

Cosmological Lithium problem: measurement of $^{7}Be(n,\alpha)$ and $^{7}Be(n,p)$ cross-sections at the n_TOF facility at CERN

M. Barbagallo^{1,2}, on behalf of the n_TOF Collaboration²
1-Istituto Nazionale di Fisica Nucleare, sez. di Bari

2-CERN

Nuclear Physics in Astrophysics VIII

Laboratori Nazionali del Sud, Catania, June 18-23 2017

- The Cosmological Lithium Problem
- The n_TOF Facility
- The ⁷Be(n, α) cross section measurement and its implications
- The ⁷Be(n,p) cross section measurement
- Conclusions

BBN successfully predicts the abundancies of light elements, i.e. D and ⁴He, but...

Serious discrepancy between the predicted abundance of ⁷Li and the value inferred by measurements (Spite et al.) Cosmological Lithium problem (CLiP)

(At least) Three classes of solutions for this longstanding problem:

(At least) Three classes of solutions for this longstanding problem:

Nuclear Physics solution to CLiP

Approximately 95% of primordial ⁷Li is produced from the electron capture decay of ⁷Be ($T_{1/2}$ =53.2 d).

⁷Be decay rate in plasma(?)

⁷Be production channels have been widely investigated and they are known with good accuracy.

⁷Be is destroyed via (n,p) and (p,x), (d,x), $(^{3}He,x)$, ... reactions. Small contribution of the (n,α) reactions according to **estimated** cross section.

Nuclear Physics solution to CLiP

Approximately 95% of primordial ⁷Li is produced from the electron capture decay of ⁷Be ($T_{1/2}$ =53.2 d).

⁷Be decay rate in plasma(?)

⁷Be production channels have been widely investigated and they are known with good accuracy.

⁷Be is destroyed via (n,p) and (p,x), (d,x), $(^{3}He,x)$, ... reactions. Small contribution of the (n,α) reactions according to **estimated** cross section.

n + ⁷Be ----> ⁸Be* ----> $\alpha + \alpha$ (+ γ) Q ~-19 MeV

- Silicon detectors directly inserted in the beam (3x3 cm² active area, 140 μm thickness)
- Two different samples, 40 GBq total activity

L. Cosentino et al. (n_TOF Coll.), NIM A 830 (2016) 197-205

Such a setup offered, among other features, redundancy, allowing to reduce systematic uncertainties.

Both ⁷Be samples were prepared at **PSI**, starting from a 200 GBq solution extracted from the spallation target of SINQ source, as $Be(NO_3)_2$ solution.

Before being deposited/evaporated the solution was <u>chemically</u> purified (⁷Li).

 $0.6\ \mu\text{m}$ polyethylene stretched foil

5 μ m aluminium foil

The samples were characterized in terms of thickness and activity.

E. Maugeri et al. (n_TOF Coll.), Journ. of Instr., 12, P02016, (2017)

⁷Be(n, $\gamma\alpha$)⁴He measurement: the making of

Two different sandwiches of silicon detectors.

Possible to evaluate random coincidences comparing uncorrelated couples of detectors.

Two different sandwiches of silicon detectors.

Possible to evaluate random coincidences comparing uncorrelated couples of detectors.

Strong rejection of background: coincidence signals, low duty cycle beam, Time-of-Flight.

Protons from ⁷Be(n,p) reactions

NFN

Strong rejection of background: coincidence signals, low duty cycle beam, Time-of-Flight.

INFN

⁷Be(n,α)⁴He n_TOF results and CLiP

M. Barbagallo et al. (n_TOF Coll.), Phys. Rev. Lett. 117, 152701, 2016

- http://home.cern/about/updates/2016/10/ntof-plays-hide-and-seek-cosmological-lithium
- <u>http://home.infn.it/it/comunicazione/news/1999-il-mistero-nascosto-nei-primi-tre-minuti-di-vita-dell-universo</u>

⁷Be(n,α)⁴He n_TOF results and CLiP

M. Barbagallo et al. (n_TOF Coll.), Phys. Rev. Lett. 117, 152701, 2016

- http://home.cern/about/updates/2016/10/ntof-plays-hide-and-seek-cosmological-lithium
- <u>http://home.infn.it/it/comunicazione/news/1999-il-mistero-nascosto-nei-primi-tre-minuti-di-vita-dell-universo</u>

As for (n,α) measurement, the Cosmological Lithium Problem gets worse!

⁷Be(n,α)⁴He n_TOF results and CLiP

M. Barbagallo et al. (n_TOF Coll.), Phys. Rev. Lett. 117, 152701, 2016

- http://home.cern/about/updates/2016/10/ntof-plays-hide-and-seek-cosmological-lithium
- <u>http://home.infn.it/it/comunicazione/news/1999-il-mistero-nascosto-nei-primi-tre-minuti-di-vita-dell-universo</u>

As for (n,α) measurement, the Cosmological Lithium Problem gets worse!

T. Kawabata et al., Phys. Rev. Lett. 118, 052701, 2017

n + ⁷Be ----> ⁸Be* ----> p + ⁷Li Q ~ 1.64 MeV

Detection and identification of protons of 1.4 MeV and 1 MeV

Silicon telescope (@Univ. of Lodz) @n_TOF-EAR2.

n + ⁷Be ----> ⁸Be* ----> p + ⁷Li Q ~ 1.64 MeV

Detection and identification of protons of 1.4 MeV and 1 MeV

Silicon telescope (@Univ. of Lodz) @n_TOF-EAR2.

1 GBq high purity sample needed

(Chemical separation not sufficient)

n + ⁷Be ----> ⁸Be* ----> p + ⁷Li Q ~ 1.64 MeV

Detection and identification of protons of 1.4 MeV and 1 MeV

Silicon telescope (@Univ. of Lodz) @n_TOF-EAR2.

1 GBq high purity sample needed

(Chemical separation not sufficient)

- First joint n_TOF-ISOLDE experiment
- First time ever measurement of a neutron induced reaction cross-section using a target produced with a radioactive beam.

A three steps experiment:

- Extraction of 200 GBq from water cooling of SINQ spallation source at PSI.
- Implantation of 30 keV (~45 nA) ⁷Be beam on suited backing using ISOLDE-GPS separator (and RILIS).
- Measurement at n_TOF-EAR2 using a silicon telescope (20 and 300 μ m, 5x5 cm² strip device).

⁷Be(n,p)⁷Li measurement

5600

1400

1200

1000

800

600

400

200

ΔEvsE

tritons

hamps

Entries Mean x

Mean y

RMS x

RMS y

488414

1065

455.7

209.8

64.22

25

20

15

10

The detection system was characterized using α -source and the well-known ⁶Li(n,t)⁴He reaction.

Q = 4.78 MeV

⁷Be(n,p)⁷Li measurement preliminary results

M. Barbagallo, Cosmological Lithium problem: measurements of the ⁷Be(n,a) and ⁷Be(n,p) cross-sections at the n_TOF facility at CERN, INFN-LNS, June 2017

⁷Be(n,p)⁷Li measurement preliminary results

First time ever direct measurement of ⁷Be(n,p) reaction in the range of interest for Big Bang Nucleosynthesis.

Stay tuned...

M. Barbagallo, Cosmological Lithium problem: measurements of the ⁷Be(n,a) and ⁷Be(n,p) cross-sections at the n_TOF facility at CERN, INFN-LNS, June 2017

• Uncertainties in nuclear data strongly affect the Big Bang Nucleosynthesis calculations for the abundance of ⁷Li and could possibly explain (at least shade new light on) the **C**osmological **Li**thium **P**roblem.

• ⁷Be(n,α)⁴He cross-section has been measured for the first time in a wide energy range, using n_TOF-EAR2 neutron beam and two samples prepared at PSI. The results obtained for this measurement reveal that the reaction rate currently used in BBN calculation requires substantial revision. The CLiP gets worse!

• The ⁷Be(n,p)⁷Li cross-section measurement has been performed at n_TOF-EAR2, using a **1.1 GBq** pure sample implanted at **ISOLDE**. Preliminary results from the ⁷Be(n,p)⁷Li cross-section measurement are more than extremely encouraging, already proving that a final answer on the role of this reaction in BBN can be provided by this experiment.

M. Barbagallo, Cosmological Lithium problem: measurements of the ⁷Be(n,a) and ⁷Be(n,p) cross-sections at the n_TOF facility at CERN, INFN-LNS, June 2017

Thank you for your kind attention

