R&D Program on Microelectronics for the DarkSide Project Status and Outlook for 2018

Manuel D Da Rocha Rolo

INFN Torino

Consiglio di Sezione - 30.06.2017

Overall Review Process and Status of Darkside

- 2015/12: DS-20k Proposal Submitted
- 2016/04: Successful joint INFN and NSF merit review (excellent for "Intellectual Merit" and "Broader Impact")
- 2016/10: LNGS and first CTS review
- 2017/04: INFN-CSN2 and LNGS-SC approval:

... the CSN2 has highly appreciated the scientific potential of DS and has unanimously approved the project for a total budget of 5 M EUR (investment) in the years 2017-2020, with the goal of having the experiment built and running at the end of 2020.

- 2017/06: NSF budget review ongoing
- 2017/06: second CTS review
- 2017/06: New collaboration agreement with Canada Institutes (Carleton, TRIUMF, Laurentian, Alberta, Queen's, SNOLAB) for a global argon program - capital funding request submitted
- 14 INFN Sections participating to the Darkside Program

VLSI design for DarkSide: scope and plans

DARKSIDE

- Dual TPC DS-20K baseline solution based on cold discrete electronics,
 5210 SiPM (analogue differential) readout channels per TPC
- Strong interest from Collaboration to pursue an R&D on cryogenic CMOS IC readout electronics for fast sensors
- → **INFN Torino invited** to join the Darkside Collaboration (June 2016)
 - <u>Research Line 1</u>: system-level study for a distributed sensor network for multi-ton direct dark matter detectors
 - aggressive pixelisation of SiPM tiles to allow binary mode readout (photon counting) on S1 and S2?
 - deploy a smart sensor network with data-in/data-out capability <u>or</u> use stand-alone multi-channel ASICs and a cold data concentrator?
 - \hookrightarrow validation of a time-based readout architecture, needed to disentangle critical light statistics, sensor and electronics design parameters
 - Research Line 2: design and characterisation of cryogenic CMOS mixed-signal circuits for SiPM readout
 - "Typically it requires three times as many resources and development time to design microelectronic circuits for cryogenic temperature than for room temperature" G De Geronimo
 - → Need for a first silicon to evaluate CMOS UMC110AE at cryogenic operation
 - should feature test structures for parameter extraction $(g_m, V_{th},...)$
 - noise performance of MOSFETs down to 77K
 - VFE compatible with DS-20K SiPM tiles (24 SiPMs, 1x1 cm²)
 - debug probing of analogue front-end (noise, signal slew-rate, bias and DC drift at 77K)
 - digital timing criticality at low-temperature (timing slacks, multiple clock domains)

Plans for a first multi-channel ASIC prototype

- Kick-off: multi-channel mixed-signal IC for SiPM readout
 - testbench for low-temperature noise operation of DSM CMOS technology (110nm node)
 - need for a system-grade ASIC to test SiPM tiles and DAQ
 - focus on a time-based binary readout with time-over-threshold
- Pixel architecture based on leading-edge discriminators and low-power analogue TDCs based on time interpolation
 - sub-ns time stamp on rising and fall edge of fast discriminator output
 - on-chip clock up to 320 MHz (defines TDC binning and data rate)

 - Problems with the analogue TDC at low temperature?
 - \hookrightarrow Don't use it, generate a coarse time only (time bin = T_{clk})
 - pixel generates event data: time-of-arrival and time-over-threshold
- Fully digital LVDS data and SPI configuration IO
- 64-pixel prototype: maximum matrix size on a (minimum slot) 5x5 mm² UMC110AE MPW
- turn-off capability (power-hungry analogue) of unused pixels, masking of screamer pixels
- Design target: 10-15 mW per Pixel (1 cm² SiPM)
- \hookrightarrow low-temperature aware design of a VFE for SiPM readout started
- \hookrightarrow use INFN-Torino silicon-proven IP (discriminators, TDCs, IO drivers, power management)

Plans for the first multi-channel ASIC prototype - Floorplan

- 64 mixed signal pixel matrix, organised in 8 columns
- Pixel hosts SiPM VFE, leading-edge discriminator, 4 TDCs, digital control and interface
- Time-stamp data (Leading edge, ToT) generated on-pixel is propagated along the column
- Distributed bias and power management blocks
- End-of-Column collects data, serialises and manages data links, SPI and column/pixel configuration
- Up to 4 LVDS TX data links, SPI IO, digital power
- VFE input, analogue power, debug for VFE and device characterisation

VLSI design for DarkSide: outlook and plans for 2018

- → First ASIC Prototype MPW submission: target Q4 2017
 - System-grade design at room temperature
 - Testbench for CMOS VFE at cryogenic temperature
- $\,\hookrightarrow\,$ Electrical Characterisation and Laser tests with SiPMs at Room Temperature Torino
- \hookrightarrow System-level Performance Assessment with ReD Napoli
 - an experiment to sense REcoil Directionality in LAr
 - ReD TPC instrumented with Darkside R&D SiPM tiles
 - privileged test bench for an integrated cold mixed-signal electronics
 - success of the ReD experiment could have crucial impact on the broader program for Darkside!
- \hookrightarrow Chip design activities on 2018 design revision towards a second submission during 2019

Requests: Servizio Elettronica

- Marco Mignone 3 mesi test board design (1.5 months contingency cryogenic operation)
- Giulio Dellacasa 5 mesi, chip design
- Richard Wheadon 25%, test setup development (FW/SW)
- Manuel Rolo 40%, chip design

Thank You!

Backup Slides

Towards a binary cold FEE readout: premises

- Readout of 25 cm² SiPM tiles is a big challenge for the cold FEE - noise, dynamic range
- Warm electronics for signal digitisation (S2), good engineering and cold optical transceiver can preserve signal integrity. Scalable solution?
- An integrated electronics targeting the same readout discipline would be a **very. big. challenge.**
- Ongoing R&D on cold electronics (FE+ADC ASICs) for LAr TPCs in dark matter experiments or neutrinoless double beta decay (nEXO), also using SiPMs (BNL)
 - amplification, sampling, digitisation, charge calibration, good energy resolution
 - triggered data transfer energy deposition threshold in the center of the TPC
- Can we change paradigm?
 - is there a pixelisation of the TPC SiPM tiles such that the amount (and time distribution) of photons in S1 and S2 can allow a binary readout?
 - can this be achieved with a relatively low amount of power?
 - how could we read this enormous amount of channels?

Evaluation framework

- Generate with Python a high-Rq single SPAD p.e. signal ("old" $R_a = 40M\Omega$), normalised amplitude
- From TPC simulation results (1 cm² pixels), generate a normal distribution to map the mean arrival time of the photons
- Monte-Carlo results do not include QE and FF of the SiPM
- Consider the maximum number of p.e. of S2 signal in the SiPM that sees most light (ongoing studies including simulation results with adjacent pixels)
- Set a threshold to 0.5 p.e. on an ideal discriminator
- Evaluate efficiency of a binary readout
- ullet Evaluate efficiency of time-based readout scheme (time stamp + ToT)

SiPM equivalent circuit (small signal model) and pulse shape

$\text{Cq} \rightarrow \text{fast current supply path in the beginning of avalanche}$

(slide taken from presentation of G. Collazuol at PD-2012)

Yu. Musienko, INSTR-17, Novosibirsk