Finite Energy Sum Rules in CFTs

Alexander Zhiboedov, Harvard U
50 Years of The Veneziano Model

with Baur Mukhametzhanov, (to appear)



Veneziano Amplitude

In the original paper by G. Veneziano there 1s an interesting and
slightly confusing formula (FESR)

[Veneziano 68’]

V

fv Im A(v, t)dv =

0

5(t) e’ ?)) X{t)— 1-2
a(t) +1




Veneziano Amplitude

In the original paper by G. Veneziano there 1s an interesting and
slightly confusing formula (FESR)

s-channel resonances [Veneziano 68']

f / 6(t) e’ ‘3/') X{£)— 1-2

y Im A(v, 1) dv =
r(t) + 1

0



Veneziano Amplitude

In the original paper by G. Veneziano there 1s an interesting and
slightly confusing formula (FESR)

s-channel resonances [Veneziano 68']

f / 6“) e’ ‘2)) X{£)— 1-2

y Im A(v, 1) dv = ()+l
0 /

t-channel Regge pole




Veneziano Amplitude

In the original paper by G. Veneziano there 1s an interesting and
slightly confusing formula (FESR)

s-channel resonances [Veneziano 68']

f / 6“) e’ ‘2)) X{£)— 1-2

y Im A(v, 1) dv = ()+l
0 /

t-channel Regge pole

The density of states 1s given by a sum of delta-functions

BI(1-—a(t))

D) (2 — T — a(t)) 6(s —8,)(— 1)+ (L u) .

ImAmn~—E



Veneziano Amplitude

In the original paper by G. Veneziano there 1s an interesting and
slightly confusing formula (FESR)

s-channel resonances [Veneziano 68']

f / ﬁ(t) e’ ‘Z«') X{£)— 1-2

y Im A(v, 1) dv = ()+1
0 /

t-channel Regge pole

The density of states 1s given by a sum of delta-functions

(1 —«(t))

D) (2 — T — a(t)) 6(s —8,)(— 1)+ (L u) .

ImAmn~-E

What 1s the actual meaning of this equation? 7 /_




Veneziano Amplitude

V

fv Im A(v, ) dv =

0
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The two are asymptotically the same:
a(v) ~ b(v), (7 — o0)

lim a(?) — 1
%
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Finite Energy Sum Rules

The usual derivation of the finite energy sum rules 1s based

on analyticity and Regge theory lgi 6271, [lqi, Matsuda 67°]

[Soloviev, Logunov, Tavhelidze 67°]
[Dolen, Horn, Schmid 67°]
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on analyticity and Regge theory lgi 6271, [lqi, Matsuda 67°]
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7{ ds(s — u)" A(s. 1) = 0

t-channel
(Regge poles)
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sehanimel. / ds(s —u)"ImA(s,t) = f(t)sp(t) + ...
0

(resonances) )

This 1s an example of crossing.

Unjustified for meromorphic amplitudes.



Asymptotic Energy Sum Rules

Another way to derive 1t: dispersion relations, unitarity,
tauberian theorem.

The result 1s formula from the paper by Veneziano

V

s \E{E)—1 =2
f y Tm Ay, t)dv— POEEDTT T
T x(f) 4 1

asymptotically t >0

0

Asymptotic is rigorous!
(large N QCD)
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[t works great for finite energy as well.

s exact
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[Veneziano’s talk]

S

(Similarly, one can see the subleading corrections)

How general it is?
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Plan

The goal of my talk 1s to describe a similar construction
for unitary CFTs.

14(37 t) < > C(J, A)
(scattering amplitude) (conformal partial wave)
s — plane < > A — plane
resonances < > primary operators
Regge limit - > Fuclidean OPE

dispersion relations

Result: solving crossing in 1/A expansion

(analytic Euclidean bootstrap)



Conformal Bootstrap

Consider the four-point function of 1dentical operators:

G(u,v
(O(21)O(x2)O0(23)O(24)) = 2( > )A
- (51271232734)
B 33123334 o ’2614'%23
L1324 L1324
O(ﬂ?Q) (9(333)
O(z2) O(xs3) \/

O,

s-channel Y \
/

S
=3 o, t-channel
S

(
O(iEl)

334)

CFT data: (A, J) )\ijk
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Conformal Bootstrap

(0(0)0(2,2)O(1)O(0)) @® numerical bootstrap
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Tentative
CFT data ' .
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Conformal Bootstrap

@® numerical bootstrap
(conformal oracle)

Tentative
CFT data ' .

[Rattazzi, Rychkov, Tonni, Vichi] MAYBE
[Rychkov talk]

@ analytic bootstrap

AdS [ ] [ ] [ ]
ass  (expansion in spin)
U= 22 = o f/\ < ||ghf-cone OPE
13ad - Fisher'”). In addition, general properties of the anomal-
—(1-2)(1-2) = L14%23 ous dimensions of operators with high spins have been

ZE%3$%4 derived. [Parisi 72’] [Callan, Gross 73°] [Polyakov 74°]
~———
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Tauberian Theorem and Euclidean Bootstrap

[Pappadopulo, Rychkov, Espin, Rattazzi 12’]
i L . B [Rychkov, Yvernay 15’]
Consider the limit of cross ratios z,z — 1 [Qigo, Rychkoy 17"

In one channel the correlator 1s controlled by light operators

(Euclidean short distance OPE)

In the other channel the correlator 1s dominated by heavy operators

[ dE s~ s (1r0r) P70
2, Z~e P J(E) = Z A0 (E — Ag) . \
k RN /}

Hardy-Littlewood Tauberian Theorem:

" / / EQAO _ 1 _
—- /O oE f(E)NF(zA@H) _1+O(logE)_
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Example

Asymptotic of the integrated density does not fix asymptotic
of the density itself
E2A—1

[(2A)

f(E) = (1 + asin E1)

Asymptotic of the density depends on alpha.

Asymptotic of the integrated density 1s universal.

E 2A
E 2N\ cos BT
E f(E" = 1 — Lo
/O AEJ(E) F(2A+1)< T EBr >




Analytic Euclidean Bootstrap

<

How do we solve crossing
in the Euclidean OPE region
more efficiently?

Primaries of different spin mix

What happens to corrections?
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Conformal Partial Wave Expansion

There 1s a more primitive expansion of the correlator
d /24100 AN

(z, Z) Z/ o c(J,A)Fa j(z,Z) + (non — norm)
d

/2—100

Conformal partial waves are given by

By closing the contour we recover the OPE expansion.

I

This is achieved by c(J, A) being meromorphic with its residues
fixed in terms of the three-point functions.
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Properties of Partial Waves

* Shadow symmetry

c(J,A) =c(J,d— A)

* Meromorphy and OPE

)\2
—Resarsac(J,A) = 2L A £A,
KA
)\2
—Resarsa c(J, A7) = = o, (A
KA

~42 A1

KA

* Polynomial boundedness

A, =J+d+n,

1 —d,J

d—1)

N universal singularities

of conformal blocks

(Caron-Huot's inversion formula)



Lorentzian Inversion Formula

[Caron-Huot 177]

c(J, A) F(=1)7e"(J,A)

= c"(J, A
1

/ dzdzu 2,2 GJ—|—d 1,A+1— d(Z Z)dDISC[g(ZaZ)]
0
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c(J,A) = ct(J,A) + (=1)7c“(J, A)
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Lorentzian Inversion Formula

[Caron-Huot 177]

c(J,A) = ct(J,A) + (=1)7c“(J, A)
c*(J, A):/O dzdzZu(z,z)G j+4—1.A+1—d(2, 2)dDisc|G(z, Z)]

s-channel data

* Valid for J>1 (in the planar limit J>2)

+ Equal to the square of a commutator

1
dDisc|[G(z, 2)] = = ([02(~1), O3(=p)||01(1), Oa(p)]) 2 0
| ) (A —2A— I L, [1—aA - pA
dDisc|G(z, 2)] ~ (;], sin < 5 ) Ao g T+ vp T4 7
4p

t-channel data (1+ p)?
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Lorentzian Inversion Formula and OPE

Let us plug t-channel OPE in the inversion formula:
i, J

Lorentzian Analytic Bootstrap: expansion of ¢(J, A)

at large spin J and fixed twist A — J is controlled by
the light-cone OPE

( 1/] expansion)
Fuclidean Analytic Bootstrap: expansion of ¢(J, A)

at large scaling dimension A and fixed spin J
1s controlled by the short-distance OPE

( 1/dimension expansion)



Unit Operator

Let us 1nvert the unit operator in the t-channel
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Unit Operator

Let us 1nvert the unit operator in the t-channel

2z Ao 2Z Ao
G(z,2) = <(1_2)(1_2)> + ... * dDiscG(z, z) = 2sin (WAO)((l—z)(l—Z)) + .

extra poles physical poles

F( A_I_é]—l_l )F ( —A—I—ZZAO—I—J)

F(559)T (557 - Ao +5)

c(J;A) ~ f(A)f(d=A)  f(A)=

c(J,A) ~ Atro=2dtL (1Al 5 50)  (polynomially bounded)

This also represents the full answer in the theory of generalized

free fields
(OO0O0) = (OOYOO) + perm
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Dispersion Relations

Having identified a meromorphic polynomially bounded
function 1t 1s natural to consider dispersion relations

1 dA' (], A")
—9%¢(J,A) = ’
i OAcld, A) i’gzm (A — A)ntl

We can then drop the contribution from infinity.

Let us introduce the spectral density of primaries of given spin

pFPE(A) =Y 72ER0(A = A)

—~ KA,
/

sum over primaries exponential 4A )\2
of given spin enhancement A,J



Dispersion Relations

Consider for simplicity the case without subtractions
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Dispersion Relations

Consider for simplicity the case without subtractions

d—2 3
0 <A < —
SfoT Ty Ry
/OO dv' p9tE(d/2 + V') i = c(J,d/2 4+ iv) + extra
0 112 —|—V2 7

The extra piece is given by the following sum

O

2(J d
extra = ¥ ( +n)j anc(J+n+1,J+d—1)
no (J+5+n) 412 Vs

controlled by the Euclidean
OPE at large n



Dispersion Relations

We theretore arrive at the following picture

o0 o0 d
/ OPE | _n
/O ' pPE(d)2 + V) ,W ZW z

come from an infinite family

OPE-computable * “tails operators in the s-channel

come from individual
Non-OPE terms: operators 1n the s-channel

We can now apply tauberian theorem to put it into a more
familiar form.



A(symptotic)ESR 1n CFTs d—2

The result 1s that in any CFT the following relations are true:

/AdAAZ FUE(A) ~ ﬁJA—4V O<7§1
0 R AZY 1 4
/O BAGFA ~ 0T tai<l asw
2 A2 1
/O dApG"F (A )~ B Y > -
B, — 98+2/+d—dy 2 L(J+35)

I'(J+1)I'(7)*I'(A0)?

** All CFTs are GFF at large dimension’”’
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Finiteness and Corrections

The subleading tales are accessible via multiple averaging
(taking proper moments).

In this way the 1/dim expansion captures the smooth

information contained in the tails of the spectral density.

As was the case for the Veneziano amplitude one could hope
that these relations start working very well at finite (low)
energies.

What happens at finite scaling dimension? (" operator deserts”)



2d Ising .

Consider the four-point function of spin fields

sin o~ 1_|_\/ﬁ\/5
G2d Tsing(, 2) = A= 2 7A(1 = 7)1/

GFF(, 2\ _ 14 16pp H/8 ] 16pp
o) 1'(u—pvu—ﬁw) '<u+pvu+ﬁ

7



2d Ising .

Consider the four-point function of spin fields

sin o~ 1_|_\/ﬁ\/5
G2d Tsing(, 2) = A= 2 7A(1 = 7)1/

S <(1 - pl)gi)lp— p)z)l/8 J' <(1 + p1)§€f+ p)2)1/8

Let us plot the renormalized spectral density

AAs,J
pFTE(A) = ) =R0(A = A)



[Belavin, Polyakov, Zamolodchikov 84’]

2d Ising

Spin 2 integrated spectral density (stmilar for other spins)

F(A)

A
F(A) = [ dB Ap97E(R) = corpv'/* 44



[El-Showk, Paulos, Poland,

3 d ISing Rychkov, Simmons-Duffin, Vichi 12]

[Simmons-Duffin 16’]

Spin 2 integrated spectral density A, ~ 1.41

15000

10000 |

5000 -
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Conclusions

* Complex plane for conformal bootstrap (A, J)

* New type of analytic bootstrap for % tails

* Something interesting happens at finite A
(Veneziano amplitude, 2d Ising, 3d Ising, large N QCD...)
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Generalizations and Open Questions

J

* Regime — — fixed (connections to previous works)

A

* Finite temperatures, non-identical operators, etc

* Grand Unified Bootstrap (numerical+analytical)

What are the general lessons to be learned
Jrom the Veneziano amplitude?



Thank You!



