Ultra-cold gases

Alessio Recati

CNRINFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D)

BOSE EINSTEIN CONDENSATION

Lectures

L. 1)

- **Introduction to ultracold gases**
- **Bosonic atoms:**
	- **From weak to strong interacting gases**
	- **An application to precise measurement (Casimir forces)**

L. 2)

- **Feshbach resonance and strongly interacting Fermi gas/the Unitarity limit**
- **BCS-BEC crossover**
- **Polarized Fermi gases:**
	- **"a" polaron problem**
	- **new Fermi-Landau liquid**

"Why should I care about a bunch of atoms which do what they are expected to do?"

Temperature scale

- 1. Laser light pressure (laser cooling)
- 2. [Electric and/or magnetic confinement: harmonic traps](http://www.colorado.edu/physics/2000/applets/bec.html)
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure (laser cooling)
- 2. [Electric and/or magnetic confinement: harmonic traps](http://www.colorado.edu/physics/2000/applets/bec.html)
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure
- 2. Electric and/or magnetic confinement: harmonic traps
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure
- 2. [Electric and/or magnetic confinement: harmonic traps](http://www.colorado.edu/physics/2000/applets/bec.html)
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

Experimental setup Bose-Einstein condensation at JILA

Statistica Quantistica: bosoni e fermioni

Dilute gases: 1995, JILA, MIT Dilute gases: 1999, JILA

Interaction: s-wave scattering length

At low density and temperature the 2- body interaction is conveniently described by an **effective contact potential** which reproduces the low-energy behaviour of the microscopic potential *V(x-x')*

$$
V(x - x') \rightarrow V_{eff}(x - x') \propto a\delta(x - x') (+reg.)
$$

s-wave scattering length

i) *a>0* **: positive scattering & a Bound State (D=2,3)**

ii) *a<0* **: negative scattering & NO Bound State (D=2,3)**

Interaction: s-wave scattering length

At low density and temperature the 2- body interaction is conveniently described by an **effective contact potential** which reproduces the low-energy behaviour of the microscopic potential $V(x-x')$

$$
V(x - x') \rightarrow V_{eff}(x - x') \propto a\delta(x - x') (+reg.)
$$

s-wave scattering length

i) *a>0* **: positive scattering & a Bound State (D=2,3)**

ii) *a<0* **: negative scattering & NO Bound State (D=2,3)**

Due to Pauli principle only fermions in different internal states can – at this level- interact

Ultra-Cold Bosons: from BEC to strongly interacting systems

New state of matter...

One of the first BEC images (JILA 1995)

Below a certain temperature a macroscopic atomic fraction occupies the lowest energy state

Temperature measured thruogh thermal component tails

optical density [a.u.]

Physics Nobel Laureates

"for development of methods to cool and trap atoms with laser light"

Steven Chu

Claude Cohen-Tannoudji **William D. Phillips**

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell **Wolfgang Ketterle**

Carl E. Wieman

Collective and Josephson like oscillations/Interference

5 milliseconds per frame

Collective and Josephson like oscillations/Interference

Gross-Pitaevskii equation

Superflindity of a BEC

Cherenkov phonons

Vortices in a BEC

In rotating condansate vortices are produced

Vortices in a BEC

In rotating condansate vortices are produced "quantized"

In a superfluid the motion is irrotational (free vortex)

$$
\Psi=\sqrt{n}e^{iS}
$$

$$
v_{\theta} = \frac{\hbar}{m} \nabla S = \frac{C}{r}
$$

Where C is an integer multiple, n , of a minimum value:

$$
C = \boxed{\frac{\hbar}{m}} n
$$
 quantum of circulation

Indeed by definition one must have:

$$
\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} 2 \pi n
$$

Vortices in a BEC

In rotating condansate vortices are produced "quantized" and cristallize (Vortex Lattice)

Vortices in NbSe₂ defined by scanning tunneling microscopy (STM).

Optical Lattices

1D dynamics, (Fermi/Bose) Hubbard model description, Mott insulating phase…

Bose-Einstein (superfluid) vs. Normal component oscillations

(Florence 2001)

Periodic potential Only condensate coherently tunnels through the barriers

1D Tonks-Girardeau gas (or how to fermionize bosons)

Bose-Hubbard Hamiltonian

Quantum phase transition from superfluid to Mott insulator

[I. Bloch et al. (2002)]

Quantum phase transition from superfluid to Mott insulator

SF – Mott and SF again: a coherent path through a quantum phase transition

BKT phase transition in 2D BEC

Mermin-Wagner-Hohenberg Theorem: *No true long range order at any finite temperature in 2D*

Berezinskii-Kostrelitz-Thouless Transition

BKT phase transition in 2D BEC

[Dalibard's group (2006)]

BEC to measure the temperature dependence of Casimir-Polder forces

