

Higher Harmonic SRF Cavities for BESSY II Upgrade

Andranik Tsakanian , on behalf of BESSY VSR Team Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin

TESLA Technology Collaboration Meeting

06 - 09 February 2018

Milano, Italia

BESSY II Storage Ring

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays

BESSY II Parameters				
Lattice	DBA			
Circumference	240 m			
Energy	1.7 GeV			
Current	300 mA			
RF Frequency	500 MHz			
RF Voltage	1.5 MV			
Bunch Length	15 ps			
Emmitance	6 nm rad			

The Concept of BESSY VSR

BESSY II @ present

- Low alfa operation only 12 days/year (all beamlines) ------ Low flux
- Femtoslicing is continuously operated (only 1 beamline) -- Low flux

Can we design a system offering both possibilities simultaneously?

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{rf}}}$ Machine optics Hardware (RF cavities)
- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

The Concept of BESSY VSR

BESSY II @ present

- Supply short pulses down to 1.5 ps (100 × more bunch current)
- > Low α permits few 100 fs pulses
- Configure BESSY^{VSR} so 1.5 ps and 15 ps bunches can be supplied simultaneously for maximum flexibility and flux!

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{rf}}}$ Machine optics Hardware (RF cavities)
- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY II, SC Upgrade – BESSY VSR

BESSY II, SC Upgrade – BESSY VSR

BESSY VSR Filling Patterns

- High concentration of long bunches populated with high current (flux hungry users)
 - Few high current short bunches

(slicing bunches ...)

More short bunches (Extended)

 \geq

High Population of long & short bunches at the same time

BESSY II SC Upgrade – BESSY VSR

Simultaneous Store of long & short bunches

○ BESSY VSR

> SRF SYSTEM: 2@1.5 GHz & 2@1.75 GHz

CHALLENGES

- > CW operation @ high field levels E=20MV/m
- Peak fields on surface (discharges, quenching)
- High beam current (Ib=300mA),
- Cavity HOMs must be highly damped (CBIs)
- Exotic cavity design (damping end-groups)
- > Integrating in existing storage ring
- > Transparent Parking of SRF Module.

BESSY VSR SRF Cavity Designs

- > Tune fundamental mode: field flatness, R/Q
- > Control cavity HOM spectrum (off-resonance condition) during the design.

Strong HOM Damped SRF Cavity Concepts

Cavity with HOM WG Dampers

- 5 x Waveguide dampers, HOM loads (warm)
- Large beampipe radius better HOM propagation
- ➤ Waveguides are below cutoff for fundamental → can be moved close to the cavity for heavy damping.

BESSY VSR SRF Cavity Designs

Simulation Results – for both Cavity (TM ₀₁₀ π-mode)							
1.5GHz	1.75GHz	Design goal					
1.4990	1.7489	3 th & 3.5 th harm.					
		of 499.65 MHz					
4.99*10 ⁷	4.28*10 ⁷						
277.63	275.42						
2.32	2.30	≤ 2.4					
4.98	5.13	≤ 5.3					
386	380	≥ 90 per cell					
97%	99 %	≥ 95%					
	1.5GHz 1.4990 4.99*10 ⁷ 277.63 2.32 4.98 386 97%	1.5GHz 1.75GHz 1.4990 1.7489 4.99*10 ⁷ 4.28*10 ⁷ 277.63 275.42 2.32 2.30 4.98 5.13 386 380 97% 99 %					

pectrally Weighted with "Baseline" pattern						
Cavity Type	1.5GHz	1.75GHz				
Port No.	HOM Power [W]					
$1 - FPC^{(1)}$	37.9	33.8				
2 – WG ⁽¹⁾	105.3	154.7				
$3 - WG^{(1)}$	103.8	151.4				
4 – WG ⁽²⁾	88.5	108.3				
5 – WG ⁽²⁾	90.2	109.8				
$6 - WG^{(2)}$	90.6	111.6				
7 – BmP ^(Upstream)	235.4	200.5				
8 – BmP ^(Downstream)	327.1	275.9				
Total Coherent	1079	1146				
None-Coherent	1293	1300				

- During cavity design additional to standard parameters (peak fields, field flatness ...), HOM spectrum should be controlled to avoid any resonances with circulating beam harmonics.
- Both cavities are not hitting any of beam resonances that are multiple of 250MHz.
- Cornell's ERL cavities are designed to run at about 100-200W HOM Power.

Waveguide Bend Broadband Characteristics & HOM Loads

- Low reflection (broadband) from the WG bend is for bending radius = 30mm or bR ≥ 100mm.
- TE10 mode couples into different modes after bend: TE10, TE11, TM11..., depending on excitation frequency & the cutoff of each WG mode !
- At high frequencies the TE10 is scattered from the bend into several modes, i.e. acts as mode mixer.
- At optimized 30mm inner bending radius the reflection is minimal in broadband frequency sense.

- Water-cooled HOM loads (room temperature 300K)
- Specifications: 460W per load
- Design, fabrication and tests @ JLab

BESSY VSR SRF Cavities

- Baking temperature ~ 700°C, because of Helium-vessel parts.
- Nb inner surface removal ~ 200µm total is planned with BCP. The homogeneity of removal in HOM dampers should be checked.
- waveguide NbTi flanges VATSEAL gaskets will be used cold test is planned. At all other flanges – diamond gaskets.
- Looking solutions for cooled WG- \geq flange concept.

BESSY VSR: Cavity Prototypes

1.5 GHz 5-cell Copper prototype

1.5 GHz Single-cell Nb prototype

HOM Power Levels in SRF Module

Wakefield Simulations

- Long Range Wakes~ 20m
- Spectral Weighting of all Port Signals with Beam Spectrum
- Expected HOM Power Levels & Spectrum
- Efficiency of HOM Damping
- Analyze different cavity arrangements in the module to reach optimal operation conditions with equally distributed power portions in warm HOM loads.
- Study on different FPC locations (Upstream - Downstream) to minimize the flown HOM powers & redirect to wavguide dampers. (RF window issues)

	VSR Module Power Levels: Baseline Filling Patern					
_	Port	LSSL1	LSSL2	SSLL1	SSLL2	
	1	28,9	28,9	102,2	58,6	
	2	102,2	102,1	216,0	217,4	
	3	102,2	102,1	216,0	217,4	
	4	157,0	157,1	178,7	179,0	
	5	157,0	157,1	178,7	179,0	
	6	195,6	195,5	204,6	231,7	
	7	46,3	45,8	25,7	25,4	
	8	230,3	230,1	140,2	140,1	
	9	230,3	230,1	140,2	140,1	
	10	163,2	163,7	165,5	165,9	
—	11	163,2	163,7	165,5	165,9	
∧]	12	221,8	221,3	225,7	223,6	
	13	52,6	53,0	53,1	52,4	
/el	14	249,6	247,2	254,2	251,8	
Š	15	249,6	247,2	254,2	251,8	
Ľ	16	185,2	163,9	195,2	171,1	
Σ	17	185,2	163,9	195,2	171,1	
O	18	240,9	199,9	263,6	207,6	
_	19	96,2	24,2	59,7	23,7	
	20	201,5	115,1	210,2	116,2	
	21	201,5	115,1	210,2	116,2	
	22	86,0	159,5	90,0	167,6	
	23	86,0	159,5	90,0	167,6	
_	24	97,3	202,8	96,5	208,5	
am 🖌	25	246,6	246,1	227,6	225,0	
es l	26	269,4	330,2	299,0	357,7	
	Total	4245 W	4225 W	4457 W	4432 W	

1.75 GHz Cavities

1.5

GHz

1.5 GHz

13

Thank You for Your Attention !

