing time, \(v_2 \) reaches its final value.

- Negative for most of the collision times and for both energies.

- But a tendency to be positive in the early stage of the collision.
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

at mid-rapidity

- \(v_2 \) starts to develop after approximately max. overlap and evolves rapidly.

- After twice the passing time, \(v_2 \) reaches its final value.

- Negative for most of the collision times and for both energies.

- But a tendency to be positive in the early stage of the collision.

- With fastest protons (\(u t_0 > 0.4 \)) \(v_2 \) is higher and always negative.
The elliptic flow time evolution

\[v_2(t) = \frac{p_x^2(t) - p_y^2(t)}{p_x^2(t) + p_y^2(t)} \]

\(v_2 \) starts to develop after approximately max. overlap and evolves rapidly.

After twice the passing time, \(v_2 \) reaches its final value.

Negative for most of the collision times and for both energies.

But a tendency to be positive in the early stage of the collision.

With fastest protons (\(ut_0 > 0.4 \)) \(v_2 \) is higher and always negative.

SM vs HM: \(v_2 \) at mid-rapidity depends strongly on the EoS; effect enhanced for fastest protons.
The elliptic flow: collisions versus mean field

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

\[
\langle \Delta P^\perp(t) \rangle = \langle \Delta P(t) \cdot \frac{\mathbf{p}_{final}}{\mathbf{p}_{final}} \rangle
\]
The elliptic flow: collisions versus mean field

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$\langle \Delta P_t^0(t) \rangle = \langle \Delta P_t(t) \cdot \frac{p_{final}}{|p_{final}|} \rangle$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone ⇒ this zone of violent collisions expands rapidly keeping its almond shape.
The elliptic flow: collisions versus mean field

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$\langle \Delta P^o_t(t) \rangle = \langle \Delta P_t(t) \cdot \frac{p_{final}}{|p_{final}|} \rangle$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

From mean field: large out-of plane momentum transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone \Rightarrow highest density gradient, largest force \Rightarrow move in y-direction out of the overlap zone.
The elliptic flow: collisions versus mean field

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

\[\langle \Delta P^y_t(t) \rangle = \langle \Delta P_t(t) \rangle \cdot \frac{\rho_{final}}{\rho_{final}} \]

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone ⇒ this zone of violent collisions expands rapidly keeping its almond shape.

From mean field: large out-of-plane momentum transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone ⇒ highest density gradient, largest force ⇒ move in y-direction out of the overlap zone.

Outer blue areas ⇐ attractive potential of the remnant, deceleration.

Inner blue area: inner density decreases and attraction by the moving spectators ⇒ transverse velocity decreases

0.6 A.GeV, mid-rapidity, \(u_t > 0.4 \)
The elliptic flow: collisions versus mean field

Little difference between 0.6 AGeV and at 1.5 AGeV.

1.5 A.GeV, mid-rapidity, $u_{t0}>0.4$
The elliptic flow: collisions versus mean field

\[\langle \Delta P_i^0(t) \rangle = \langle \Delta P_i(t) \rangle \cdot \frac{p_{i, \text{final}}}{|p_{i, \text{final}}|} \]

\(v^2 \) directly related to its anisotropy in \(x \) and \(y \).

Collision contribution: always much larger than that of mean field.
The elliptic flow: collisions versus mean field

![Graph showing the comparison between collisions and mean field for different energy levels.](image)
Excess in the y-direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.
The elliptic flow: collisions versus mean field

Excess in the y-direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

K_0 has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.
The elliptic flow: collisions versus mean field

Excess in the y-direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

K_0 has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches v_2<0 due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.
The elliptic flow: collisions versus mean field

Excess in the y-direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

K$_0$ has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches $v_2<0$ due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.

Without Pauli blocking, there would be a collisional contribution to the EoS dependence of v_2.
The elliptic flow: collisions versus mean field

Excess in the y-direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

\(K_0 \) has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches \(v_2<0 \) due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.

Without Pauli blocking, there would be a collisional contribution to the EoS dependence of \(v_2 \).

Mean field contribution to \(v_2<0 \): dependent on incident energy and \(K_0 \): moderate at 0.6 AGeV with the soft EoS, contributing to only 30% of the total \(\Delta P_y^0 - \Delta P_x^0 \), very strong and dominating at 1.5 AGeV with the stiffer EoS.
The elliptic flow: collisions vs mean field

At passing time:
- inner $R_{xy} < 4\ \text{fm}$
- outer $R_{xy} > 4\ \text{fm}$
- id., from m.f.
- id., from coll.

V_2 vs time (fm/c)

- 0.6 A GeV
- 1.5 A GeV

SM mid-rapidity HM
The elliptic flow: collisions vs mean field

Outermost nucleons ($R_{xy} > 4$ fm) = the main source of the overall negative v_2:
The elliptic flow: collisions vs mean field

Outermost nucleons ($R_{xy} > 4$ fm) = the main source of the overall negative v_2 :

* From collisions: the early in-plane screening by the spectators ($\rightarrow v_2 < 0$) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution ($v_2 \approx 0$).
The elliptic flow: collisions vs mean field

Outermost nucleons ($R_{xy} > 4$ fm) = the main source of the overall negative v_2:

* From collisions: the early in-plane screening by the spectators ($\rightarrow v_2 < 0$) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution ($v_2 \approx 0$).

* From the mean field: density gradient larger at the tips of the overlapping zone (outermost nucleons); decreases later due to the formation of the in-plane ridge.
Outermost nucleons ($R_{xy} > 4$ fm) = the main source of the overall negative v_2 :

* From collisions: the early in-plane screening by the spectators ($\rightarrow v_2 < 0$) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution ($v_2 \approx 0$).

* From the mean field: density gradient larger at the tips of the overlapping zone (outermost nucleons); decreases later due to the formation of the in-plane ridge

* Asymptotically, the mean field = the main origin of the overall out-of-plane v_2, apart from reactions at energies below 1 AGeV where the collisions contribute equally when the nuclear matter EoS is soft, i.e. the number of collisions is large.
The elliptic flow: incident energy dependance

![Graph showing the elliptic flow as a function of beam energy for Au+Au collisions with b = 4 fm. The graph compares FOPI data with IQMD model predictions with and without u_{t0} cuts.](image-url)
The elliptic flow: incident energy dependance

- Strong beam energy dependence for $E_{\text{inc}} > 0.4$ AGeV

![Graph showing elliptic flow vs beam energy with FOPI data and IQMD predictions.](image-url)
The elliptic flow: incident energy dependance

- Strong beam energy dependence for $E_{\text{inc}} > 0.4$ AGeV
- Maximum of amplitude at around 0.6 AGeV.

\[u_{10} > 0.8 \]

\[V^2 \]

![Au+Au, b = 4 fm](image)

- FOPI data
- IQMD (SM) - dashed: no u_{10} cut
- IQMD (HM) - idem

beam energy (GeV/nucleon)
The elliptic flow: incident energy dependence

- Strong beam energy dependence for $E_{\text{inc}} > 0.4$ AGeV
- Maximum of amplitude at around 0.6 AGeV.
- Strength enhanced with protons with a large transverse velocity.
The elliptic flow: incident energy dependance

- Strong beam energy dependence for $E_{\text{inc}} > 0.4$ AGeV
- Maximum of amplitude at around 0.6 AGeV.
- Strength enhanced with protons with a large transverse velocity.
- Comparison with FOPI observations (protons with $u_{t0} > 0.8$, same impact parameter) \Rightarrow good agreement (amplitude and evolution) using the soft (SM) EoS.
Summary
Summary:

- Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy
Summary:

❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
Summary:
❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1 \text{ AGeV}$ for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
Summary:
❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
Summary:
❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
Summary:

❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1 \text{ AGeV}$ for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
Summary:

❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
❖ At largest out-of-plane emission (0.6 AGeV\leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
Summary:
❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
❖ At largest out-of-plane emission (0.6 AGeV\leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
❖ In all other cases the contribution of the mean field dominates.
Summary:
❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1\ \text{AGeV}$ for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
❖ At largest out-of-plane emission ($0.6\ \text{AGeV} \leftrightarrow \text{max. stopping}$), for a soft EoS, collisional and mean field contributions are about equal,
❖ In all other cases the contribution of the mean field dominates.
❖ Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction
Summary:

❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
❖ At largest out-of-plane emission (0.6 AGeV\leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
❖ In all other cases the contribution of the mean field dominates.
❖ Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction
❖ This effect is amplified if one selects particles with a high transverse velocity.
Summary:

❖ The elliptic flow observed in the reactions around $E_{\text{kin}} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:
 ❖ the collisions of participant nucleons with the spectator matter
 ❖ the acceleration of participants in the mean field.
❖ The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
❖ At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
❖ In all other cases the contribution of the mean field dominates.
❖ Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction
❖ This effect is amplified if one selects particles with a high transverse velocity.
❖ The calculations with a soft EoS (SM) are in better agreement with the experimental data than that with a hard equation of state (HM).
Thank you for your attention!
Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

- limited to $E_{\text{beam}} < 10$ A.GeV ⇔ some kind of a clock is available (sound velocity versus participant-spectator interaction).
- KaoS (1990’s), C+C, Au+Au, K$^+$ yields → 'soft' EOS. But:
 - kaons rare at $E_{\text{beam}} = 0.8$ A.GeV (max. sensitivity to the EOS).
 - all 'bulk' observables (multiplicities, clusterisation, stopping, flow) under control in the transport model?
- EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus QMD → no strong sensitivity on the nuclear incompressibility K_0.
- FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport codes → 'no strong constraint on the EOS can be derived at this stage'.
- BEVALAC & AGS accelerators, proton flows versus transport theories → $K_0 = 167$-200 MeV (soft) from V_1, $K_0 = 300$ MeV (semi-stiff) from V_2 → contradictions.
Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

Some kind of a clock is available (sound velocity versus participant-spectator interaction).

- Au, K+ yields \(\rightarrow \) 'soft' EOS. But:
 - \(E_{\text{beam}} \leq 0.8 \text{ A.GeV} \) (max. sensitivity to the EOS).

- All 'bulk' observables (multiplicities, clusterisation, stopping, flow) under control in model?

- EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus QMD \(\rightarrow \) no strong sensitivity on the nuclear incompressibility \(K_0 \).

- FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport codes \(\rightarrow \) 'no strong constraint on the EOS can be derived at this stage'.

- BEVALAC & AGS accelerators, proton flows versus transport theories \(\rightarrow \) \(K_0 = 167-200 \text{ MeV (soft)} \) from \(V_1 \), \(K_0 = 300 \text{ MeV (semi-stiff)} \) from \(V_2 \) \(\rightarrow \) contradictions.
The elliptic flow

- Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy