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General Overview

® The factorization of the N-point Veneziano amplitude defined
the spectrum of excited states of the corresponding DRM.

® These states could be described within the space of states
of a quantized vibrating material string.

® This suggested that the DRM should be pictured as
describing rubber bands, threads or strings.

® This material string description was a metaphor rather than
a detailed analogy, because the energy (rest mass) of the
excited states of such a material string are equally spaced,
while the squared masses of the states in the DRM have
equal spacing.



General Overview

® As a result, the string interpretation of the DRM initially
had little impact on the development of the theory.

® Once the subtleties of the states of the DRM had been
understood, the geometric action principle of Nambu and
Goto, was shown to lead to a quantum theory that describes
precisely the DRM's physical states and dynamics, including
interactions.

® Then the conceptualization of the DRM as string theory
gained acceptance.
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Factorization
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My = /2(1 — ap)

Ap has poles evenly spaced in s i.e. M12 = 2(l — ag)
rest energy levels spaced like /[ — «y.

Simple Harmonic Oscillator energy levels evenly spaced in |.



Metaphors and Analogies
Nambu, Wayne Univ. Conf., 18-20 June 1969
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ing amplitude seems to be free of ghosts.® But the general answer to this ques-
tion is not known vyet.

The appearance of harmonic oscillators in our problem is intriguing since
the simple bound-state picture of quarks with a harmonic oscillator potential
would naturally give rise to linear trajectorics and the U (3, 1) level scheme.
We can bring out this analogy more clearly in the following way. Let us
introduce a Bose field ¢,(£) and its canonical conjugate n, (&), which are even
and periodic with periodicity 2z in &, In analogy to the ordinary field theory,
we decompose it into plane waves:

P (&) = Z L._ (@ + al"")cos rE
r=1 \/2r

P fioe
m(8) = Y i\f —:— (@' — a;'") cos ¥ (16)
r=1 “

where we have excluded the constant mode r = 0. The @'s and a*’s are the
operators we have defined above. In view of Eq. (13), the quantum number N
which determines the resonance energy can be written
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Metaphors and Analogies
Nambu, Wayne Univ. Conf., 18-20 June 1969
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Nambu: this "suggests that the internal energy of a meson
is analogous to that of a quantized string of finite length (or

a cavity resonator for that matter) whose displacements are
described by the field ¢H",

.. but the energy of a DRM meson ~ /I — qy.

Lo describes the fransverse vibrations of a material string,
e moving in a non-physical space, RLL x RLP=L
e coordinates o, 7,and ¢"
e stretched between o = 0and o = mon the o-axis,
e with 7 (rather than ¢0) being the fime variable.

e energy of material string [ not analogous to energy in DRM



L. Susskind: Dual symmetric theory of hadrons | [1970]

“a meson is described by the degrees of freedom of

a four-dimensional rubber band with a quark pair
[at the ends]”

“the level spacing separating rotational excitations of
hadrons is very nearly a universal quantity of order
1(GeV)? The only systems which are known from
quantum mechanics to possess this property are
harmonic systems such as a harmonic oscillator.”

e but hadron level spacing is in energy squared whereas
harmonic oscillator spacing is in energy



L. Susskind: Dual symmetric theory of hadrons | [1970]

“a meson is composed of a quark-antiquark pair at the
ends of an elastic string” which generates a two-

dimensional strip or “world sheet” as it moves through
space-time.

Interactions are pictured as a single “elastic string” interacting
with quanta through the quarks at its ends. The various ways of

singling out the “string”’ are equal as a result of “dual
symmetry’’.




Nambu: “a quantized string of finite length”

Susskind: “the degrees of freedom of the internal
state of a hadron are equivalent to those of a violin
string or an organ pipe”

® states of DRM constructed within space of states
of material string

® quotient space of subspace

® potentially there are ghost states

e string is in an unphysical space: R'''x R':P-!
with two time variables 7, ¢°

® energies of DRM and string do not agree
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integrand of the n-point Veneziano Model

H. B. Nielsen



An almost physical interpretation of the
integrand of the n-point Veneziano Model

H. B. Nielsen

® Fairlie-Nielsen analogue model: Koba-Nielsen DRM integrand
= heat generated by steady current flow in a disc

® can be used by analogy to calculate M loop integrands,
agreeing with operator formalism

® DRM is approximation to contribution of very complicated
fishnet Feynman diagrams — argued to be two-dimensional

® gives intuitive picture of DRM interactions as “threads”
joining and splitting
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® DRM is approximation to contribution of very complicated
fishnet Feynman diagrams — argued to be two-dimensional
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“it is possible to interpret the generalized Veneziano
[amplitude as] a model in which the mesons are thread like
structures ... Hadronic interactions are conceived of then as
processes in which threads [join] at the end points into

longer threads which are then split up into ... shorter threads.”



“it is possible to interpret the generalized Veneziano
[amplitude as] a model in which the mesons are thread like
structures ... Hadronic interactions are conceived of then as
processes in which threads [join] at the end points into ...
longer threads which are then split up into ... shorter threads.”



Nambu | 18 Jun 69 quantized string of finite length; cavity
Susskind | 23 Jun 69| spring; continuum limit of chain of springs.
Susskind | 11 Jul 69 violin string; organ pipe;

continuum limit of chain of springs.

Nielsen 69-70 one-dimensional structure;

infinitely complicated Feynman diagrams;
infinitely-long chain of molecules;
thread-like structure; thread or stick.
Susskind | Jul/Aug
Susskind = 3 Jan 70 rubber band; violin string; elastic string;
Nambu Aug 70 elastic string of finite intrinsic length;

elastic string; rubber string; rubber band.

Terms used to inferpret the Veneziano model in 1969-70



Ghosts

Physical States

Loly) = |);  Lnl$) =0, n>0,

(L, Ll = (m —n) Ly + %m(m2 — 1)0m.—n;
Null Physical States
L_il¢o);  if D =26, (L—z + %L2_1) o—1)

Lolep) =1lép);  Laplg) =0, n >0,
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DDF states

dOH
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The A!, generate the space of DDF states, manifestly positive
definite.

When D = 206 these are essentially all the physical states, the
rest are null.



Characterization of DDF states |f) :

Lplf) = Knlf) =0, n>0,  Lo|f) = Kolf) =),

Use algebra :
[Lma Kn] — _nKm+n ) [Kma Kn] = 0.

(L, Ly = (m — n) Ly + %m(m2 — 1)0m.—n;
No Ghost Theorem

If [¢)) is a physical state and D = 26, then
V) = 1) + In),

where |f) is a DDF state and |n) is a null physical state.



Lovelace [1971]:

nonplanar loop needs D = 26

and for 2 dimensions of oscillators
to be effectively removed

to avoid a unitarity violating cut

achieved by null states
corresponding to one dimension of
oscillators at D = 26

at D =26 cut becomes a pole
corresponding to closed string
states



Nambu undelivered Copenhagen Talk Aug 1970
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Nonetheless, Eq.(13) is not a purely geometrical quantity. For curiosity,
then, let us try to construct a geometric action integral as one does in general
relativity. Obviously a natural candidate for it is the surface area of the two-
dimensional world sheet; another would involve its Riemann curvature. The
sheet is imbedded in the Minkowskian 4-space, so one can parametrize its
points as y#(£°, &), (€0 ~ 7,€! ~ £). The surface element is a o—tensor

do*” = G* d%¢,
G = d(y",y") /9", €") (22)

whereas its line element is

d32 = gaﬁdfadea (Ol, g =0, 1)
9as = (Dy,/0€°)(0y" [9€°) (23)

A possible action integral would be

I= /[afa,,,,dcf‘“’ll/2 = // |2detg|'/?d*¢ (24)

to be compared with the old one (13) which can be written (y — )

I= 'Zl; / / ges 0 6, &= (‘01 (1)) (25)

It is obvious that Eq.(24) leads to nonlinear equations. More complicated
equations involving curvature would be not only nonlinear, but also have
higher derivatives.
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A possible action integral would be
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A possible action integral would be

I= / |do, dot |2 = / f [2detg|!/2d%¢ (24)

It is obvious that Eq.(24) leads to nonlinear equations. More complicated
equations involving curvature would be not only nonlinear, but also have

higher derivatives.
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A possible action integral would be
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It is obvious that Eq.(24) leads to nonlinear equations. More complicated
equations involving curvature would be not only nonlinear, but also have
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A possible action integral would be
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It is obvious that Eq.(24) leads to nonlinear equations. More complicated
equations involving curvature would be not only nonlinear, but also have

higher derivatives.
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Geomefric Reparametrization invariant

Nambu-Goto ‘string’
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Canonical Quantization

P=k=k-é=k- =0, e e =9 kok=—1

~ 1
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closure of Lorentz algebra requires D =26, «ay=1.



Covariant Quantization

[am, ak] = mn™" 6m.—n, 0<pu,v<D-—1.

(W|Lnlh) = agdp
impose physical state conditions
Lplp) =0, n>0;  Loly) = aly)) -
absence of ghosts requires
D =26, ay=1, or D <26, ap< 1.

If D < 26, anomalous longitudinal modes are present.



Summary

® The states of DRM constructed using harmonic oscillators.
® Suggests metaphor or analogy of a quantized material string.

® Problems: space-time unphysical; ghosts; energies different;
space of states too big.

® Operator formalism, analogue model provide means of
calculating.

® Virasoro constraints, algebra, when ap = 1.

® Lovelace: D = 26, D - 2 dimensions of physical oscillators for
consistency of loops

® Nambu-Goto geometric action: only fransverse modes

® No Ghost Theorem: only transverse modes if D = 26, ap = 1.



The states of DRM constructed using harmonic oscillators.
Suggests metaphor or analogy of a quantized material string.

Problems: space-time unphysical; ghosts; energies different;
space of states foo big.

Operator formalism, analogue model provide means of
calculating.

Virasoro constraints, algebra, when ao = 1.

Lovelace: D = 26, D - 2 dimensions of physical oscillators for
consistency of loops

Nambu-Goto geometric action: only transverse modes

No Ghost Theorem: only transverse modes if D = 26, ap = 1.

Canonical quantization of Nambu-Goto string needs D = 26, ap = 1.

String interactions by splitting, joining give DRM [Mandels’ram]l
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