
  

E F

Ultra-Cold Fermions:
testing condensed matter 
theories and getting more

Atoms pre-cooled
in a magneto-optical trap
to 150 µ K



  

104  7Li atoms, in thermal equilibrium with 
104   6Li  atoms in a Fermi sea

2001
ENS

(Paris)

E F

Bose-Einstein condensate and Fermi see

Quantum degeneracy: T= 0.28 mK = 0.2(1) TC= 0.2 TF



  

Observing the Fermi Surface



  

Interaction: s-wave scattering length

At low density and temperature the 2- body 
interaction is conveniently described by an 

effective contact potential 
which reproduces the low-energy behaviour 
of the microscopic potential V(x-x')

s-wave scattering length

Due to Pauli principle only fermions in different internal states can – at this level- interact

i) a>0 : positive scattering & a Bound State (D=2,3)

ii) a<0 : negative scattering & NO Bound State (D=2,3)



  

Interaction: s-wave scattering length

Cold Atoms:Cold Atoms: possibility of  tuningtuning the scattering length

[MIT, Nature 392, 151 (1998)] [Innsbruck, PRL 93, 123001 (2004)]



  

 The behaviour of the Fermionic s-wave scattering length is not continous  

 Crossover postulate: even though the scattering length changes 
abruptly in the many-body problem the crossover is smooth 

[Leggett; Nozieres/Schmitt-Rink]

unitarity 
limit

2-body bound
state appears

 BCS vs Bose-Einstein Condensation



  

 BCS vs Bose-Einstein Condensation

 Note on finite T: Except for very weak coupling (BCS) pairs form and        
 condense at different temperature, T* and Tc 



  

Molecular  Bose-Einstein condensation 
from a fermionic gas 

[JILA, Innsbruck, MIT, ENS, RICE, 
2003]

Vortex lattice on the BCS-BEC crossover [MIT, 2005]

 BCS vs Bose-Einstein Condensation



  

 BCS vs Bose-Einstein Condensation

Landau critical velocity for a system to give rise to energy dissipation

Due to pair breaking
Due to phonon excitation 
(as in a BEC (L.1))



  

Superfluid fermions at unitarity

 The only scales at unitarity are the Fermi energy and the temperature.

 The thermodynamic properties have an “universal” form.

In particular at T=0 

energy density, pressure, chemical potential are proportional 
to the ones of an ideal Fermi gas with a density equal 
to the  superfluid one.

The universal parameter (via Montecarlo & Experiments)
S

S



  

(After yesterday discussion)
Is a Fermi gas at Unitarity a perfect fluid?

[Duke, Science (2002)]
Strongly Interacting 6Li 
gas T = 10-7 K

At Unitarity one finds same expansion for 
T<Tc<<TF and T close to TF

Hydrodynamic equation for a superfluid
 or a perfect (collisional) fluid



  

At Unitarity one finds same expansion for T<Tc<<TF and T close to  TF, 
but different from a wealy interacting Fermi gas

(After yesterday discussion)
Is a Fermi gas at Unitarity a perfect fluid?

Red—normal fluid
Blue—superfluid
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Entropy Measurement 
by Adiabatic Sweep of Magnetic Field B

(After yesterday discussion)
Is a Fermi gas at Unitarity a perfect fluid?

B
End
1200 G

Weakly interacting:
Entropy at 1200 G known from 
cloud size — Ideal Fermi gas

Start
840 G



  

(After yesterday discussion)
Is a Fermi gas at Unitarity a perfect fluid?

He near λ −point

QGP simulations

String theory limit



  

Balanced Fermi gases at unitarity



  

Imbalanced Fermi gases at unitarity

?



  

Balanced Fermi gases at unitarity

P=0 P=1

Phase Transition

[Phase Transition to a normal phaase for large magnetic field 
  B. S. Chandrasekhar (1962), A. M. Clogston (1962)]



  

Recent Experiments on imbalanced Fermi gases at unitarity

MIT, Science 311, 492 (2006)



  
[MIT, Phys. Rev. Lett. 97, 030401 (2006)]

BCS

BEC

Unitarity

Recent Experiments on imbalanced Fermi gases at unitarity



  

SuperFluid ??

Fully
Polarized

Phase diagram

E.g., only 
SF and P phase



  

Normal phase of polarized Fermi gas at unitarity

Assumption: 
at high polarization homogeneous phase, 
NORMAL FERMI LIQUID: consider a very dilute mixture of 
spin-↓ atoms immersed in non-interacting gas of spin-↑ atoms

Energy expansion for small concentration

...



  

Normal phase of polarized Fermi gas at unitarity

Assumption: 
at high polarization homogeneous phase, 
NORMAL FERMI LIQUID: consider a very dilute mixture of 
spin-↓ atoms immersed in non-interacting gas of spin-↑ atoms

Non interacting gas

single-particle energy

quantum pressure
of a Fermi gas of quasi-particles 
with an e ective massff

...

Energy expansion for small concentration



  

Normal phase of polarized Fermi gas at unitarity
Consider a SINGLE down atom interacting with an ideal Fermi gas (up-atoms).

Variational Ansatz (single particle hole excitations): 

+ p
p+q-k q

k



  

Normal phase of polarized Fermi gas at unitarity
3/

5 
A

A=1.01 m*/m=1.15

Consider a SINGLE down atom interacting with an ideal Fermi gas (up-atoms).

Variational Ansatz (single particle hole excitations): 



  

Normal phase of polarized Fermi gas at unitarity
3/

5 
A

A=1.01 m*/m=1.15

Consider a SINGLE down atom interacting with an ideal Fermi gas (up-atoms).

Variational Ansatz (single particle hole excitations): 

Note: it is equivalent to a T-matrix approach

&

First measurements of the coefficient A reported by

A. Schirotzek, C. Wu, A. Sommer, and M. W. Zwierlein
arXiv:0902.3021

A=1.06(7)

    



  

Most recent values using FN-QMC
A = 0.99(2)

m*/m =  1.09(3)
B = 0.14

[S. Pilati and S. Giorgini, 
Phys. Rev. Lett. 100, 030401 (2008)]

Critical concentration xc:

             PSF = PN

Superfluid-Normal phase coexistence at unitarity

xc=0.44

Coexistence line

x=1: EN=1.12(2)

x=1: ES=0.84(2)SF 
N with 
xc=0.44

Phase Separation

interaction between quasi-particles



  

SuperFluid

Fully
Polarized

By the total
number of atoms

By the imbalance

N

Critical imbalance

Exploring Phase diagram in the Trap: LDA 

LDA :

Decreasing outward

Constant also inside the trap 

x



  

Exploring Phase diagram in the Trap: LDA 

LDA :

Decreasing outward

Constant also inside the trap 

x

SF
N

FP
SF N

FP



  

Normal phase of polarized Fermi gas at unitarity: TRAP

1) Critical Polarization (IN TRAP):  P C  = 0.77 
(very good agreement with MIT exps)



  

Normal phase of polarized Fermi gas at unitarity: TRAP

3D density

[Exp. Data from Yong Shin (MIT) compared with theory in A.R., C.Lobo and S. Stringari PRA (2008)]

2) Density profiles 



  

Normal phase of polarized Fermi gas at unitarity: TRAP

3D density

[Exp. Data from Yong Shin (MIT) compared with theory in A.R., C.Lobo and S. Stringari PRA (2008)]

2) Density profiles 

Density Jump



  

Some Insight into the highly polarized Normal phase
 Dipole frequency at high polarization:
      the majority component is not affected, the minority can be still think as a  
      non-interacting gas but with renormalized mass and trapping potential  

Spin-dipole
mode

Spin-radial-quadrupole
mode
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Decaying time of the collective modes 

We consider the momentum relaxation of an homogeneous highly polarized Fermi gas.

The minority component have a mean momentum k with respect to the majority one: 
total momentum per unit volume

p

p' p' + q

p - q



  
:

:

{ Collisionless regime: possible to see the dipole mode

Hydrodynamic regime: the dipole mode overdamped

Decaying time of the collective modes 

MIT regime



  

Destroying superfluidity by rotation

Already seen: Vortices

the superfluid lower its energy
by allowing some rotation in the
form of vorticity – BUT
topological defects, energy barrier 

What does it happen if we “apply a rotation / rotate” to the system?

The normal part can rotate... 
why not phase separating 
in order to minimize the energy?
A normal phase with concentration

x=1  

SF SF

N 
with
 x=1



  

Normal phase with concentration x=1: Strongly interacting Landau-Fermi Liquid

SF

N

A Bogoliubov-De Gennes approach (quantitavely wrong at unitarity) shows 
the presence of a third phase at the interface: a superfluid with broken pairs.
[M. Urban, P. Schuck, PRA (2008)]

<

BUT, normal phase gains energy in the rotating frame

Destroying superfluidity by rotation



  

[S. Pilati and S. Giorgini, Phys. Rev. Lett. 100, 030401 (2008)                      
G. Bertaina and S. Giorgini, Phys. Rev. A 79, 013616 (2009)]

SF

SF

N

Outside the unitarity regime 



  

• More exotic phases (polarized Superfluid, FFLO, Sarma...)
• More than 2 species (analogies with color superfluidity?))
• Bose-Fermi mixtures 
• Include disorder and noise
• Cold and Dipolar Molecules 
• Low dimensional systems
• Antiferromagnetic order: Néel transition
• Quantum Hall effect
• Cold gases on atom chip
• Cold gases in Cavity QED 
• Trapped ions 
• Quantum Information/Computation 
• Cold gases as photonic crystals

...and more......and more...



  

 Why are Cold Gases interesting?

• Diluteness: atom-atom interactions described by 2-body and 3-body physics 
At low energy: a single parameter, the scattering length

• Comparison with theory: Gross-Pitaevskii, Bose and Fermi Hubbard models, search for 
exotic phases,…

• « Simplicity of detection »

New way to address some pending questions  in the physics of 
interacting many-body systems

Link with condensed matter (high Tc superconductors, magnetism in lattices),
nuclear physics, high energy physics (quark-gluons plasmas), astrophysics… 

Experimental tunability of almost all the parameters which 
enter in the physics of the system under study!



  

Control of sign of interaction and of trapping parameters: 

● weakly and strongly interacting systems
• 1D, 2D, 3D geometry & (optical) lattice
• access to time dependent phenomena & out of equilibrium situations 
• and more…

Experimental tunability of almost all the parameters which 
enter in the physics of the system under study!

Towards  quantum simulations  with cold atoms 
« a’ la Feynman »,i.e., the first idea of quantum computation

 Why are Cold Gases interesting?



  

The End
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