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Spontaneous (dynamical) symmetry breaking

Figure: Elastic rod compressed by a force of increasing strength
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Other examples

physical system broken symmetry

ferromagnets rotational invariance
crystals translational invariance
superconductors local gauge invariance
superfluid 4He global gauge invariance

When spontaneous symmetry breaking takes place, the ground
state of the system is degenerate
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Quasi-particles in superconductivity

Electrons near the Fermi surface are described by the following
equation

Eψp,+ = εpψp,+ + φψ†−p,−

Eψ†−p,− = −εpψ†−p,− + φψp,+

with eigenvalues

E = ±
√
ε2p + φ2

Here, ψp,+ and ψ†−p,− are the wavefunctions for an electron and a
hole of momentum p and spin +
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Analogy with the Dirac equation

In the Weyl representation, the Dirac equations reads

Eψ1 = σσσ · pppψ1 +mψ2

Eψ2 = −σσσ · pppψ2 +mψ1

with eigenvalues

E = ±
√
p2 +m2

Here, ψ1 and ψ2 are the eigenstates of the chirality operator γ5
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Nambu-Goldstone boson in superconductivity
Y. Nambu, Phys. Rev. 117, 648 (1960)

Approximate expressions for the charge density and the current
associated to a quasi-particle in a BCS superconductor

ρ(x, t) ' ρ0 +
1
α2
∂tf

jjj(x, t) ' jjj0 −∇∇∇f

where ρ0 = eΨ†σ3ZΨ and jjj0 = eΨ†(ppp/m)YΨ with Y , Z and α
constants and f satisfies the wave equation(

∇2 − 1
α2
∂t

2

)
f ' −2eΨ†σ2φΨ

Here, Ψ† = (ψ†1, ψ2)
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Plasmons

The Fourier transform of the wave equation for f gives

f̃ ∝ 1
q2

0 − α2q2

The pole at q2
0 = α2q2 describes the excitation spectrum of the

Nambu-Goldstone boson.

A better approximation reveals that, due to the Coulomb force,
this spectrum is shifted to the plasma frequency e2n, where n is
the number of electrons per unit volume. In this way the field f
acquires a mass.
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The Goldstone theorem
J. Goldstone, Nuovo Cimento 19, 154 (1961)

Whenever the original Lagrangian has a continuous symmetry
group, which does not leave the ground state invariant, massless
bosons appear in the spectrum of the theory.

physical system broken symmetry massless bosons

ferromagnets rotational invariance spin waves
crystals translational invariance phonons
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The axial vector current
Y. Nambu, Phys. Rev. Lett. 4, 380 (1960)

Electromagnetic current Axial current
⇐⇒

ψ̄γµψ ψ̄γ5γµψ

The axial current is the analog of the electromagnetic current in
BCS theory. In the hypothesis of exact conservation, the matrix
elements of the axial current between nucleon states of
four-momentum p and p′ have the form

ΓAµ (p′, p) =
(
iγ5γµ − 2mγ5qµ/q

2
)
F (q2) q = p′ − p

Conservation is compatible with a finite nucleon mass m provided
there exists a massless pseudoscalar particle, the Nambu-Goldstone
boson.
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In Nature, the axial current is only approximately conserved.
Nambu’s hypothesis was that the small violation of axial current
conservation gives a mass to the N-G boson, which is then
identified with the π meson. Under this hypothesis, one can write

ΓAµ (p′, p) '
(
iγ5γµ −

2mγ5qµ
q2 +m2

π

)
F (q2) q = p′ − p

This expression implies a relationship between the pion nucleon
coupling constant Gπ, the pion decay coupling gπ and the axial
current β-decay constant gA

2mgA '
√

2Gπgπ

This is the Goldberger–Treiman relation
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An encouraging calculation
Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961), Appendix

It was experimentally known that the ratio between the axial
vector and vector β-decay constants R = gA/gV was slightly
greater than 1 and about 1.25. The following two hypotheses were
then natural:

1. under strict axial current conservation there is no
renormalization of gA;

2. the violation of the conservation gives rise to the finite pion
mass as well as to the ratio R > 1 so that there is some
relation between these quantities.

Under these assumptions a perturbative calculation gave a value of
R close to the experimental one. More important, the
renormalization effect due to a positive pion mass went in the right
direction.
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The NJL model: an informal presentation
1960 Midwest Conference in Theoretical Physics, Purdue University
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The Nambu–Jona-Lasinio (NJL) model
Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

The Lagrangian of the model is

L = −ψ̄γµ∂µψ + g
[
(ψ̄ψ)2 − (ψ̄γ5ψ)2

]
It is invariant under ordinary and γ5 gauge transformations

ψ → eiαψ, ψ̄ → ψ̄e−iα

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5
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Mean field approximation

=x

m = −g0mi

2π4

∫
d4p

p2 −m2 − iε
F (p,Λ)
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The spectrum of the NJL model

Mass equation

2π2

gΛ2
= 1− m2

Λ2
ln
(

1 +
Λ2

m2

)
where Λ is the invariant cut-off

Spectrum of bound states

nucleon mass µ spin-parity spectroscopic
number notation

0 0 0− 1S0

0 2m 0+ 3P0

0 µ2 > 8
3m

2 1− 3P1

±2 µ2 > 2m2 0+ 1S0
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Other examples of BCS type SSB

I 3He superfluidity

I Nuleon pairing in nuclei

I Fermion mass generation in the electro-weak sector of the
standard model

Nambu calls the last entry

my biased opinion, there being other interpretations as to
the nature of the Higgs field
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Broken symmetry and the mass of gauge vector mesons
P. W. Anderson, Phys. Rev. 130, 439 (1963)
F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)
P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

A simple example (Englert, Brout). Consider a complex scalar field
ϕ = (ϕ1 + iϕ2)/

√
2 interacting with an abelian gauge field Aµ

Hint = ieAµϕ
† ↔∂µ ϕ− e2ϕ†ϕAµAµ

If the vacuum expectation value of ϕ is 6= 0, e.g. 〈ϕ〉 = 〈ϕ1〉/
√

2,
the polarization loop Πµν for the field Aµ in lowest order
perturbation theory is

Πµν(q) = (2π)4ie2〈ϕ1〉2
[
gµν −

(
qµqν/q

2
)]

Therefore the Aµ field acquires a mass µ2 = e2〈ϕ1〉2 and gauge
invariance is preserved, qµΠµν = 0.
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Electroweak unification
S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

Leptons interact only with photons, and with the
intermediate bosons that presumably mediate weak
interaction. What could be more natural than to unite
these spin-one bosons into a multiplet of gauge fields?
Standing in the way of this synthesis are the obvious
differences in the masses of the photon and intermediate
meson, and in their couplings. We might hope to
understand these differences by imagining that the
symmetries relating the weak and the electromagnetic
interactions are exact symmetries of the Lagrangian but
are broken by the vacuum.
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The NJL model as a low-energy effective theory of QCD
e.g. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

The NJL model has been reinterpreted in terms of quark variables.
One is interested in the low energy degrees of freedom on a scale
smaller than some cut-off Λ ∼ 1 Gev. The short distance dynamics
above Λ is dictated by perturbative QCD and is treated as a small
perturbation. Confinement is also treated as a small perturbation.
The total Lagrangian is then

LQCD ' LNJL + LKMT + ε (Lconf + LOGE)

where the Kobayashi–Maskawa–’t Hooft term

LKMT = gD det
i,j

[q̄i(1− γ5)qj + h.c.]

mimics the axial anomaly and LOGE is the one gluon exchange
potential.
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Analysis of the mean field approximation

=x

m = −g0mi

2π4

∫
d4p

p2 −m2 − iε
F (p,Λ)

This equation has the obvious solution m = 0 but if 2π2

g0Λ2 < 1
there is a second non zero solution which lowers the energy of the
vacuum.
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The Bogolubov-Valatin transformation
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Structure of the vacuum

Since the sum in expoment is negative and divergent we have
(Ω(0),Ω(m)) = 0
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Chiral transformations of the vacuum

the sum in the exponent is negative and divergent so that

(Ω(m)
α ,Ω(m)

α′ ) = 0

25 / 38



Nucleon-nucleon scattering
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Due to the mass self-consistency equation JP (0) = 1 27 / 38



Summary
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Chirality conservation and soft pion production
Y. Nambu, D. Lurie, Phys. Rev. 125, 1429 (1962).

An effective model consisting of a nucleon field ψ of mass m and a
massless pseudoscalar field varφ(pion) coupled through
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Chirality is defined by

One verifies that < in|χ|in >=< out|χ|out >
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A small fermion bare mass

For the observed value of µ2/4m2
1 ' 1/200 we have m0

1 ' 5Mev.
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The effective action
G. Jona-Lasinio, Nuovo Cimento 34, 1790 (1964)

Define the partition function

Z[J ] = 〈0|T exp i[
∫
dx(LI +

∑
JiΦi)]|0〉

where the fields Φi transform, e.g., according to the fundamental
representation of the orthogonal group. Then

G[J ] = −i logZ[J ]

is the generator of the time ordered vacuum expectation values (in
statistical mechanics G is the free energy in the presence of an
external field J)

δG

δJ
= 〈Φ〉 = φ

The effective action is the dual functional Γ[φ] defined by the
Legendre transformation

δΓ
δφ

= −J
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The vacuum of the theory is defined by the variational principle

δΓ
δφ

= 0

Γ[φ] is the generator of the vertex functions and can be
constructed by simple diagrammatic rules. Its general form is

Γ[φ] = Lcl[φ] + ~Q[φ]
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Proof of the Goldstone theorem

Consider an infinitesimal transformation of the group δφ = tijφj .
Due to the invariance of the effective action Γ we find

∆−1
ij (q = 0)tjkφk = 0

which implies

det[∆−1
ij (q = 0)] = 0
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The mass hierarchy problem
Y. Nambu, Masses as a problem and as a clue, May 2004

I Unlike the internal quantum numbers like charge and spin,
mass is not quantized in regular manner

I Mass receives contributions from interactions. In other words,
it is dynamical.

I The masses form hierarchies. Hierarchical structure is an
outstanding feature of the universe in terms of size as well of
mass. Elementary particles are no exception.
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Einstein used to express dissatisfaction with his
famous equation of gravity

Gµν = 8πGTµν

His point was that, from an aesthetic point of view, the
left hand side of the equation which describes the
gravitational field is based on a beautiful geometrical
principle, whereas the right hand side, which describes
everything else, . . . looks arbitrary and ugly.

. . . [today] Since gauge fields are based on a beautiful
geometrical principle, one may shift them to the left hand
side of Einstein’s equation. What is left on the right are
the matter fields which act as the source for the gauge
fields . . . Can one geometrize the matter fields and shift
everything to the left?
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Hierarchical spontaneous symmetry breaking
Y. Nambu, Masses as a problem and as a clue, May 2004

The BCS mechanism is most relevant to the mass
problem because introduces an energy (mass) gap for
fermions, and the Goldstone and Higgs modes as
low-lying bosonic states. An interesting feature of the
SSB is the possibility of hierarchical SSB or “tumbling”.
Namely an SSB can be a cause for another SSB at lower
energy scale.

. . . [examples are]
1. the chain crystal–phonon–superconductivity. . . . Its

NG mode is the phonon which then induces the Cooper
pairing of electrons to cause superconductivity.

2. the chain QCD–chiral SSB of quarks and
hadrons–π and σ mesons–nuclei formation and nucleon
pairing–nuclear π and σ modes–nuclear collective modes.
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Chiral molecules
3

(7) and using ! = P/kBT , this transition can be obtained
by increasing the gas pressure above the critical value

Pcr =
9
8π

P0

(
T

T0

)2

, (13)

where P0 = ∆E/d3.
When the gas is exposed to an electro-magnetic radia-

tion of angular frequency ω0, we add to the Hamiltonian
(4) the perturbation

hem(t) = εf(t)σz (14)

where ε is a small parameter and f(t) = θ(t) cos(ω0t),
θ(t) being the Heaviside function. The choice of a dipole
coupling approximation, hem ∝ σz , is justified for a ra-
diation of wavelength long with respect to the molec-
ular size. Under the effect of the perturbation (14) the
single-molecule state |λ(t)〉 evolves according to the time-
dependent nonlinear Schrödinger equation

i!d|λ(t)〉
dt

= [h(λ(t)) + εf(t)σz ] |λ(t)〉, (15)

with h(λ) given by (4). The linear response to the pertur-
bation (14) is expressed by the generalized susceptibility
[14] R(ω) = S̃1(ω)/f̃(ω), where f̃(ω) and S̃1(ω) are the
Fourier transforms of f(t) and S1(t), with S1(t) defined
by

S(t) ≡ 〈λ(t) | σz | λ(t)〉
= S0(t) + ε S1(t) + . . . . (16)

Let us assume that at time t = 0 each molecule is in
the delocalized ground state |λ0〉 = |1〉. The solution of
Eq. (15) with the initial condition |λ(0)〉 = |1〉, gives

R(ω) =
2∆E

(!ω)2 − (∆E2 − 2G∆E)
. (17)

The generalized susceptibility has a unique pole at pos-
itive frequency which corresponds to the inversion line
frequency

ν̄ =
∆E

h

(
1 − 2G

∆E

) 1
2

. (18)

The residue of R(ω) at this pole, namely
(1 − 2G/∆E)−1/2, represents the corresponding transi-
tion probability.

Now we compare our theoretical analysis of the inver-
sion line with the spectroscopic data available for am-
monia [7, 8] and deuterated ammonia [9]. In these ex-
periments the absorption coefficient of a cell containing
NH3 or ND3 gas at room temperature was measured at
different pressures. The resulting data are reported in
Fig. 1. The frequency ν̄ of the inversion line decreases
by increasing P and vanishes for pressures greater than

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

0 0.04 0.08 0.12

0

0.02

0.04

0.06

P (atm)

h
ν̄

(c
m

−
1
)

NH3

ND3

FIG. 1: Measured inversion-line frequency ν̄ as a function
of the gas pressure P for NH3 (dots, left and bottom
scales, data from [7, 8]) and ND3 (squares, right and top
scales, data from [9]). The solid line is the theoretical
formula (19) with Pcr = 1.695 atm for NH3 and Pcr =
0.111 atm for ND3 calculated according to (13).

a critical value. There is factor about 15 between the
critical pressures of NH3 and ND3.

By using Eq. (7) with ! = P/kBT , the theoretical
expression (18) for the inversion line frequency becomes

ν̄ =
∆E

h

√
1 − P

Pcr
, (19)

where Pcr is given by (13). Note that this expression
does not contain free parameters. We used the follow-
ing values taken from [3, 15]: µ = 1.47 D, d = 4.32 Å,
∆ENH3 = 0.81 cm−1, ∆END3 = 0.053 cm−1. Assuming
εr = 1 and T = 300 K, we obtain Pcr = 1.695 atm for
NH3 and Pcr = 0.111 atm for ND3. The agreement of
the theoretical ν̄(P ), also shown in Fig. 1, with the ex-
perimental data is impressive considering the simplicity
of the model.

Equation (19) predicts that, up to a pressure rescal-
ing, the same behavior of ν̄(P ) is obtained for different
pyramidal molecules

ν̄XY3(P )
ν̄XY3(0)

=
ν̄X′Y ′

3
(γP )

ν̄X′Y ′
3
(0)

, (20)

where γ = Pcr X′Y ′
3
/ Pcr XY3 . In the case of ND3

and NH3, at the same temperature T we have γ =
∆ENH3/∆END3 & 15.28. This factor has been used to
fix the scales of Fig. 1. We see that in this way the NH3

and ND3 data fall on the same curve.
The intensity I of the inversion line predicted by our

theoretical analysis is given, up to a constant, by the
product of the photon energy hν̄ and the residue of (17).
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