CEBAF Gradient Management

Optimizing cavity
performance through
collaborative effort
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CEBAF overview

* CEBAF is a recirculating electron particle accelerator with
potential to deliver 12 GeV beam to a single experimental hall
while delivering up to 11.5 GeV to the remaining 3 halls in CW
mode — simultaneously

There are 418 SRF accelerating cavities in total
- 18 in the injector region
- 400 in the north and south linacs

There are 3 distinct “flavors” of cryomodules
- C20: 5 cell cavity structure designed to produce 20 MeV
- C50: 5 cell cavity structure refurbished to produce 50 MeV
- C100: 7 cell cavity structure designed to produce 108 MeV

C20 and C50 cryomodules share a similar control system
- Computer controlled/analog based — designed in the 1980s

C100 zones have new DSP I/Q control system
- Handles the higher Qext and Lorentz detuning
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Operational gradient

* Operational gradient is the voltage a cavity will operate at
stably.

- Statistically and empirically derived values

- Based on and not to exceed commissioning gradient
values

- The gradient delivery system performance is dynamic,
so the operational value may change over time

- During run-time, the Operations crew or RF support
group will de-rate cavities due to performance issues

- For C50/100 modules, operational gradient should
always be equal to beam calibrated commissioning
gradient; if not -

* |[dentify and fix the problem - or

* Revisit beam calibrated commissioning gradient

value

2

3 J )_j_ferson Lab



Gradient = Gold
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Example: C100 operational gradient degradation

Average for the Final maximum operating gradient - 20.4 MV/m
Dynamic heat load = 35W per cavity / 240 W for the string.
Static Heat Load ~18W

Average Energy Gain = 113 MV /108 MV

Cryomodul Commissioned Operational Ener Operational Ener
gromos e fgre oz oz

C100-1 SL24 104 MV 77.1 77.21
C100-2 SL25 122 89.6 89.67
C100-3 NL22 108 91.2 91.35
C100-4 SL22 93 91.5 91.56
C100-5 SL23 121 91.9 91.9
C100-6 NL23 111 99.4 91.9
C100-7 NL24 103 95.9 91.84
C100-8 SL26 110 90.7 86.9
C100-9 NL25 105 85.0 83.65
C100-10 NL26 106 83.5 77.28
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Factors that limit operational gradient

* C20
- Arc trips
- Spurious field emitter turn on (wrecks the cavity model)
- Cryomodule warm up/cool down

* C20/50 cavity klystrons are nearing end of life
- To prevent tube damage through mod anode leakage heating, the cathode
current is reduced via application of mod anode voltage, which lowers available
power to the cavity, thus gradient
* C100
- Microphonics
- “Fratricide” quench events
- Cryogenic pressure/ Dynamic heat load
* C100 smaller helium vessel
* Critical heat flux in risers for C100 cavities

- FE effects

* Cryomodule vacuum seals

* Warm girder elements and cabling

* Beamline outgassing from heating

* Turbo pump death (insulating vacuum)

* All cryomodules
- Dynamic operational adjustments
- Hardware failure
- Component obsolescence
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GDCL “soft faults”
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Quench Faults

€100 Fault Viewe

— _1 DETA _1 FSDO 1 GDCL 1 GLDE 1 GMES 1 HRAEN
w Al ~ Nong 1 HPAD 1 INHIB 1 INTLKI I PLDE L PLL I~ GNCH _I RFSWOP
1 SANCH
INTERLOCK: _I CWAD I CWAT I CWWT LI CWWTW | CWY i FSDI
~r Al ™~ None I INTLEQ
KLYSTROMHPA: | HPAI 1 KBCUH 1 KCCUH I KFYMH g KFYML 1 KMaIH Refresh
~ Al None I KMAVH 1 KRRPH 1 KSOLI
Report
ZONE INTERLOCK: | BLY I FSDZM 1 HELM 1 RFEIL Preferences
all MNone
~ ~ Help
ZONE HPA: LI KDCOWL L KINTK _i KOTEMP i
v All e Hone 1 Show Bukhle Help
: o
s Bl Mone
Fom: [Qet | &|[17] &|[eotel x| [1@] | [ 2
Wiew
gl e e Y o
Linac View
1
QNCH [4406)
2000
. |
=
& 1000
o |
T T T T T T
oLo4 1122 1123 1134 1135 1126
Zone
SouthLinac
QNCH (3768)
2000
. |
=
& 1000
o
T T T T T
2122 2123 aL24 2125 2125
Zone




Lost Gradient?

* Typically recoverable to some degree — record keeping

* C20 cryomodules

- Arc rate adjustments

* If a cavity is detected to be arcing at an unacceptable rate, the
cavity gradient is lowered by Ops

* Until the cavity gradient model is updated, the cavities are hard
limited by this activity
* All cryomodules
- Diagnostics processes
- Program requirements
- Repair/recovery activities
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Critical and dynamic system — overwhelming burden

Due to the nature of the CEBAF performance requirements, and
the importance that a robust gradient delivery system holds, it
became increasingly evident that gradient optimization and
management was beyond the scope of a linear transitional design,
production and operations scheme - and the burden of any one
person, group or division.

In 2016, the Gradient Improvement Team was formed.
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Gradient Improvement Team - Charter

* “The CEBAF superconducting cavities and associated RF
systems must provide 1.1 GeV per linac with a total trip rate less
than 5 trips/hour while operating within the cooling capacities of
the CHL1 and CHL2. At the time the Team is being chartered,
these specifications are barely being met, and previous
operating experience shows that trip rates increase with time.
This creates an urgent need to get the best possible
performance out of the installed systems, now and for the future.

* The goal of the Team is to evaluate every aspect of the
cryomodule-RF-cryogenics system and optimize the system
parameters to maximize the available gradient and minimize the
trip rate at the nominal energy of 12 GeV.”

In effect, management got a group of “players” together
and gave them a hammer to get things done!

2

9
J Jf.erson Lab



Gradient Improvement Team — participating staff

* Collaboration between Cryogenics, Engineering, Operations,
Software and SRF divisions

* Tools developed to analyze cavity gradient performance in real
time and aid in providing solutions and provide performance
forecasts

* Action items assigned to tactically improve gradient reach and
strategically ensure robust future accelerator operation

* Improved systems integration process — all divisions share
information to pre-emptively avoid problems

©RF Dashboard

[eneror o | T () (S () () ()
Reach .

* Development of documentation and training =~ & e
S T——
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Analysis and Prioritization

* Each expert on the team contributed to the set of issues that
need to be evaluated to optimize the accelerator gradient
“system”.

- Over 70 issues identified

* Devised a way to organize the list into prioritized plans of action.

- Wanted to understand:
* |ssue grouping
* What we were gaining by addressing the issue
* What were the associated costs and benefits

* Once the solutions for the issues were developed by the SMEs, the
cost-benefit rankings could be started

* Two stages of rankings used for prioritization:

* Costs and Benefits - Traditional approach using cost, labor, risks, and
rewards

* Weights - Using the Analytic Hierarchy Process (AHP)
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Progress examples

* C100 Microphonics dampening improvement
- Analysis and structural stiffening of waveguide and tuner stalks
designed and applied by engineering
C100 Quench fault reduction

- Noted unexpected periodicity of trips resulted in statistical
analysis and modeling by to isolate contributing cavities — similar
to arc rate modeling in C20 zones

C100 radiation damage reduction

- SRF and ENG designed and installed lead collars on
cryomodule downstream end can to prevent warm girder
element and cable damage

Fault isolation

- Engineering and software collaborated to develop a fault

counter/viewer for historical reference
Cryogenics adaptations

- Assisted Operations in finding nominal return pressure for liquid
level stability issues

- Developed option to shed excessive heat from C100 modules
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Progress examples — cont’d
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Progress examples — cont’d

* C100 independent cavity heater controls (ENG)

- Allows finer resolution in heat distribution to mitigate surpassing
critical heat flux in the riser — enhanced liquid level stability

- Can apply Qo vs gradient curvefor more points other than Emax
for more precise heat application at the operating gradient set point

Radiation monitors installed over the C100 zones to track field
emission in real time.

Cryomodule temperature diode display developed facilitate
iInternal temperature monitoring

Installed higher capability heater power supplies in the C50
zones to allow higher operational gradient values

Contract for klystrons awarded to replace aging tubes
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C100 Recovery Time vs Time

* Controls refinements

* Algorithms developed to considerably shorten recovery time for tripped C100
cavities
Waveform analysis tools developed for fast transient display
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Summary

Gradient management is a complex task for a dynamic gradient
delivery system in a CW machine

The collaboration between divisions and buy-in from
management were crucial to the teams progress

Over 70 issues were identified and prioritized by the team

Operational gradient gains have been modest as of yet, but
machine availability has improved — we are in the process of
optimizing C100 gradients at this time

Process improvement is continuous, and we are making
progress.
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Gradient Improvement Team
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Gradient Improvement Team

* Show examples of analysis tools and mitigation graphics
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Discussion

* In work
- Analysis of FE contribution to C100 performance and lifetime

- Application of lessons learned in future cryomodule development
and construction
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Not So Good Things

* Number of trips and resulting down time
- Break down into trip types, culminating with quench
- Mention arc detector degradation, mitigations applied
- Mention increased radiation and field emission problems
- Beam line vacuum degradation due to FE (particulates?)

- Lack of diagnostics to pin point faults (but getting better) Still
requires expert intervention to isolate bad cavity
- Ambiguity into what is actually causing trips...

* Originally thought to be microphonics as main contributor, but
detected “quench” far outnumbers other trips

* Mention Tom’s “theories”, Rongli particulate contribution
* Mention and show 1L23 trip reduction after derating by 1 MV/m

Jefferson Lab



Gradient Improvement Team

* Jay Benesch presently handles arc rate models and C100
periodic quench offenders

- Calculates trip offset and slope for predicting trips
- Sets MaxGSET in CED for LEM

 Daily analysis and report of gradient reductions

- Tools being developed to extract information across CED and
Cavity History

- Validate reduction or put into queue for repair/maintenance — can
predict maintenance days

* Tools for fault reporting
- Ops centric, automated if possible...

Jefferson Lab
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H¥br|d of 3 Cryomodule
DegiﬂﬂSrowde 20 MeV energy gain

avity structure

* Surpassed design expectations

* Suffers from gradient dependent arc trips
* C50

* Refurbished C20 modules with structural and cavity treatment

improvements to mitigate arc trips and provide 50 MeV of energy gain

* C100

* New cryomodule design to provide 108 MeV energy gain

* 7 cell cavity structure

* Smaller helium vessel

* New digital RF controls
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