Ultra-cold gases

Alessio Recati

CNR-INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D)

BOSE EINSTEIN CONDENSATION

Lectures

L. 1)

- Introduction to ultracold gases
- Bosonic atoms:
 - From weak to strong interacting gases
 - An application to precise measurement (Casimir forces)

L. 2)

- Feshbach resonance and strongly interacting Fermi gas/the Unitarity limit
- BCS-BEC crossover
- Polarized Fermi gases:
 - "a" polaron problem
 - new Fermi-Landau liquid

"Why should I care about a bunch of atoms which do what they are expected to do?"

Temperature scale

- 1. Laser light pressure (laser cooling)
- 2. Electric and/or magnetic confinement: harmonic traps
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure (laser cooling)
- 2. Electric and/or magnetic confinement: harmonic traps
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure
- 2. Electric and/or magnetic confinement: harmonic traps
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

- 1. Laser light pressure
- 2. Electric and/or magnetic confinement: harmonic traps
- 3. Evaporative cooling (a.k.a. cup of coffee cooling)

Experimental setup Bose-Einstein condensation at JILA

Statistica Quantistica: bosoni e fermioni

Dilute gases: 1995, JILA, MIT

Dilute gases: 1999, JILA

Interaction: s-wave scattering length

At low density and temperature the 2- body interaction is conveniently described by an **effective contact potential** which reproduces the low-energy behaviour of the microscopic potential

$$V(x - x') \rightarrow V_{eff}(x - x') \propto a\delta(x - x')(+reg.)$$

s-wave scattering length

i) *a>0* : positive scattering & a Bound State (D=2,3)

ii) *a*<0 : negative scattering & NO Bound State (D=2,3)

Interaction: s-wave scattering length

At low density and temperature the 2- body interaction is conveniently described by an **effective contact potential** which reproduces the low-energy behaviour of the microscopic potential

$$V(x - x') \rightarrow V_{eff}(x - x') \propto a\delta(x - x')(+reg.)$$

s-wave scattering length

i) *a>0* : positive scattering & a Bound State (D=2,3)

ii) *a*< θ : negative scattering & NO Bound State (D=2,3)

Due to Pauli principle only fermions in different internal states can – at this level- interact

Ultra-Cold Bosons: from BEC to strongly interacting systems

New state of matter...

One of the first BEC images (JILA 1995)

Below a certain temperature a macroscopic atomic fraction occupies the lowest energy state

Temperature measured through thermal component tails

optical density [a.u.]

Physics Nobel Laureates

1997

"for development of methods to cool and trap atoms with laser light"

Steven Chu

Claude Cohen-Tannoudji William D.

Phillips

2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell Wolfgang Ketterle

Carl E. Wieman

Collective and Josephson like oscillations/Interference

5 milliseconds per frame

Collective and Josephson like oscillations/Interference

Double well (Heidelberg 2004) a Josephson oscillations b Self-trapping 4µm 0ms 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms 50ms

Gross-Pitaevskii equation

Superfliudity of a BEC

Cherenkov phonons

Vortices in a BEC

In rotating condansate vortices are produced

Vortices in a BEC

In rotating condansate vortices are produced "quantized"

In a superfluid the motion is irrotational (free vortex)

$$\Psi=\sqrt{n}e^{iS}$$

$$v_{\theta} = \frac{\hbar}{m} \nabla S = \frac{C}{r}$$

Where C is an <u>integer multiple</u>, n, of a minimum value:

$$C = \left(\frac{\hbar}{m}n\right)^{-1}$$
 quantum of circulation

Indeed by definition one must have:

$$\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} 2\pi n$$

Vortices in a BEC

In rotating condansate vortices are produced "quantized" and cristallize (Vortex Lattice)

 $Vortices \ in \ NbSe_2 \ defined \ by \ scanning \ tunneling \ microscopy \ (STM).$

Optical Lattices

1D dynamics, (Fermi/Bose) Hubbard model description, Mott insulating phase...

Bose-Einstein (superfluid) vs. Normal component oscillations

Periodic potential (Florence 2001)

Only condensate coherently tunnels through the barriers

1D Tonks-Girardeau gas (or how to fermionize bosons)

Bose- Hubbard Hamiltonian

Quantum phase transition from superfluid to Mott insulator

[I. Bloch et al. (2002)]

Quantum phase transition from superfluid to Mott insulator

SF – Mott and SF again: a coherent path through a quantum phase transition

BKT phase transition in 2D BEC

Mermin-Wagner-Hohenberg Theorem: No true long range order at any finite temperature in 2D

Berezinskii-Kostrelitz-Thouless Transition

BKT phase transition in 2D BEC

[Dalibard's group (2006)]

BEC to measure the temperature dependence of Casimir-Polder forces

