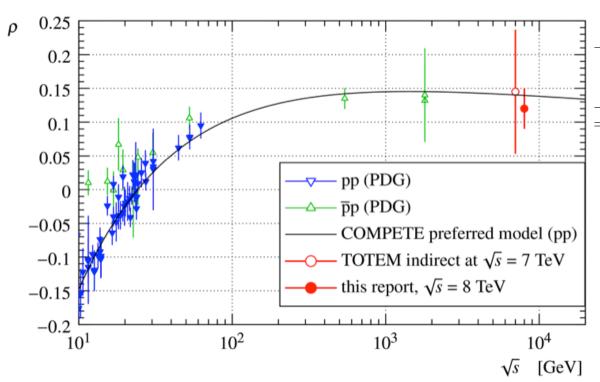

stato di TOTEM & richieste 2018

F. Cafagna, E. Radicioni

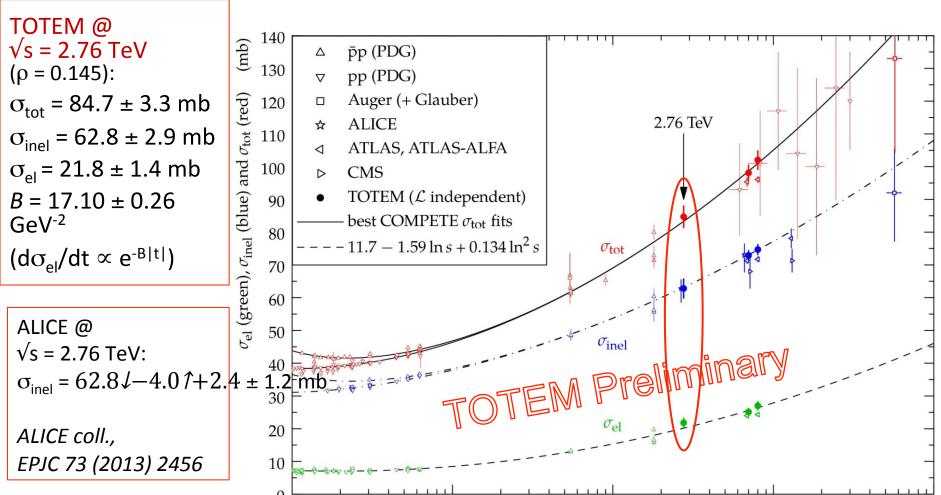

Coulomb Nuclear interference: p

• EPJC cover:

- Measurement of
 Elastic pp Scattering
 at √s = 8 TeV in the
 Coulomb-Nuclear
 Interference Region Determination of the
 ρ Parameter and the
 Total Cross-Section
- CERN-PH-EP-2015-325
- Eur. Phys. J. C76
 (2016) 661

Coulomb Nuclear interference 8 TeV: p

	KL, constant	KL, peripheral
step 1: χ^2 /ndf	25.7/25 = 1.03	25.0/25 = 1.00
step 2: χ^2 /ndf	57.5/56 = 1.03	57.6/56 = 1.03
a [mb/GeV ²]	549 ± 24	549 ± 24
b_1 [GeV ⁻²]	20.47 ± 0.14	19.56 ± 0.13
b_2 [GeV ⁻⁴]	8.8 ± 1.6	-3.3 ± 1.5
b_3 [GeV ⁻⁶]	20 ± 6	-13 ± 5
ρ	0.12 ± 0.03	0.12 ± 0.03
ζ1		800
κ		2.311
v [GeV ⁻²]		8.161
$\sigma_{ m tot}$ [mb]	102.9 ± 2.3	103.0 ± 2.3


- First LHC determination from Coulomb-hadronic interference at $\sqrt{s}=8$ TeV: $\rho=0.12\pm0.03$.
- Cross-section measurements compatible with lumi-independent one.

Analysis status

- 2.76 TeV Cross Section has been completed and article is in progress.
- 13 TeV Cross Section analysis well advanced.
- Hadronic-Coulomb interference studies with data at β *=2.5 km extremely fast progress.
- Low mass resonances studies and Glueballs searches with diffractive events (jointly with CMS).
- CT-PPS data analysis on-going.
 - Central Exclusive Production.
 - $\mu\mu$ exclusive production analysis almost finalized
 - γγ exclusive production analysis in progress
 - Missing mass searches

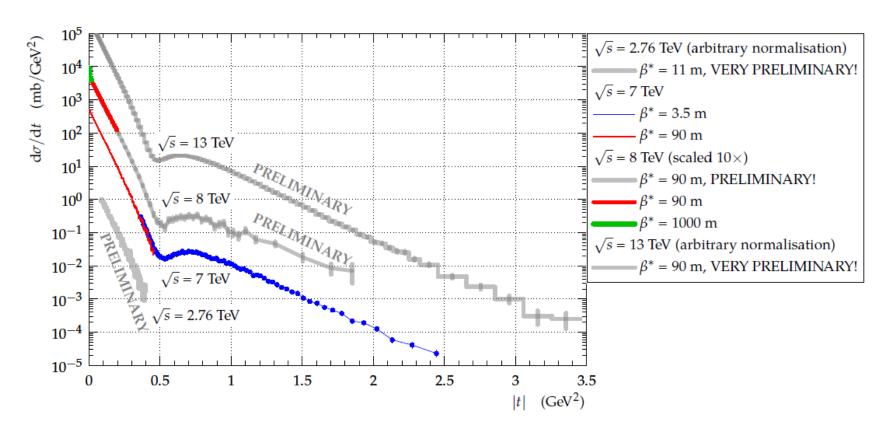
TOTEM results @ $\sqrt{s} = 2.76 \text{ TeV}$

Preliminary results at 2.76 TeV, lumi. independent.

 10^{2}

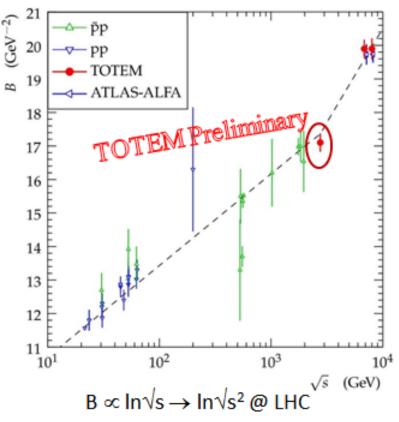
F.S. Cafagna, CNS1, 11th of May 2017

 10^{1}


 10^{3}

 10^{4}

 10^{5}

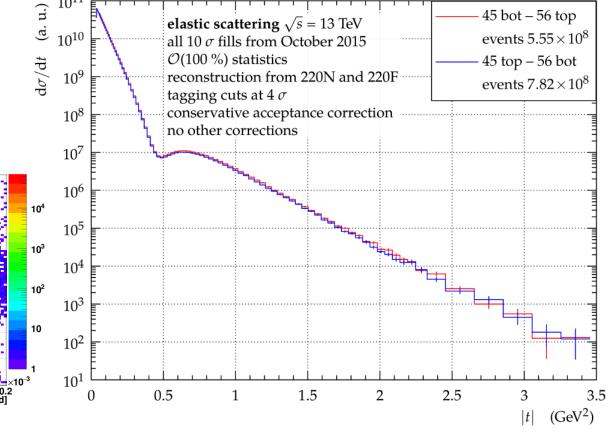

TOTEM results @ $\sqrt{s} = 2.76 \text{ TeV}$

|t|-value of dip position decreases with increasing \sqrt{s}

$$B = 17.10 \pm 0.26 \text{ GeV}^{-2} (d\sigma_{el}/dt \propto e^{-B|t|})$$

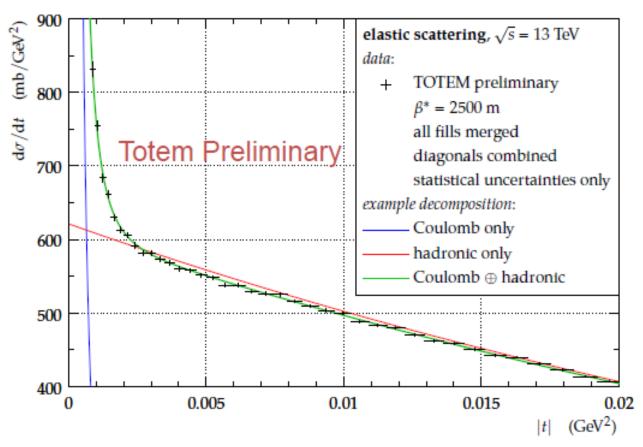
Diffractive slope parameter $B=\left.rac{d}{dt}ln(rac{d\sigma}{dt}\Big|_{t=0}) ight.$ increase with \sqrt{s}

Larger impact from contribution of multi-Pomeron exchanges: arXiv1112.2485 and PRD 85 (2012) 094024


Deviation from pure exponential under measurement at 13 TeV: A.D. Martin, V.A. Khoze, M.G. Ryskin, JPG 42 (2015) 025003; D.A. Fagundes et al., IJMPA 31 (2016) 1645022

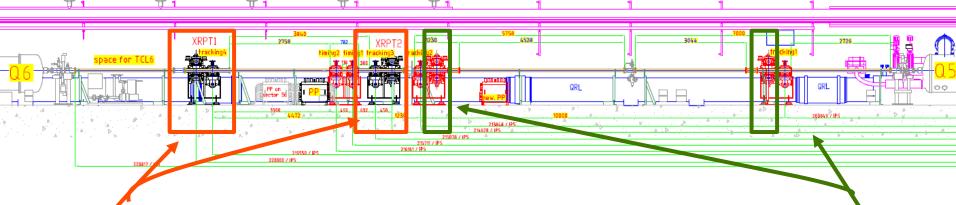
Special run @ 13TeV β^* 90m

• 2 Analyses:

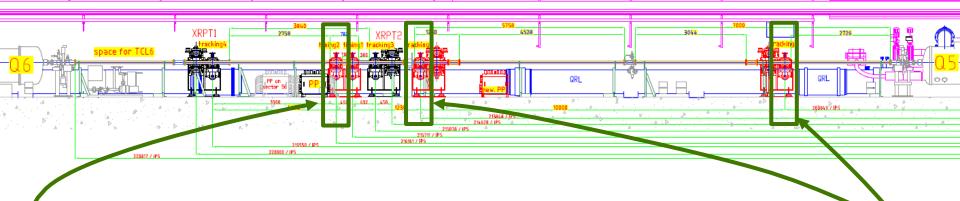

-0.15

- 5 σ data: luminosity independent cross-section
- 10 σ data: large-t elastic differential cross-section
- Acceptance and analysis cuts carefully defined for all fills
- Geometrical and beam divergence corrections
- Advanced status:
 - DAQ inefficiency,
 - unfolding,
 - pile-up from background,
 - alignment uncertainty
 - propagation

Special run @ 13TeV. β^* 2.5km


- Hadronic Coulomb interference
 - First full analysis cycle completed with all corrections applied

The TOTEM timing TDR


- In this measurements all TOTEM tracking detectors in all vertical RPs will be used, i.e. existing RP at 220 m and relocated RP at 203-213 m.
- New timing detector will be installed in a vertical RP.

The CT-PPS layout

- Tracking detectors will be installed in the two relocated horizontal RPs.
- Timing detectors in one new horizontal RP.

The Si-Strip integration

20th May

1st MiniDAQ test with Si-Strip ON
 Si-Strip in global run with CMS

 Si-Strip timed w. LHC beam and CMS global trigger

3rdJune

 RPs reached their nominal position (15σ)

June 2nd half

- Reconstruction SW fully merged in CMSSW80X
- >3/fb collected!

Apr 2nd half

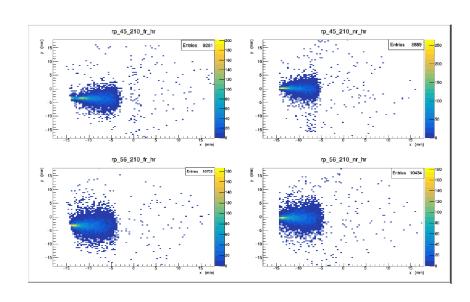
- · 1st MiniDAQ high rate test
- Beam based alignment of RP
- RP Insertion commissioning at high luminosity

May

1st half

- 1st MiniDAQ readout test at low rate
- Files available for SW validation

Mar

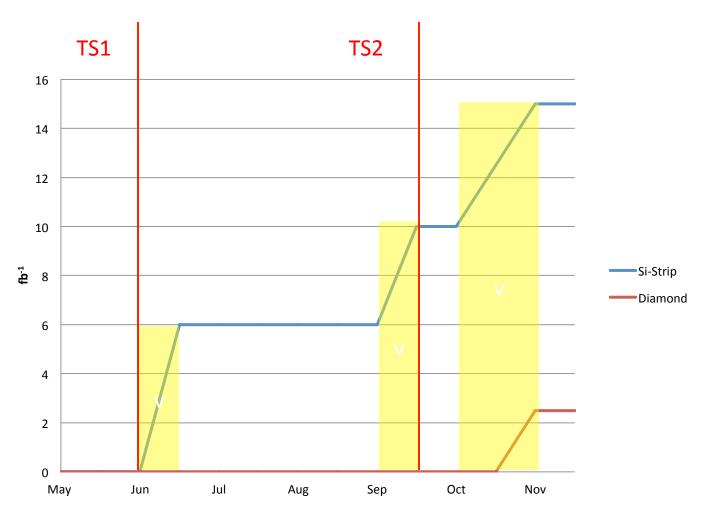

- Existing Reconstruction SW refactorized in CMSSW81X
- · SW Integration started

Apr

1st half

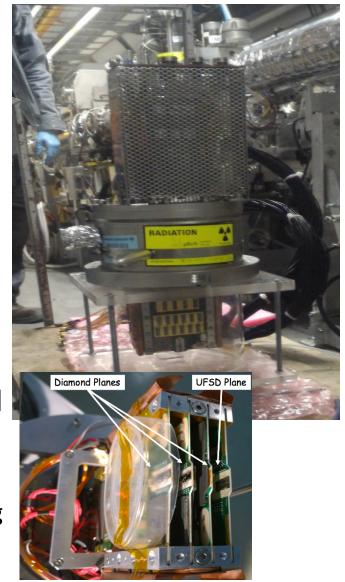
 CTPPS "accelerated" approved by the two collaborations

Feb


Diamond detectors integration

- Diamond detector, designed for the vertical pot, has been modified to fit in the horizontal cylindrical pot.
- Diamond detectors have been installed during TS1 and TS2.
- Integrated with the TOTEM DAQ, since TS2. They can be readout standalone (special run), or in the CMS central DAQ.

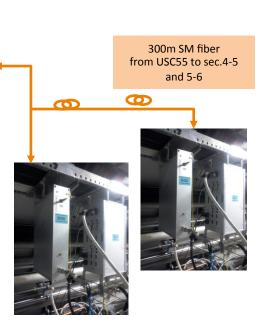
Thanks to: M. Berretti, E. Bossini, N. Minafra, M. Quinto


Collected data during 2016

15.7fb⁻¹ collected with Si-Strips (2.5fb⁻¹). 70% high quality data thanks to: improved settings, Si-Strip replacement or combination with diamonds

EYETS: Timing

- Consolidation of timing det. hybrid
 - Discharge effect observed in 2016
 - Rework to mitigate HV discharge
- Replace 4th diamond plane with UFSD (Ultra Fast Silicon Detector)
 - Test of technology
 - Radiation effects evaluation
 - Transparent to the readout chain (NINO + HPTDC)
- Mechanical shift introduced on the hybrid
 - Improve position w.r.t. expected beam position
 - Additional vertical tuning possible by moving the full pot. If needed, during tech. stops.

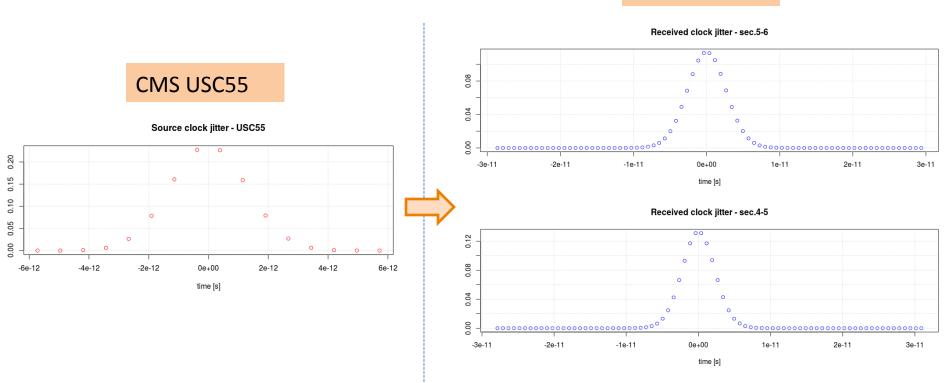

EYETS: Precision clock

Low jitter optical clock

 Installation of central distribution unit in USC55 completed

Receiving units already installed in the tunnel

during TS1

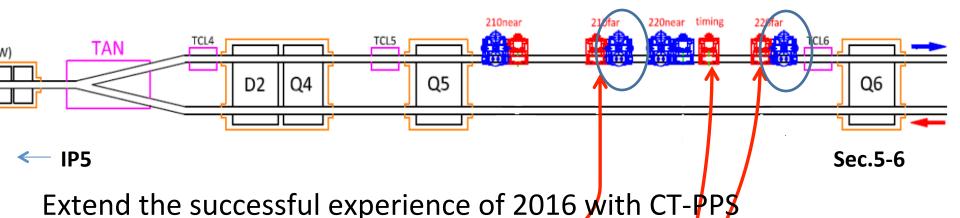


EYETS: Precision clock

- Optical clock commissioning
 - Check of fibers attenuation 3-4dB
 - RMS jitter at source ~1ps
 - RMS jitter at receivers ~2ps

LHC's tunnel

EYETS: T2 status


We examined a piece of a broken pipe and noticed that it was completely fragile, easily broken at the slightest deformation, and crumbled into powder! Elastic pipe completely lost its properties under the influence of radiation!

Pieces of broken pipe

plastic cooling pipe D4/d2.5mm

TOTEM run strategy in 2017

- Insertion of 3 Horizizontal RP for each side with 4 detector technologies:
 - 2 tracking: Si-Strip (210-FAR), Pixel (220-FAR)
 - 2 timing: hybrid Diamond + UFSD (cylindrical pot)
- Preparatory dedicated run for alignment and validation
 - 4 additional vertical pots inserted (in blue) to align the sensors w.r.t. the beam (elastic scattering events)
 - RP-210 NEAR insertion validation

run strategy 2018

- We expect a similar running mode as 2017 with CT-PPS
- + the 90m run at intermediate luminosity initially foreseen in 2017
- We are evaluating the impact of missing T2 and replacing its information with HF calorimeter.
- In 2018 the special run will be performed using the integrated
 CMS DAQ, exploiting at maximum the CMS triggering capabilities.
- Timing detectors information from the vertical RPs will be available at HLT together with CMS primary vertex reconstruction.
- A possible simplified T2 replacement for low-luminosity running beyond LS2 is under study

responsabilità del gruppo

- Responsabilità DAQ/online (Francesco)
- chairman Editorial Board (Gabriella)
- Timing di precisione (Francesco)
- Resource coordinator & Management Board (Emilio)
- Coordinatore Nazionale

composizione del gruppo

		Totale FTE: 2.6	
Ricercatori		commenti	
V. Berardi	40	 partecipazione del gruppo 	
F. Cafagna	60	di ingegneria si riduce	
M.G. Catanesi	30	ulteriormente, mano a	
E. Radicioni	50	mano che si va verso una situazione di operations & maintenance	
Tecnologi			
F. De Leonardi	30	 il gruppo ha perso perde 	
V. Passaro	50	due postdoc lo scorso anno (Michele e Nicola) e non abbiamo nuove leve	

richieste 2018

- richieste di servizi invariate rispetto allo scorso anno (includono RD51):
 - 1 mu camera pulita
 - 2 mu elettronica
 - 1.5 mu officina meccanica
 - 0.5 mu progettazione meccanica
- Le richieste saranno minori di quelle del 2018
 - ~5-10k, circa la metà dell'anno scorso
 - l'attività su DAQ e sistema di clock è ovviamente nella fase di maintenance ed ottimizzazione
 - Stiamo cercando di rifinire le performance e procurarci alcuni spare mancanti.
- M&O funds 2018 secondo RRB 2017; come al solito saranno meglio definiti a ottobre e comunicati alla CSN1.