

3.9 GHz CW challenges and recent horizontal test results at Fermilab

Sebastian Aderhold TTC Meeting, Milan 06 February 2018

Acknowledgements

- LCLS-II 3.9GHz work at Fermilab is true team work
 - Many thanks to everyone working on the design verification and the horizontal testing in particular
- Special thanks for contributing material to this talk to:
 - Saravan Chandrasekaran, Yuriy Pischalnikov, Nikolay Solyak, Genfa Wu

Outline: Challenges

LCLS-II specs

 $- Q_0 = 2E9 @ E_{acc} = 13.4 \text{ MV/m}$ (nominal operation)

- Heatload/Q0
 - He vessel/chimney must handle generated heatload
- Magnetic shielding
 - 15mG in cryomodule
- Tuner
 - Microphonics specification: 30Hz peak detuning
- Power coupler
 - Engineering specification: 2kW CW, travelling wave
- Integrated test of all components in horizontal cryostat

Horizontal testing

- Conditions similar to cryomodule operation
- Integrated testing of all components
- Resolve possible interference

VTS cavity performance

BCP and 120 bake surpasses specification with big margin

🛟 Fermilab

HTS performance 3HRI03

🛠 Fermilab

- Q in HTS matches VTS performance
- Ultimate quench in HTS at 20.4 MV/m (FE present)

Heatload

- Heat load capacity limited by chimney size
- Limited area on helium vessel
- -> stepwise diameter increase

D 97.3836 mm

Magnetic shielding

- Hard/impossible to fully cover outside of helium vessel
 Hybrid shield approach
- External magnetic shield primarily "end caps" to shield beam tube and chimney openings

Magnetic shielding

- Internal magnetic shielding covering cavity
- small holes to allow liquid helium/heat transfer
- 3 big holes next to chimney

Magnetic shielding (cooldown data)

- 2 FGs on beam pipe
- 2 FGs inside He vessel on cell 1
 - Reading < 0.5
 and < 1.5mG

Tuner

- LCLS-II adopted a modified INFN slim blade tuner design
- Added 2 piezo-capsules for fast tuning
- Active elements are the same as used for 1.3 GHz LCLS-II tuner:
 - Phytron electromechanical actuator (and limit switches)
 - Two PI piezo-capsules

Tuner performance at 2K

Slow Tuner performance

Fast/Piezo Tuner performance

Cavity Frequency change by fast tuner: Δ F=45Hz/V or Δ F =5kHz for V_{max}=120V

Specification for fast tuner: ∆F _{specs}=1kHz

🛟 Fermilab

More results in Y. Pischalnikov's talk (Thu, 14:15-14:45)

Power coupler

- LCLS-II 3.9GHz power coupler is modified from old FNAL/XFEL style coupler
 - Increased copper plating thickness on inner conductor in warm part (30um -> 120um)
 - Reduced number of convolutions for two bellows on inner conductor part of warm section (20 -> 15)
 - Antenna material is changed from copper plated stainless steel to pure copper
- Note: HTS testing was done with a partially modified coupler with un-modified antenna tip made of SS with 50um copper plating
- Observation in HTS:
 - Significant change in Q_{ext} with coupler heating (1.5E7 -> 1.05E7)

🌫 Fermilab

Power coupler (on resonance)

Parameters: P_{in}= 1 kW SW, 10μm outer plating, ε=9.8, tan=3e-4, roughness 10% Antenna: SS+50 μm Cu covered / solid copper

475

450

400

350

10

🚰 Fermilab

Temperature distribution vs. Z of inner conductor

Antenna deformation due to thermal stress (HTS)

 $\Delta L1 = -28 / -123 \,\mu m$

 $\Delta L2 = -508 / -608 \,\mu m$

🛟 Fermilab

 ΔL total (dynamic-static) = (750+123) um = 873 um ΔL shift (warm-to-cold static) = -123 um

Antenna deformation due to thermal stress

Influence of coupler heating on Qext

	Q _{nom}	Depth, mm
Modified coupler	2.5E7	11

Sensitivity of loaded Q_L to the antenna length: $(\Delta Q_L/Q_L)/\Delta z = 0.275;$

then: for $Q_L = 2.5e7 \Rightarrow (\Delta Q_L / \Delta z) = 0.68e7/mm$ for $Q_L = 1.5e7 \Rightarrow (\Delta Q_L / \Delta z) = 0.41e7/mm$

ON-resonance case:	_	
Λ_{7} = 750 / -35 µm		Antenna: SS / Cu
$\Delta z_{static} = -123 / -57 \mu m$		$\Delta z_{total} = + 873 / 22 \mu m$
Static · ·		

Deviation	Δz, μm	CM: Q _L x10 ⁷	HTS: $Q_L \times 10^7$
Warm	0	2.50 / 2.5*	1.50
Cold static	-123 / -57	2.58 / 2.54*	1.56 / 1.55**
Cold dynamic, 1kW	750 / - <mark>35</mark>	1.99 / <mark>2.48</mark> *	1.12 / 1.05**

** Measurements

🛟 Fermilab

Power coupler heating summary

	antenna	T max, K coupler	T probe K	T antenna K	ΔL (ant.), μm dynamic	ΔL (ant.), μm static (85K)	ΔL (ant.), µm total
Copper	ON-resonance	475	430	183	-35	-57	-92
	OFF-resonance	428	411	174	-42	-57	-97
SS+50µm Cu plating	ON-resonance	469	411	481	750	-123	-873
	OFF-resonance	447	422	386	468	-123	-591

- Simulations match T and Q_{ext} behavior of existing coupler
- Modified (full Cu) coupler will mitigate existing problems

Summary

- Integrated test in HTS reproduces cavity VTS performance with Q = 3.2E9 @13.7 MV/m, quench at 20.4 MV/m
- Hybrid magnetic shield works
 - Average field <15mG achieved
- Individual tuner components work, full integrated test and microphonics measurement to be done
- Simulation of heating and thermal expansion of power coupler matches behavior in HTS
 - Production power coupler with solid Cu antenna eliminates high temperatures on antenna tip and big change in Q_{ext}

🛠 Fermilab

Additional slides

Power coupler temperature measurement in HTS

3HRI03 radiation

‡ Fermilab

3HRI03, with and without comp. field

