# **Microphonics Measurement and Compensation**

#### in Superconducting Radio Frequency Cavities



Radosław Rybaniec (DESY) on behalf of the MSK LLRF Team

TTC Meeting Milano, 6.02.2018







## What are microphonics and why should we care?

- > Radio Frequency Cavities are resonators
- > Geometry of cavities is affecting the resonance frequency
- Microphonics: external mechanical forces are changing shape of cavities
- Forces → deformation of a cavity → change in a resonance frequency
  → field instability
- Especially important in high Q<sub>1</sub> operation







# **Microphonics in high Q** operation

- Increasing Q<sub>1</sub> improves a power efficiency
- > Decreasing the bandwidth of cavities

$$f_{1/2} = \frac{f_0}{2Q_L}$$

System becomes more sensitive to microphonics



|                                | XFEL  | CMTB |      |
|--------------------------------|-------|------|------|
| Q <sub>L</sub>                 | 4.6e6 | 2e7  | 6e7  |
| Half BW [Hz]                   | 142   | 32.5 | 10.8 |
| Input power<br>[kW]<br>@20MV/m | 21.2  | 4.9  | 1.6  |



#### **Microphonics sources at CMTB**

- > DESY CryoModule Test Bench
  - XFEL type cryomodule, high QL tests (6e7), CW, long pulse modes (200 ms, 1Hz)
  - IOT
- > Helium pressure variations
- Other vibration sources
  - vacuum pumps identified as the major source
  - construction works, etc...
- Most disturbances are narrow-band



### **Passive detuning control**

- > Great outcome using simple measures
- > Mechanics very important!
- > Passive vibration isolation is a cost effective method



Microphonics measurement



## Active detuning control – design considerations

#### Employing fast tuners

- piezo tuners
- Detuning information
  - phase difference
  - model based estimation
  - piezo sensor
- > Detuning controller design
  - PID control
  - model based approach
    - > very hard to identify model automatically
  - Active Noise Control
    - suitable for narrow-bandwidth vibrations





# **Detuning estimation**

#### > Phase difference method

- simple
- depended on RF regulation
- VS?
- beam?

$$\Delta \boldsymbol{\omega} = \operatorname{tg}(\angle \mathbf{V_{for}} - \angle \mathbf{V_C}) \frac{\boldsymbol{\omega}_0}{2Q_L}$$

- Model based approach
  - req. more computing power
  - req. coupler calibration

$$\Delta \omega = Im \left( \frac{\frac{d\mathbf{V}_{\mathbf{C}}}{dt} - K_B \cdot \mathbf{I}_{\mathbf{B}} + K_G \cdot \mathbf{V}_{\mathbf{G}}}{\mathbf{V}_{\mathbf{C}}} \right)$$





# **PID control**

- P(roportional) I(ntegral) D(derivative)
- > Algorithm
  - compute error: subtract detuning from a setpoint
  - compute P, I, D of the error
  - apply to the actuator
- System Modeling not required!
  - easy to set-up
- Limited to approx. < 10Hz</p>
  - transfer function resonances



## **Narrowband Active Noise Control**

#### Narrowband ANC

- reference signal (vibrations) is synthesized
- modeling not required
- algorithm adapts to changes in amplitude and phase of disturbances
- notch filter behavior







## **Microphonics compensation strategy at CMTB**

- Most dominating disturbances at 30 and 49 Hz
- Integral feedback controller for slow drifts (Helium) compensation
- > Active Noise Control for the 30 and 49 Hz disturbances
  - up to 4 frequencies per cavity
- > Both phase difference and model based estimation implemented





#### **Microphonics compensation at CMTB - results**



# **Piezo transfer function modeling**

- Required for more advanced controllers
- > Automatic identification is difficult
- Resulting model is very complex
  - 27<sup>th</sup> order

$$H(s) = \left(H_0(s) + \sum_{k=1}^N H_k(s)\right) \cdot H_d(s)$$
$$H_k(s) = \frac{\omega_{m,k}^2 M_k}{s^2 + 2\xi_k \omega_{m,k} s + \omega_{m,k}^2}$$





## Ideas - piezo sensor feedback

- > Cavities are equipped with a pair of piezo elements
  - one acts as an actuator, second can be used as sensor
- > Advantages
  - RF not required
    - signal available between RF pulses
- > Disadvantages
  - no "DC" detunng information
  - coupling between actuator and sensor
    - > blade tuner?





L.Lilje et.al.





#### **IMC sensor feedback**

#### Internal Model Control

- internal plant model is used to compute the disturbance acting
- decoupling of a piezo sensor from the actuator
- 2x1024 FIR filters







## Ideas – microphonics control in short pulsed accelerators

- > Apply a compensating signal before a pulse
- Microphonics prediction
  - based on information from previous pulses
- > Auto Regressive model (10<sup>th</sup> order)
  - coefficients identified during operation
  - coefficients recursively changed to minimize one-step prediction error





#### Summary

- > Cavities detuning caused by a mechanical interference
  - helium pressure change <1 Hz</p>
  - vacuum pumps
- > Additional RF power needed to stabilize accelerating gradient
- > RF signals can be used as a source of information
  - probe forward phase difference
  - model based cavity detuning
  - alternatively piezo sensor information
- Seneral vibration control methods can be applied for a microphonics compensation
  - passive vibration isolation
  - active tuning with piezo
- > Thank you for attention!

