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�  450 BC: Zeno and Parmenides visit Socrates in Athens. Zeno discusses his most 
famous paradox, known as Achilles and the tortoise (Plato, Parmenides, 127b-e). 

�  Zeno states that if one admits the endless divisibility of space, in a race the quickest 
runner can never overtake the slowest, which is patently absurd, thus demonstrating 
that the original assumption of infinite divisibility of space is false.  

�  The error in the reasoning of Zeno was the implicit assumption that an infinite 
number of tasks (the infinite steps that Achilles have to cover to reach the tortoise) 
cannot be accomplished in a finite time interval, which is not true if the infinite 
number of time intervals spent to accomplish all the tasks constitute a sequence 
whose sum is a convergent mathematical series.  

�  However the line of reasoning reported above exerts a certain fascination on our 
brains: we reluctantly accept the fact that, in a finite segment, an infinite number 
of separate points may exist.  

�  Zeno’s paradox revisited in terms of Operationalism : is there a lower limit in 
the possibility of measuring small space (or time) intervals?     
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Zeno’s paradox 



Operationalism  
Percy Williams Bridgman (1882-1961) 

The concept is defined on the measurements 
 
SR: “time” is the quantity measured by a light-clock (Einstein) 
 
GR: “mass” is defined by 
       (a) Newton’s Second Law of Motion        (inertial) 
       (b) Newton’s law of universal gravitation (gravitational)  
 
       Equivalence Principle (Einstein): 

(a) = (b) 
 

3 



Operational definition of “time”  
time ≡ a physical quantity that is measured by an appropriate clock   
 
 
 

mirror 

photon 

electrons in the metal  
δx ≥ λC=ħ/(mec)  

(see e.g. Garay 1995) 

Light Clock 
time measured with  

strictly periodic events 

D 

d 

Δt = D/c  ≥  ΔtMIN = ħ/(mec2) ≅ 1.3 × 10-21 s   
(since D ≥ d ≥ δx ≥ λC = 3.9 × 10-11 cm ) 
shortest time interval ever measured: 2 × 10-17 s (Schultze et al.2010) 
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Counts: 14,392  

Operational definition of “time”  
time ≡ a physical quantity that is measured by an appropriate clock 
 
 
 
 
 
 
 
  
 
 
 

Quantum Clock 
time measured with  

totally random events  
(e.g. Salecker & Wigner, 1958) 

decay products  
(particles or photons) 

radioactive matter 

detectors/counters  
(quantum efficiency 1) 
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The Quantum Clock with radioactive substance  
    Completely random process: a statistical process whose probability of 

occurrence is constant (independent of time): 
                                    dP = λ dt            (λ = constant) 
    Radioactive decay: dN = −λN dt      (where λ-1 = τPART) 
    Assume: Δt << τPART  
    Number of expected decays in the interval Δt:     ΔNΔt = λN Δt 

      Fluctuations with Poissonian statistics:                σΔN = (λN Δt)1/2   

     
    Quantum Clock working principle: compute time by counting the decays 

Δt = ΔNΔt / (λN)     
    relative error in time = relative error in number of decays  
    σΔt / Δt = ε = σΔN / ΔNΔt = 1 / (ΔNΔt)1/2  ≤ 1                                   ΔNΔt= 1/ε2 

    Mass of the Quantum Clock:       M = N × mPART                                      N = M/mPART 
    Energy of the decaying particle:  EPART = mPART c2 

Δt = (1/ε2)/(λM/mPART) = (mPART c2)/(ε2λMc2) = (EPART × τPART)/(ε2Mc2) 
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The Quantum Clock and Quantum Mechanics  

     Heisenberg uncertainty relation between the energy and the decay time of a 
particle confined inside a potential well (decay by tunneling through the 
potential barrier): 

δE × δt ≥ ħ/2  
 

    Asssume (for simplicity) that the radioactive substance is destroyed in the 
decay (e.g. π0       2γ).  

    The whole energy of the particle is involved and therefore: EPART  ≥  δE   
    The decay time must be measurable and therefore:               τPART  ≥  δt                

EPART × τPART ≥ ħ/2 
    

 
Δt = (EPART × τPART) / (ε2Mc2) ≥ ħ / (2ε2Mc2) 

 
    (compare to Salecker & Wigner 1958, and Ng & van Dam 2003) 
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The Quantum Clock and General Relativity  
    To let the decaying particle escape and be detected, the size (Δr ≈ ΔrCIRC = C/2π) 

of the Quantum Clock must be larger than its Schwarzschild Radius (Hoop 
Conjecture, Thorne, 1972): 

Δr > RSCH = 2GM/c2 
    Therefore: 

 1/M > 2G/(c2Δr) 
     (see Amelino-Camelia (1995) for a lower bound in the uncertainty for the 

measurement of a distance, in which this condition is included) 
     Therefore, the Quantum Clock equation is:   

Δt  ≥ ħ/(2ε2Mc2) > Għ/(ε2c4Δr) 
 

    Finally, since at least one decay occurred, ε = 1 / (ΔNΔt)1/2  ≤ 1. 
    Therefore we get the new Space-Time Uncertainty Relation:  

 

Δr Δt > Għ/c4 
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Uncertainty relations proposed in the literature 
 (see Hossenfel 2012 review)     

 

    1) The Salecker Wigner limit (1958) (see e.g. Camelia 1999): 
     Δr ≥ [ħTOBS(1/MBODIES + 1/MDEVICE)/2]1/2  

      (uncertainty on the distance of two bodies of total mass MBODIES with a device of mass MDEVICE      
operating over a time such that r = c TOBS/2) 

    2) The Fundamental-Length Hypotheses (Mead 1964, 1966): 
                                         Δr ≥ (Għ/c3)1/2   
    3) The Generalized Uncertainty Principle (see. e.g. Capozziello et al. 1999): 
                                         Δr ≥ ħ/(2 Δp) + (α/c3) G Δp    
    4) In String Theory Yoneya (1987, 1989, 1997) proposed:  

                                         ΔXl × cΔT ≥ ℓS2 

      similar to the uncertainty relation proposed above (see also Doplicher et al. 1995), although:  

        a) ℓS is a free parameter of the theory (sometimes identified with the Planck length).  
        b) the proposed relation is “speculative and hence rather vague yet” (Yoneya). 

    5) Space-Time Uncertainty Principle (this work Phys. Rev. D, accepted): 
                                         Δr Δt > Għ/c4 
         “demostrated”  by means of a  Gedankenexperiment 
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Quantum Ruler (LIGO-like Laser Interferometers, LI) 
Distance measurements using the “multi-pulley tackle” principle 
ℓTOT = c τSTORAGE :  
ℓTOT = nTRIP ℓCAVITY  
nTRIP= cτSTORAGE /ℓCAVITY 

Δℓ ≈ λLASER/2  è ΔΦINTERF.PATTERN ≈ π  è ΔNPHOT ≈ ΔNMAX 

ΔNMAX = N (light) − 0 (dark) = N 

Therefore, to first order: 
Δℓ / (λLASER/2) = ΔN / N 
Δℓ = nTRIP δℓCAVITY  

δℓCAVITY = (λLASER/2) ΔN / (N nTRIP)  
working principle of LI 
δℓCAVITY = (λLASER/2) ΔN ℓCAVITY /(cτSTORAGE) 

δℓCAVITY τSTORAGE = π ΔN ℓCAVITY /(N hνLASER /c2) × (ħ/c2)  
δℓCAVITY τSTORAGE = π ΔN ℓCAVITY /(MCAVITY) × (ħ/c2)  
To avoid LI collapse (hoop conjecture): 
ℓCAVITY  > 2 RSCH,CAVITY = 4GMCAVITY/c2 

δℓCAVITY τSTORAGE > 4π (Għ/c4)  
 

ℓCAVITY  



The Quantum Clock/Ruler and Special Relativity  
In SR “true” temporal and spatial intervals are defined by a combined measure of 
space and time: 
“true” temporal intervals: TIMELIKE intervals measured at the same place (Δr ≈ 0) 
“true” spatial intervals:  SPACELIKE intervals measured at the same time   (Δt ≈ 0) 
 
Generalized “true” temporal interval:      any TIMELIKE interval  with |cΔt| ≥ |Δr| 
Generalized “true” spatial interval:        any SPACELIKE interval  with |Δr|  ≥  |cΔt| 
 
We represent space and time intervals in a space-time intervals diagram.  
We choose the space and time units in order to have c = 1, or cΔt as the ordinate.  
In this representation the bisector defines the null intervals, separating the 
TIMELIKE intervals, above the bisector, from the SPACELIKE intervals, below.     
  
The extremal relation  Δr × cΔt = Għ/c3 is an hyperbola in the space-time diagram. 
 Asymptotes: Δr axis and cΔt axis.  
Vertex at: ΔrVERTEX =  cΔtVERTEX = (Għ/c3)1/2 ≡ Planck Length ≡ c×Planck Time 
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The new Uncertainty Relation and the 
space-time diagram for the intervals 

Δr × cΔt = Għ/c3  

Δr = cΔt  

ΔrMIN = (Għ/c3)1/2 

ΔtMIN = (Għ/c5)1/2 

TIMELIKE INTERVALS 

SPACELIKE INTERVALS 

cΔt 

Δr 
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The new Uncertainty Relation  
and Special (& General ?) Relativity  

The following can be deduced: 
 
  I)  TIMELIKE INTERVALS:   ΔtMIN = (Għ/c5)1/2 = TPLANCK ≡ Planck Time 
 
 II) SPACELIKE INTERVALS: ΔrMIN  = (Għ/c3)1/2 = RPLANCK ≡ Planck Length 
 
III) The Uncertainty Relation is invariant under Lorentz Transformation since: 
       Δr’ = γ-1 Δr (Lorentz contraction) 
       Δt’ = γ    Δt (time dilation) 
       γ = (1 − (v/c)2)-1/2  (Lorentz factor) 
IV) The Uncertainty Relation is invariant in GR metric (?) e.g. Schwarzschild: 
       Δs2 = ζ × c2Δt2 − ζ-1 × Δr2 −  r2 × (Δθ2 + sin2θ Δφ2 ) 
       ζ = (1 − RSCH/r)  
       RSCH = 2GM/c2 (Schwarzschild radius) 
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The new Uncertainty Relation and the Minkowski metric: 
preserving Lorentz Invariance   

ct 

r 

Δs2 =(ct)2 − r2 

Invariant under  
Lorentz Transformations 
|Δs2| ≥ σΔs2 ≈ RPLANCK

2 = c2 TPLANCK
2
 

Δs2 = 0  
(light, massless particle) 
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Δs2 = TPLANCK
2  

Δs2 = RPLANCK
2  

Massless Particles                  Lorentz Invariance, not vice versa! 
Massive Photons? (Proca action)  

speed quickly approaches c  

λPHOT 

c/νPHOT 



The new Uncertainty Relation and the Minkowski metric: 
preserving Lorentz Invariance   

ct 

r 
Δs2 =(ct)2 − r2 

Invariant under  
Lorentz Transformations 

Δs2 = 0  
(light − massless particle) 
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Δs2 = TPLANCK
2  

Δs2 = RPLANCK
2  

Massless Particles                  Lorentz Invariance, not vice versa! 
Massive Photons? (Proca action)  



The Quantum Clock with radioactive substance: 
“in principle” feasibility for an “advanced civilization”  

Decaying substance 7H (1 proton + 6 neutrons, Gurov et al. 2004)) 
mPART ≈ 7 mPROTON  

τPART  ≈ 2.3 × 10-23 s 
 

Asssume:  
a) Δt = 0.1 × τPART  (Δt << τPART)  
b) σΔt = 0.1× tPLANCK  to test below the Planck scale in a SPACELIKE interval, i.e. 

with light-crossing time longer than time interval to be measured (Δx/c) > (Δt) 

 
We found: 
 σΔt / Δt = σΔN / ΔNΔt = 1/(ΔNΔt)1/2 = 1/(λN Δt)1/2 = [τPART /(N Δt)]1/2  

 

Therefore: (0.1 × tPLANCK )/(0.1 × τPART)  = [τPART /(N × 0.1 × τPART )]1/2  
 tPLANCK /τPART = (10 /N)1/2 

 N = 10 × (τPART/tPLANCK )2 = 10 × (2.3 × 10-23 s/5.4 × 10-44 s )2 = 1.8 × 1042 

 MCLOCK = N × 7 mPROTON = 2.2 × 1019 g = 3.6 × 10-9 MEARTH  16 



The Quantum Clock with Blackbody Radiation: 
the Blackbody Clock  

Spherical box of radius R where a small (negligible) amount of matter is in equilibrium with an 
electromagnetic radiation field at a temperature T 
 
L = 4πR2σBT4; σB = ac/4; a = (8π5k4)/(15c3h3); <hν> = 3kT; EBB= MBBc2 = (4/3)πR3aT4 
d<NPH>/dt = (4πR2σBT4)/(3kT) = [(4/3)πR3aT4]×[c/(4RkT)] = MBBc2×[c/(4RkT)]  
 
ΔNPHOTΔt ≡ number of photons detected in the time Δt 
 

Δt = ΔNPHOTΔt × (4RkT/c)/(MBBc2) 
 
Poisson statistics holds, therefore:   
ε = σΔt / Δt = σΔN / ΔNPHOTΔt = (ΔNPHOTΔt)-1/2  or  ΔNPHOTΔt = ε -2 

 
Therefore: 
 
Δt = (4RkT/c)/(ε2MBBc2)    
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The Blackbody Clock, QM & GR  
Δt = (EPART × τPART)/(ε2Mc2)                 for Quantum Clock 
Δt =          (4RkT/c)/(ε2MBBc2)             for Blackbody Clock   
 
Heisenberg uncertainty relation implies         EPART × τPART ≥ ħ/2    for Quantum Clock. 
Does Heisenberg uncertainty relation imply           4RkT/c ≥ ħ/2    for Blackbody Clock? 
 
We have (pPHOT = <hν>/c ≡ average photon momentum): 
(4RkT/c) = (4/3) R (3kT/c) = (4/3) R (<hν>/c) = (4/3) R pPHOT 
 
Since  pPHOT  ≥  δpPHOT and R = δr we have R × pPHOT  ≥  δr × δpPHOT 
Heisenberg uncertainty position-momentum relation: δr × δp  ≥ ħ/2 
 
Therefore: Δt = 1/(ε 2MBBc2) × (4RkT/c) ≥ 1/(ε 2MBBc2) × (4/3) × ħ/2 
Δt ≥ (2/3) ħ/(ε2MBBc2) and inserting the GR constraint, 1/MBB > 2G/(c2Δr) 
Δr Δt > (4/3) Għ/(ε2c4) 
Dropping  ε-2>1, we finally get Δr Δt > (4/3) Għ/c4 which is the uncertainty relation again. 
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The “extreme” Quantum Clock:  the Hawking Clock  

The Quantum Clock and the Blackbody Clock stop working once Δr           2GM/c^2 
What if we use the Hawking-Bekenstein radiation emitted by a Black Hole to gauge 
time?   
 
The Hawking Clock is a BlackBody Clock which uses Hawking-Bekenstein radiation 
emitted from the event Horizon of a Black Hole. 
 
dNPH/dt = (4πRSCH

2σBTBH
4)/(3kTBH) = (4πσB/3k) RSCH

2TBH
3 

where: RSCH= 2GMBH/c2;  TBH= ħc3/(8πkGMBH) 
 
Consider, as before Δt = ΔNPHOTΔt × 3k/(4πσBRSCH

2TBH
3) 

Poisson statistics holds:  ΔNPHOTΔt = ε -2, therefore: 
 
 Δt = ε -2 × 3k/(4πσBRSCH

2TBH
3) = [3k/(4πσB)]/(ε2RSCH

2TBH
3) 
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The Hawking Clock, QM & GR   

QM implies:                                 TBH= ħc3/(8πkGMBH) 
GR implies (Hoop Conjecture):   Δr > RSCH 

 
Therefore: 
Δr Δt > [3k/(4πσB)] × [MBHc2/(RSCHTBH

3)]/(ε2MBHc2)  
Δr Δt > 28325 × (GMBH)2/(ε2c5) 
 
Summarizing:  
Δt =    (EPART × τPART)/ε2 × (Mc2)-1          EPART × τPART  ≥ ħ/2  for Quantum Clock 
Δt = (4/3) × (3RkT/c)/ε2 × (MBBc2)-1                3RkT/c ≥ ħ/2  for Blackbody Clock   
Δt =  (28325) × (G/c9)/ε2  × (MBHc2)2                                                            for Hawking Clock 
 
For Quantum Clock and Blackbody clock the minimum occurs for the greatest clock 
mass. 
For the Hawking Clock the minimum occurs for the smallest Black Hole mass. 
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The Hawking Clock & the smallest BH mass 

Black Holes radiate Hawking-Bekenstein radiation  with <EPART> = 3kTBH 

At the end of the evaporation process we must have <EPART> = 3kTBH  ≈ MMINc2 
This gives:   
MBH,MIN = (3k/c2) TBH  = (3/8π) (ħc/GMBH,MIN) or 

MBH,MIN  = (3/8π)1/2 (ħc/G)1/2= (3/8π)1/2 mPLANCK 

 

We found: 
Δr Δt > 28325 ×(GMBH)2/(ε2c5) > 28325 × (GMBH,MIN)2/(ε2c5) 
Δr Δt > (25335/π) × (GmPLANCK)2/(ε2c5) = [25335/(πε2)] × G2(ħc/G)/c5 

Δr Δt ≥ (25335/π) ε-2 (Għ/c4) 
  
Δr Δt ≥  (25335/π) Għ/c4   (dropping  ε-2>1)  
 
which confirms the uncertainty relation again. 
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Conclusions on Quantum Clock/Ruler 
�  by means of a Gedankenexperiment with a Quantum Clock/Ruler, based on 

random rather than periodic events, we propose a new Uncertainty Relation:  
Δr Δt > Għ/c4 

�  the relation is quite general being a necessary consequence of the very first 
principles of QM (Heisenberg Uncertainty Relations) and of GR (the formation 
of an Event Horizon for sufficiently high densities) 

�  when combined with the constrain imposed by SR, the new Uncertainty 
Relation gives: 

        ΔtMIN = (Għ/c5)1/2 ≡ Planck Time 

         ΔrMIN = (Għ/c3)1/2 ≡ Planck Length 

�  the relation is invariant in SR (GR, Schwarzschild?)   
�  the relation makes Space and Time non-commuting quantities (starting point for 

Quantum Gravity?) 
�  if, below the Plank scale, space-time has no meaning, Gravity, which is a 

curvature of space-time, could vanish at those scales (no singularity?) 
�  we discussed two similar albeit different clocks for which the new Uncertainty 

Relation holds 
�  combined with Lorentz Invariance, this relation suggests massive photons (and 

gravitons?) 
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Marginally Stable Blackbody (MSBB) & BHs 
Energy, Entropy and Mass of a Blackbody: 
εBB= aT4 ; σBB= 4aT3/3 ; a = (8π5k4)/(15c3h3) ; ρBB = εBB/c2 ; RSCH = 2GMBB/c2 
MBB = εBB/c2 × VBB  = (aT4/c2) × (4/3)πR3 ; SBB = σBB

 × VBB  = (4aT3/3) × (4/3)πR3  
SBB = MBB × [σBB

 /(εBB/c2)] = MBB × [(4aT3/3 )/(aT4/c2)] 
SBB= MBB × [(4c2)/(3T)] 
 

MSBB ≡  a Blackbody whose radius is just above its Schwarzschild radius 
MMSBB = (aTMSBB

4/c2) × (4/3)πRSCH
3 = (aTMSBB

4/c2) × (4/3) π (2GMMSBB/c2)3  
TMSBB = [(3c8)/(32πG3a)] × MMSBB

−1/2 

 
Entropy of a Marginally Stable Blackbody: 

SMSBB = (4/3)×(4πG3a)1/4 × M3/2  

 
Entropy of a BH (Bekenstein−Hawking):  
SBH = (k/4) × (4πRSCH

2/RPLANCK
2) 

RPLANCK = (Għ/c3)1/2 ; mPLANCK = (ħc/G)1/2 ; 4πRSCH
2/RPLANCK

2 = 16π (M/mPLANCK)2 

SBH = (k/4) × (16π/mPLANCK
2) × M2 
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Was Zeno right? No singularities in BHs  
Entropy of a Marginally Stable Blackbody: 
SMSBB = (4/3)×(4πG3a)1/4 × M3/2 ; a = (8π5k4)/(15c3h3) ; mPLANCK = (ħc/G)1/2  

SMSBB = (8/3) × 1/(15×16π)1/4 × (k/4) × (16π) × (M/mPLANCK)3/2  

SMSBB = 0.509 × (k/4) × (16π) × (M/mPLANCK)3/2  

Entropy of a BH (Bekenstein−Hawking):  

SBH = (k/4) × (16π) × (M/mPLANCK)2  

for M/mPLANCK  = 0.26 (≈ 1) è  SMSBB = SBH  

 
 

24 M = mPLANCK Log M 

Log S 

 M3/2 

 M2 

S increases: 
collapse S decreases: 

no collapse 



Was Zeno right? Planckballs (PB) 

Stable Planckballs: 
for MPB/mPLANCK  = 0.26 è  SMSBB = SBH  

for RPB/RPLANCK  = 0.52  è  SMSBB = SBH  

ρPLANCK  = mPLANCK/RPLANCK
3 = c5/(G2ħ) = 5.18 ×1093 g/cm3 

ρPB = 0.26×mPLANCK /[(4/3)π(0.52×RPLANCK)3] = 0.44 × ρPLANCK
 

The “size” of a PB “spherical” aggregate is: 
 M = (4/3) π R3 ρPB 

 

A 109 M¤ BH has a PB “spherical” aggregate of “radius”  
R= 6 × 10−5 fm (RELECTRON = e2/(mec2) = 2.8 fm 
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Entropy of a Planckball Aggregate 
Different configurations of a Planckball Aggregate  
define Space-time microstates 
In strict analogy with: 
Regge Calculus (triangulation in topology) 
Loop Quantum Gravity (Smolin, Rovelli, et al.) 
Spin Network 
Bose−condensates for BH structure (Dvali, Gomez, et al.) 

Number of links of n nodes:    NLINKS = n × (n−1) / 2 
Number of d.o.f. of each link: Z = Integer ≥ 2 
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Entropy of a Planckball Aggregate 
Aggregate of n Planckballs:  
n = MBH/MPB = = MBH/(0.26×mPLANCK) 

S = k ln(W) 
W ≡ number of microstates 
W = WPB1 × WPB2× … × WPBn × WNETWORK 

WPB1 = WPB2 = … = WPBn = WPB 
WNETWORK = Zn×(n−1)/2 

W = WPB
n ×Zn×(n−1)/2  

ln(WPB) = 0.843  

S = k ln(WPB
n ×Zn×(n−1)/2 ) = n k ln(WPB) + n×(n−1)/2 k ln(Z) 

S = (k/4) × (16π) × { A(Z) × (MBH/mPLANCK)2 + B(Z) × (MBH/mPLANCK) } 
A(Z) = [ln(Z)/1.686]                   A(2) = 0.411 ≈ 1   
B(Z) = [0.843 − ln(Z)/2]/3.255   B(2) = 0.152 ≈ 1  
for MBH >> mPLANCK:  
S ≈ (k/4) × (16π) × A(Z) × (MBH/mPLANCK)2 
to be compared with: 
 SBH = (k/4) × (16π) × (MBH/mPLANCK)2 
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The HERMES project  
High Energy Rapid Modular Ensamble of Satellites 

 

Collaborators: 

Lorenzo Amati, INAF IASF Bologna 

Angelo Antonelli, INAF Rome Astronomical Observatory 

Angela Bongiorno, INAF Rome Astronomical Observatory 

Enrico Costa, INAF IAPS Roma 

Tiziana di Salvo,  University of Palermo 

Marco Feroci,  INAF IAPS Roma 

Fabrizio Fiore, INAF Rome Astronomical Observatory 

Filippo Frontera, University of Ferrara 

Rosario Iaria, University of Palermo 

Claudio Labanti, INAF IASF Bologna 

Alessandro Riggio, University of Cagliari 

Andrea Sanna, University of Cagliari 

Fabiana Scarano, University of Cagliari 

Andrea Vacchi, INFN Trieste 

and many others… 

1)   H.E.R.M.E.S. High Energy Rapid Modular Experiment Scintillator 
ASI Bando di ricerca per Nuove idee di strumentazione scientifica per missioni future di Osservazione ed Esplorazione 
dell’Universo: finanziato il 23 dicembre 2016  € 400,000 + € 100,000 (cofinanziamento) 

2)   H.E.R.M.E.S. Pathfinder - High Energy Rapid Modular Ensemble of Satellites: uno sciame di satelliti per sondare la 
struttura dello Spazio-Tempo e le controparti elettromagnetiche delle Onde Gravitazionali  
Progetto PREMIALE capofila ASI: presentato il 4 novembre 2016  € 3,761,000 + € 2,140,000 (cofinanziamento)  
 



The Gamma-Ray Burst phenomenon 
�  sudden and unpredictable bursts of hard-X / soft gamma rays with huge flux  
�  most of the flux detected from 10−20 keV up to 1−2 MeV,  
�  fluences for very bright GRB (about 3/yr) 25 counts/cm2/s  (GRB 130427A 160 counts/cm2/s)  
�  bimodal distribution of duration (0.1−1.0 s & 10.0−100.0 s) 
�  measured rate (by an all-sky experiment on a LEO satellite): ~0.8/day (estimated true rate ~2/ 

day) 
�  evidence of  submillisecond structures 
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short long 



The Gamma-Ray Burst phenomenon 
Prompt Emission: 

Short: τ ≈ 0.2 sec, Fluence ≈ 4 x 10-7 erg/cm2 (25 keV – 1MeV) 

 => Binary NS mergers (GW sources)  

Long: τ ≈ 25 sec, Fluence ≈ 8 x 10-6 erg/cm2 (25 keV – 1MeV) 

 => Hypernovae (SNe Massive Stars)  
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Fluence-Duration Correlation
•Black points are fluences
of 34 Long GRBs w/ 
detected afterglows

•Red crosses are average 
fluence of:

•206 Short GRBs (lower left)

•486 Long GRBs (upper right)

From 3rd BATSE catalog
(Panaitescu, Kumar, & Narayan 2001)

Short bursts have lower fluence than long bursts.

Swift XRT (rare / unique case)  
+ Swift/BAT + konus/WIND 



The Gamma-Ray Burst phenomenon 

Millisecond variability (minimum variability time-scale, MacLachlan et al. 2013) 

Short: 3 msec (wavelet techniques)  

Long: 30 msec (wavelet techniques) 

Internal shock model (ultarelativistic, γ ≈ 102 ÷ 103, colliding shocks) 
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6 MacLachlan et al.
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Figure 4. A histogram of minimum variability time scales, in
the observer frame, for long and short GRBs. It is clear that the
distribution of long GRBs is displaced from the distribution of
short GRBs.
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Figure 5. Minimum variability time scale versus T90 in the Ob-
server frame.

recovering the intrinsic light curve (see Eq. 12). We required
the following condition on the ratio of variances,

βpreburst
j

βburst
j

< 0.75, (17)

for one or more octaves, j. In addition, we also required that
the first order polynomial fits to the noise region and to the
scaling region each had a χ2/d.f. that was less than 2. This
reduced the sample to 14 short GRBs (Tab. 1) and 46 long
GRBs (Tab. 2) for a total of 60 and it is these GRBs which
are used to create Figs. 4, 5, and 8. For boosting into the
source frame (Figs. 6 and 7) a known z is obviously required
and this cut further reduced the data set to 2 short GRBs
and 16 long GRBs for a total of 18 GRBs considered in the
source frame (see Tab. 3).

5 RESULTS AND DISCUSSION

For a large sample of short and long GBM bursts, we have
used a technique based on wavelets to determine the min-
imum time scale (τβ) at which scaling processes dominate
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Figure 6. Minimum variability time scale versus T90 in Source
frame. The correction for time dilation shortens T90 and decreases
the minimum variability time scale of each burst.
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Figure 7.Minimum variability time scale versus T90 with symbol
size determined by luminosity (larger symbols for higher luminos-
ity). No obvious relation between minimum variability time scale
and luminosity is apparent. See Fig. 6 for error bars.
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BeppoSAX GRBM data  

40-700 keV, 1136 cm2 

Fermi GBM (8 keV - 40 MeV) 

courtesy of  
F. Frontera 



Number of GRB and Fluxes 
Short GRBs: 

Duration: 0.2 sec,  

Counts (50-300 MeV): 8 c/cm2/s 

Averaged photon energy: (Emax x Emin)1/2 = 122 keV 

Fluence: 0.2 x 8 x 122 keV/cm2 = 3 x 10-7 erg/cm2    

 

14 Short GRB burst per  

year with  

count rate > 8 c/s  
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Fig. 10.— Integral distribution of GRB fluence in two energy ranges: 10–1000 keV (upper plot)

and 50–300 keV (lower plot). Distributions are shown for the total sample (solid histogram), short

GRBs (dots) and long GRBs (dash-dots), using T90 = 2 s as the distinguishing criterion. In each

plot a power law with a slope of −3/2 (dashed line) is drawn to guide the eye.

Fermi GBM - 4-years data 



Simulations of a bright Short GRB (50 – 300 keV) 
Background: 0.43 c/s/cm2/steradians 

Background for 2 steradians FOV: 0.86 c/cm2/s 

Proton fluxes in LEO (580 km): 0.165 c/cm3/s 

Activation in equatorial LEO (580 km): ≤ 0.3 c/cm3/s (not included) 

Burst duration: 0.2 sec 

Source count rate: 7.875 ph/cm2/s  

Exponential shot rate: 100 shot/s 

Exponential shot decay time: 1 msec 
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Band 50-300 keV 
Effective area: 100 cm2 
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Delays from cross-correlation analysis 
Cross-correlation of GRB lightcurves from two satellites of 100 cm2 effective 
area in the 50-300 keV band: 
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Error in cross-correlation accuracy: 0.6 ÷ 60 µsec 
Number of independent estimate of delays:   Nsatellite – 1 
Position of the source in the sky, (α, δ): 2 parameters 
Statistical improvement in determining the position in the sky with NSATELLITES:  
(NSATELLITES −1− 2)1/2  =  6.9/9.8 (NSATELLITES = 50/100) 
Error in delay accuracy:  0.09÷8.7/0.06÷6.1 µsec  (NSATELLITES = 50/100) 
  

1

Background signal = 0.86 ph s
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�2

Detector’s Area = 100 cm

2

Shot rate = 100 shot/s Shot time = 0.2 s ⌧ = 10

�3

s

Flux [ph s

�1

cm

�2

] Time resolution [µs] Expected delay te [ms] Measured delay tm [ms] �t = te � tm [µs] Error [µs]

7.8

100 66.71282 66.66771 45.11 63.01

10 66.71282 66.73298 -20.16 58.49

7.8 · 10

100 66.71282 66.70084 11.98 19.48

10 66.71282 66.73610 -23.28 6.00

1 66.71282 66.71012 2.70 4.77

7.8 · 50
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Long GRB 

Short GRB 



Determination of source position through delays 
Error in accuracy ≈ c × (error in delay accuracy / average baseline) 

Maximum baseline = 2 × (REARTH + HSATELLITE)  = 2 × (6371 + 580) km 

Average baseline = Maximum baseline / 2 

Error in accuracy = 0.80÷78 arcsec (for NSATELLITES = 50) 

Error in accuracy = 0.53÷54 arcsec (for NSATELLITES = 100) 
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GRB front 

c dt 

Equatorial plane baseline 



electronics 

solar panel 

Detector 
Scintillator Crystals:  
CsI (classic) or LaBr3 or CeBr3 (rise − decay: 0.5 − 20 ns) 
Photo-detector:  
Silicon Photo Multiplier (SiPM) or Silicon Drift Detector (SDD) 
Effective area: 10 × 10 cm 
Crystal thickness: 1 cm 
Weight: 0.5 – 1 kg 
Energy band:  50 − 300 keV 
Energy resolution: 15% at 30 keV  
Temporal resolution: ≤ 10 nanoseconds 
Satellite 
5 detectors on a cubic structure + solar panel 
Weight: ≤ 10 kg 
Shielding 
Grating shields to reduce proton flux to 0.165 c/cm3/s 
Collimator 
2 stearadians  
(0.6 stearadians Icosahedron 20 faces,  
0.13 stearadians Snub Dodecahedron 92 faces, 
strong reduction of X-ray background) 
Data recording 
Continuous recording of buffered data 36 

Scintillator Crystal 
detector 

Detector and satellite 



electronics 

solar panel 

GRB statistics 
Average GRBs: 300/yr 
Bright GRBs:      30/yr 
GRB structure: duration 0.2÷20 s, shot noise τ = 1 ms, rate = 100/s 
Instrument 
N = 50/100 Nano Satellites (Modules) in Low Earth Orbit  
Average separation between Modules: 6000 km 
Module (weight ≤ 10 kg)  
5 Detectors  
Field of View of each Detector: 2 steradians 
GPS absolute temporal accuracy ≤ 100 nanoseconds 
GPS based Module positional accuracy: ≤ 10 m 
Detector 
Scintillator Crystals: CsI (classic) or LaBr3 or CeBr3 (rise − decay: 0.5 − 20 ns) 
Photo-detector: Silicon Photo Multiplier (SiPM) or Silicon Drift Detector (SDD) 
Effective area: 10 × 10 cm 
Weight: 0.5/1 kg 
Energy band:  3 keV − 50 MeV 
Energy resolution: 15% at 30 keV  
Temporal resolution: ≤ 10 nanoseconds 
Mission performance 
Accuracy in delays between Average GRB lightcurves of two Modules  
(cross correlation  techniques): 0.09÷8.7/0.06÷6.1 µsec for Average GRBs 
Continuous recording of buffered data 
Triggered to ground telemetry transmission 
Range of accuracy in positioning of GRB: 0.80÷78/0.53÷54 arcsec 
Modular structure: overall effective area 1 m2 every 100 modules 
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Scintillator Crystal 
detector 

The HERMES mission 
High Energy  Rapid Modular Experiment Satellites 
(a nanosatellite swarm monitor for GRB & High Energy GW counterparts) 



The Uncertainty Relation Δr Δt > Għ/c4 
and the space-time diagram for the intervals 

(Burderi, Di Salvo, Iaria, Physical Review D, 93, 064017, 2016)  

Δr × cΔt = Għ/c3  

Δr = cΔt  

ΔrMIN = (Għ/c3)1/2 

ΔtMIN = (Għ/c5)1/2 

TIMELIKE INTERVALS 

SPACELIKE INTERVALS 

cΔt 

Δr 
38 



The new Uncertainty Principle and the Minkowski metric: 
preserving Lorentz Invariance   

ct 

r 
Δs2 =(ct)2 − r2 

Invariant under  
Lorentz Transformations 

Δs2 = 0  
(light − massless particle) 
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Δs2 = TPLANCK
2  

Δs2 = RPLANCK
2  

Massless Particles                  Lorentz Invariance, not vice versa! 
Massive Photons? (Proca action)  



GRB & Quantum Gravity 
(Massive Photons or Lorentz Invariance Violation) 

MP or LIV predictions: 
|vphot/c -1| ≈  ξ Ephot/(MQG c2)n     (ξ ≈ 1    n = 1,2)   and   MQG = ζ mPLANCK        (ζ ≈ 1) 
 

 
ΔtMP/LIV  =  ξ (DTRAV/c) [ΔEphot/(MQG c2)]n 

 
DTRAV(z)=(c/H0)∫0z dβ (1+β)/[ΩΛ+(1+β)3 ΩM]1/2 
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         Band                      Flux                   Fluence                Expected ΔtQGR ∝ DGRB/c  
                                 (Bright GRBs)  (1 m2, 10 s)            for Quantum Gravity effects 

                   z = 0.9           z = 3.0 
  (keV)           (counts/cm2/s)         (counts)                         (µs)               (µs) 
      2  −         25              24.7                2,470,000                           0                    0 
    25  −         50                6.2                   620,000                           1                    2 
    50  −       100                5.5                   550,000                           2                    3 
  100  −       300                6.1                   610,000                           3                    5 
  300  −     1000                2.4                   240,000                         12                  19 
1000  −     2000                0.4                     40,000                         28                  45 
2000   −     5000                0.15                   15,000                         65                104    
5000   −  50000                0.07                     7,000                       421                671 



Conclusions I 
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All sky monitor of Gamma Bursts  
(GRB, Magnetar, High Energy counterparts of GW, etc.) 

•  Accuracy in positioning of GRB/GW: 0.80÷78/0.53÷54 arcsec 
•  0.5/1 m2 effective area (50 – 300 keV) 
•  Energy resolution: 15% at 30 keV  
•  Temporal resolution: ≤ 10 nanoseconds 
 

Quantum Gravity: probing the structure of space-time 
Time lags caused by prompt emission mechanism:  

•  complex dependence from Ephot(Band II) and Ephot(Band I) 
•  independent of DGRB(zGRB) 

Time lags caused by Quantum Gravity effects:                             
•  ∝ |Ephot(Band II)−Ephot(Band I)| 
•  ∝ DGRB(zGRB) 

The two effects can be disentangled with:  
•    ΔtQGR (HERMES) 
•    zGRB (optical, follow-up observations of host galaxy) 



Conclusions II 
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Cheap:  
        simple detector & nano(small)satellites: 
                      up to 100 million € for 100 satellites 

       see e.g. Thales Alenia Space:  
       40 kg – 100 W, 3 axes pointing, LEO,  
       cost ≈ 1 M€ (“deep throat”, private comm.)           

Fast:  
       few years (≤ 5 years) to flight the first satellite(s) 

Modular:  
                      robust against one or more satellite(s) failure 
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Growing interest in constellation 
of small satellites… 

The H.E.R.M.E.S. project will be 
presented in Plenary and dedicated  
sessions at the  
3rd COSPARSymposium,  
Small Satellites for Space Research 
South Korea, September 18−22, 2017 
Invited talks: 
Fabrizio Fiore 
Luciano Burderi 



That’s all Folks! 
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