

Simone Valdré

Grand Accélérateur National d'Ions Lourds

Open questions on heavy-ion reactions: from fusion to deep inelastic collisions

Celebration for Prof. Ricci's 90^{TH} Birthday

Laboratori Nazionali di Legnaro July 5th, 2017

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results
Outlook				

- History of nuclear reactions
 - A century of discoveries

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
Outlook				

- History of nuclear reactions
 - A century of discoveries
- Physics cases of recent interest
 - EoS, asyEoS and isospin transport
 - Pre-equilibrium and clustering

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
Outlook				

- History of nuclear reactions
 - A century of discoveries
- Physics cases of recent interest
 - EoS, asyEoS and isospin transport
 - Pre-equilibrium and clustering
- Apparatuses
 - Garfield **@ LNL**
 - FAZIA @ LNS

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
Outlook				

- History of nuclear reactions
 - A century of discoveries
- Physics cases of recent interest
 - $\bullet\,$ EoS, asyEoS and isospin transport
 - Pre-equilibrium and clustering
- Apparatuses
 - GARFIELD **@ LNL**
 - FAZIA @ LNS
- Models
 - Dynamical: AMD, SMF, etc...
 - Statistical: GEMINI, etc...

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
Outlook				

- History of nuclear reactions
 - A century of discoveries
- Physics cases of recent interest
 - EoS, asyEoS and isospin transport
 - Pre-equilibrium and clustering
- Apparatuses
 - GARFIELD **@ LNL**
 - FAZIA @ LNS
- Models
 - Dynamical: AMD, SMF, etc...
 - Statistical: GEMINI, etc...
- Recent results
 - Jacobi, Csym and Delight experiments at LNL
 - ISOFAZIA and FAZIACOR experiments at LNS

Introduction •0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
Outlook				

- History of nuclear reactions
 - A century of discoveries
- Physics cases of recent interest
 - EoS, asyEoS and isospin transport
 - Pre-equilibrium and clustering
- Apparatuses
 - GARFIELD **@ LNL**
 - FAZIA @ LNS
- Models
 - Dynamical: AMD, SMF, etc...
 - Statistical: GEMINI, etc...
- Recent results
 - Jacobi, Csym and Delight experiments at LNL
 - ISOFAZIA and FAZIACOR experiments at LNS
- Conclusions

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
History				

- 1919 Rutherford perform the **first nuclear reaction** (using a α source) at University of Manchester: • $\alpha + {}^{14}N \longrightarrow {}^{16}O + p$
- 1929 Van de Graaf builds his first high voltage generator
- 1932 Cockroft and Walton build their high voltage generator
- 1932 Cockroft and Walton at Cambridge University use their generator to accelerate protons and perform the first **fully artificial** nuclear reaction:

•
$$p + {^7Li} \longrightarrow \alpha + \alpha$$

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
History				

- 1934 Lawrence designs the first cyclotron
- 1935 Weizsäcker writes the semi-empirical mass formula
- 1938 Hahn and Straßmann observe the **first nuclear fission**
- 1939 N. Bohr and Wheeler modelize the nuclear fission
- 1940 Weisskopf and Ewing modelize the decay of a compound nucleus
- 1952 Hauser and Feshbach refine the theory of the particle **evaporation** from a compound nucleus

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

1977 Bass fusion cross-section formula based on experimental systematics

R. Bass, Phys. Rev. Lett. 39, 265 (1977)

1984 Gupta total reaction cross-section formula

S. K. Gupta *et al.*, Z. Phys. A 317, 75 (1984)

1985 Viola systematics for fission fragment relative kinetic energy

V. E. Viola *et al.*, Phys. Rev. C 31, 1550 (1985)

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

1977 Bass fusion cross-section formula based on experimental systematics

R. Bass, Phys. Rev. Lett. 39, 265 (1977)

1984 Gupta total reaction cross-section formula

S. K. Gupta *et al.*, Z. Phys. A 317, 75 (1984)

1985 Viola systematics for fission fragment relative kinetic energy

V. E. Viola *et al.*, Phys. Rev. C 31, 1550 (1985)

Prof. Ricci's research lines **FUFI-DEEP** and **FUFI-EVA** developed in this period

Introduction 0000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
History				

Introduction 0000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

Dynamical fission

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

Liquid-gas phase transition

Dynamical fission

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

Liquid-gas phase transition

Dynamical fission

Introduction 0000	Physics cases	Apparatuses 0000000	Theoretical models	Results
History				

Liquid-gas phase transition

Isospin transport

Dynamical fission

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
History				

Liquid-gas phase transition

Isospin transport

asyEoS

Dynamical fission

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
History				

Liquid-gas phase transition

Isospin transport

Clustering

asyEoS

Dynamical fission

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	•000000000	0000000		00000000000000000000
Physics	cases			

Ideal homogeneous and infinite system made of protons and neutrons

- Excited nuclei produced in nuclear reactions
- Neutron stars

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	•000000000	0000000		000000000000000000000000000000000000
Physics	cases			

Ideal homogeneous and infinite system made of protons and neutrons

- Excited nuclei produced in nuclear reactions
- Neutron stars

Applications

• Explore the phase diagram of nuclear systems

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	•000000000	0000000		000000000000000000000
Physics	cases			

Ideal homogeneous and infinite system made of protons and neutrons

- Excited nuclei produced in nuclear reactions
- Neutron stars

Applications

- Explore the phase diagram of nuclear systems
- Study the finite system phase transitions

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	●000000000	0000000		000000000000000000000000000000000000
Physics	cases			

Ideal homogeneous and infinite system made of protons and neutrons

- Excited nuclei produced in nuclear reactions
- Neutron stars

Applications

- Explore the phase diagram of nuclear systems
- Study the finite system phase transitions
- Understand supernovae and neutron stars

Introduction	Physics cases	Apparatuses	Theoretical models	Results
Physics c	ases			

Nuclear matter Equation of State (EoS)

- Nucleus treated as Fermi-Dirac statistical ensemble
- Describes the evolution of a system made of interacting nuclei
 - Mean field potential

$$\frac{E}{A} = \frac{3}{5}\varepsilon_F + \frac{A}{2}\left(\frac{\rho}{\rho_0}\right) + \frac{B}{\sigma+1}\left(\frac{\rho}{\rho_0}\right)^{\sigma}$$
$$\mathcal{A} = -356 \text{ MeV} \qquad \mathcal{B} = 303 \text{ MeV} \qquad \sigma = 7/6$$

Saturation density

 $\rho=\rho_0$ density of non-excited nuclear matter

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 0000000000000000000
asyEoS				

Asymmetric nuclear matter Equation of State (EoS) (asyEoS)

• Symmetry energy term depending on proton and neutron densities:

$$\frac{E}{A}(\rho, I) = \frac{E}{A}(\rho) + \frac{E_{\text{sym}}}{A}(\rho)I^2$$

Isospin parameter

$$I = \frac{(\rho_n - \rho_p)}{\rho} = \frac{N - Z}{A}$$

$E_{ m sym}$ behaviour is known only near ho_0

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
asyEoS				

 $E_{
m sym}$ behaviour is known only near ho_0

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
Isospin t	ransport			

Isospin diffusion

- Projectile and target isospins tend to **equilibrate** during interaction
- Isospin diffusion favoured by an **asy-soft** parametrization

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 00000000000000000000
Isospin t	ransport			

Isospin drift

- Neutrons tend to migrate toward **low density** regions (neck)
- Isospin drift favoured by an asy-stiff parametrization

Nuclear reactions

Most used method to reach the various regions of the phase diagram

- Ultrarelativistic regime
 - GASOUS STATE
- Fermi energy region
 - Multifragmentation
 - Phase transition
- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - LIQUID STATE

Reaction mechanisms

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results
-				

Introduction

Physics cases

Apparatuses

Theoretical models

Results

Pre-equilibrium emission

When energy increases, compound nucleus formation and decay phases tend to **overlap**

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	0000000000	0000000	000	0000000000000000000000

Pre-equilibrium emission

From literature: pre-equilibrium emission from 10-15 MeV/u

L. Lassen et al., Phys. Rev. C 55, 1900 (1997)

0000000000

Apparatuses

Theoretical models

Pre-equilibrium emission

• Fusion channel

•
$${}^{40}Ar + {}^{nat}Ag$$

•
$$E_{\rm b}=27~{\rm MeV/u}$$

Energy spectra may give indication of pre-equilibrium effects via deformations with respect to statistical trend

M. T. Magda et al., Phys. Rev. C 53, R1473 (1996)

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
Clustering				

• Pre-equilibrium emission could give information on cluster structure¹

¹D. Fabris *et al.*, Acta Physica Polonica B **46** (2015)

Introduction 00000	Physics cases	Apparatuses 0000000	Theoretical models	Results 000000000000000000000000000000000000
Clustering				

- Pre-equilibrium emission could give information on cluster structure¹
 - Ikeda diagram²

¹D. Fabris *et al.*, Acta Physica Polonica B **46** (2015) ²K. Ikeda *et al.*, Prog. Theor. Phys. E**68**, 464 (1968) Apparatuses for heavy-ion collisions
Introduction 00000	Physics cases	Apparatuses ••••••	Theoretical models	Results
Apparatu	ses for heav	y-ion collis	ions	

Introduction 00000	Physics cases	Apparatus • 000000	es Theoretical models	Results
Δ.	C 1	1. A.	110.0	

Apparatuses for heavy-ion collisions

Introduction 00000	Physics cases	Apparatus • 000000	es Theoretical models	Results
Δ.	C 1	1. A.	110.0	

-	000000000	000000	000	000000000000000000000000000000000000000
Introduction	Physics cases	Apparatuses	Theoretical models	Results

Apparatuses for heavy-ion collisions

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 000000000000000000000000000000000000
Garfield @	LNL			

- Lateral view in section
- Cylindrical symmetry

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 000000000000000000000000000000000000
Garfield @	LNL			

- Lateral view in section
- Cylindrical symmetry

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 000000000000000000000000000000000000
Garfield @				

- Lateral view in section
- Cylindrical symmetry

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 00000000000000000000
Garfield				

- 2 drift chambers (CF₄ gas at 50 mbar) segmented in 24 sectors
- 4 Csl(Tl) scintillator crystals per sector per chamber

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 00000000000000
Garfield				

- 2 drift chambers (CF₄ gas at 50 mbar) segmented in 24 sectors
- 4 Csl(Tl) scintillator crystals per sector per chamber

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	000000000	000000	000	000000000000000000000000000000000000000

- 2 drift chambers (CF₄ gas at 50 mbar) segmented in 24 sectors
- 4 Csl(Tl) scintillator crystals per sector per chamber

du	ction	F
00		(

hysics cases

Apparatuses

Theoretical models

forward

Results

Garfield

backward

- 2 drift chambers (CF₄ gas at 50 mbar) segmented in 24 sectors
- 4 Csl(Tl) scintillator crystals per sector per chamber

Physics cases

Apparatuses

Theoretical models

Results

Ring Counter (RCo)

- Ionization chamber (CF₄ gas at 50 mbar) segm. in 8 sectors
- One Silicon 8-strip pad per sector
- 6 Csl(Tl) scintillator crystals per sector

Physics cases

Apparatuses

Theoretical models

Results

Ring Counter (RCo)

- Ionization chamber (CF₄ gas at 50 mbar) segm. in 8 sectors
- One Silicon 8-strip pad per sector
- 6 Csl(Tl) scintillator crystals per sector

Physics cases

Apparatuses

Theoretical models

Results

Ring Counter (RCo)

- Ionization chamber (CF₄ gas at 50 mbar) segm. in 8 sectors
- One Silicon 8-strip pad per sector
- 6 Csl(Tl) scintillator crystals per sector

Physics cases

Apparatuses

Theoretical models

Results

Ring Counter (RCo)

- Ionization chamber (CF₄ gas at 50 mbar) segm. in 8 sectors
- One Silicon 8-strip pad per sector
- 6 Csl(Tl) scintillator crystals per sector

Physics cases 0000000000 Apparatuses

Theoretical models

Results

Ring Counter (RCo)

- Ionization chamber (CF₄ gas at 50 mbar) segm. in 8 sectors
- One Silicon 8-strip pad per sector
- 6 Csl(Tl) scintillator crystals per sector

ntroduction 00000	Physics cases 0000000000	Apparatuses	Theoretical models	Results 00000000000000000000
FAZIA @	LNS			

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 000000000000000000000000000000000000

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	000000000	0000000	000	000000000000000000000000000000000000000

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 00000	Physics cases 0000000000	Apparatuses	Theoretical models	Results 0000000000000000000000
The EAT	71A block			

2 telescopes are connected to a FEE card.

troduction Physics cases Apparatuses

ses D

Theoretical models

Results

The FAZIA block

8 FEE cards are connected to a block card via a back plane.

hysics cases

Apparatuses

Theoretical models

Results

The FAZIA block

Block is mounted on a copper base in which water flows to provide cooling

Introduction 00000	Physics cases	Apparatuses	Theoretical models	Results 00000000000000000000
The FAZL	A block			

up to 36 block cards are connected to a regional board via a full duplex 3 Gb/s optical link

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Possibility to perform precise **time measurements** thanks to block cross-syncronization
 - E vs ToF to identify particles **stopped** in the first Si-layer
 - possibility to measure with low-energy beams

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Possibility to perform precise **time measurements** thanks to block cross-syncronization
 - E vs ToF to identify particles **stopped** in the first Si-layer
 - possibility to measure with low-energy beams
- Possibility to couple FAZIA with other apparatuses
 - CENTRUM module for hardware coupling
 - NARVAL acquisition compatibility

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Possibility to perform precise **time measurements** thanks to block cross-syncronization
 - E vs ToF to identify particles **stopped** in the first Si-layer
 - possibility to measure with low-energy beams
- Possibility to couple FAZIA with other apparatuses
 - CENTRUM module for hardware coupling
 - NARVAL acquisition compatibility
- Despite its compact design, energy resolution and quality of isotopic identification (up to $Z\sim25$) of FAZIA block are excellent.

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000		0000000	●○○	000000000000000000000000000000000000
Reaction	simulation			

Dynamical models

- They simulate the evolution in time of the system
 - inelastic binary collisions (DIC)
 - pre-equilibrium emission

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000	0000000000	0000000	●○○	00000000000000000000
Reaction	simulation			

Dynamical models

- They simulate the evolution in time of the system
 - inelastic binary collisions (DIC)
 - pre-equilibrium emission

Statistical models

- They simulate the decay of excited nuclei at equilibrium
 - fission processes
 - evaporation of light particles

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000		0000000	○●○	0000000000000000000
Dynamica	l models			

Molecular dynamics models

They consider the evolution via the equations of motion of **single nucleons**, modeled as gaussian packets under the effect of a mean field and two-body interactions

AMD works better for Fermi energy reactions

Transport models

They consider the evolution of **nuclear matter** via transport equations including a mean field and residual interactions

SMF adapted to work also at $E_b \sim 20 \text{ MeV/u}$

A. Ono *et al.*, Phys. Rev. C **59**, 853 (1999) M. Colonna *et al.*, Nucl. Phys. A **642**, 449 (1998)

Introduction	Physics cases	Apparatuses	Theoretical models	Results
00000		0000000	○○●	00000000000000000000
Statistical	models			

GEMINI++ code

 ${\rm GEMINI}++$ is one of the most acknowledged statistical codes in the field of heavy-ion collisions:

- afterburner to produce secondary particle distributions from primary fragments
 - secondary distributions has been compared with experimental data
- in the hypothesis of **full momentum transfer** to generate reference distributions for the estimate of non-statistical contributions

Why ⁸⁸Mo?

- large fission barrier up to high spins
- mass region not well explored in literature
- GDR study performed in Krakow
- light charged particles emission in fusion-evaporation channel

M. Ciemała *et al.*, Phys. Rev. C **91**,054313 (2015) S. Valdré *et al.*, Phys. Rev. C **93**, 034617 (2016)

proton energy spectra at 300 MeV

 α -particle energy spectra at 300 MeV

proton energy spectra at 450 MeV

 α -particle energy spectra at 450 MeV

proton energy spectra at 600 MeV

 α -particle energy spectra at 600 MeV

proton angular distributions

 α -particle angular distributions

• We measured the reaction ${\rm ^{48}Ti}+{\rm ^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim90$

- We measured the reaction ${\rm ^{48}Ti}+{\rm ^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)

Introduction
coccoPhysics cases
coccoApparatuses
coccoTheoretical models
cocConclusions on $^{48}\text{Ti} + {}^{40}\text{Ca experiment}$

- We measured the reaction ${\rm ^{48}Ti}+{\rm ^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)
- We found an α -particle yield excess, in particular at forward angles and increasing with energy.

Results

$\frac{\text{Introduction}}{\text{cocco}} \xrightarrow{\text{Physics cases}}_{\text{cocco}} \xrightarrow{\text{Apparatuses}}_{\text{cocc}} \xrightarrow{\text{Theoretical models}}_{\text{coc}}$

- We measured the reaction ${\rm ^{48}Ti}+{\rm ^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)
- We found an α -particle yield excess, in particular at forward angles and increasing with energy.
- It's difficult to improve the agreement by tuning the model parameters; indication of the onset of minor **pre-equilibrium emission** or contamination from other processes.

Results

IntroductionPhysics casesApparatusesTheoret0000000000000000000000000

Theoretical models

Results

Csym experiment at LNL

Aim of this work

Study of 32 S + 40,48 Ca and 32 S + 48 Ti reactions at 17.7 MeV/u

- Pre-equilibrium emission in central collisions
- Isospin transport effects in binary collisions

Spectra scaled by the maximum value to highlight shape differences

M. T. Magda et al., Phys. Rev. C 53, R1473 (1996)

S. Piantelli et al., submitted to Phys. Rev. C (2017)

S. Piantelli et al., submitted to Phys. Rev. C (2017)

S. Piantelli et al., submitted to Phys. Rev. C (2017)

S. Piantelli et al., submitted to Phys. Rev. C (2017)

Conclusions on *Csym* experiment

• We **identified and selected** the main reaction channels in the systems $^{32}S+^{40,48}Ca$ and $^{32}S+^{48}Ti$ at 17.7 MeV/u

Conclusions on *Csym* experiment

- We **identified and selected** the main reaction channels in the systems ${}^{32}S + {}^{40,48}Ca$ and ${}^{32}S + {}^{48}Ti$ at 17.7 MeV/u
- We found shape deformations of LCP energy spectra, clues of **pre-equilibrium emission** in central collisions

Introduction Physics cases Apparatuses Theoretical models Concentration Concentration

Conclusions on *Csym* experiment

- We **identified and selected** the main reaction channels in the systems $^{32}S + ^{40,48}Ca$ and $^{32}S + ^{48}Ti$ at 17.7 MeV/u
- We found shape deformations of LCP energy spectra, clues of **pre-equilibrium emission** in central collisions
- To improve our knowledge on pre-equilibrium emission, FAZIAPRE experiment is scheduled in the next months

Introduction Physics cases Apparatuses Theoretical models Results

Conclusions on *Csym* experiment

- We **identified and selected** the main reaction channels in the systems $^{32}S + ^{40,48}Ca$ and $^{32}S + ^{48}Ti$ at 17.7 MeV/u
- We found shape deformations of LCP energy spectra, clues of **pre-equilibrium emission** in central collisions
- To improve our knowledge on pre-equilibrium emission, FAZIAPRE experiment is scheduled in the next months
- We clearly highlighted isospin diffusion in DIC reactions by measuring $\langle N\rangle/Z$ of QP in function of the target isospin

ction F

Physics cases

Apparatuses

Theoretical models

Results

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

G. Pastore et al., Nuovo Cimento C 39, 383 (2016)

u<mark>ction</mark> D Physics cases

Apparatuses

Theoretical models

Results

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

Preliminary results

G. Pastore et al., Nuovo Cimento C 39, 383 (2016)

Introduction 00000 Physics cases

Apparatuses

Theoretical models

Results

ISOFAZIA experiment

Isospin drift effect is well evidenced

Comparing many observables with the **AMD dynamical model** predictions an **asy-stiff** parametrization of the symmetry energy term of the EoS is favoured troduction Physics cases Apparatuses Theoretical models **Results**

Clustering and Hoyle State

Some excited states of nuclei may present a "cluster" structure

Clustering and Hoyle State

Some excited states of nuclei may present a "cluster" structure

The Hoyle state of ¹²C

- 7.65 MeV
- 3α cluster structure

Open debate on sequential or direct decay into 3α

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} C + \frac{1}{2} C \text{ at } 7.92 \text{ MeV/u @ LNL}$

Direct decay contribution estimated around $1.1\,\%$

L. Morelli et al., J. Phys G 43, 045110 (2016)

Hoyle state selection with almost zero background

Comparing **Dalitz plots** of experimental data and Monte Carlo simulations it's clear that the Hoyle state decay is **sequential**. Direct decay B.R. is evaluated **under** 0.04 %

D. Dell'Aquila et al., accepted in Phys. Rev. Lett., arXiv:1705.09196 (2017)

 $\frac{\text{Introduction}}{\text{occose}} \xrightarrow{\text{Physics cases}} \\ \frac{\text{Apparatuses}}{\text{occose}} \xrightarrow{\text{Theoretical models}} \\ \frac{\text{Results}}{\text{occose}} \\ \frac{\text{d}}{\text{d}} + \frac{14}{\text{N}} \text{ at } 5.25 \text{ MeV}/\underline{u} \text{ @ LNS} \\ \frac{14}{\text{N}} = \frac{12}{1000} \\ \frac{14}{1000} \\ \frac{14}{100$

Comparing **Dalitz plots** of experimental data and Monte Carlo simulations it's clear that the Hoyle state decay is **sequential**. Direct decay B.R. is evaluated **under** 0.04 %

Analysis of FAZIACOR experiment is going on to study also the Hoyle state formation and decay **in medium** at higher energies

D. Dell'Aquila et al., accepted in Phys. Rev. Lett., arXiv:1705.09196 (2017)

Conclusions and open questions

 Introduction
 Physics cases
 Apparatuses
 Theoretical models
 Results

 00000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <t

Conclusions and open questions

After a century of activity and many important discoveries, the field of heavy-ion nuclear reactions is still full of questions:

• What is the behaviour of pre-equilibrium depending on the studied reaction?

 Introduction
 Physics cases
 Apparatuses
 Theoretical models
 Results

 00000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <t

Conclusions and open questions

- What is the behaviour of pre-equilibrium depending on the studied reaction?
- Which parametrization of the symmetry energy term of EoS works better?

 Introduction
 Physics cases
 Apparatuses
 Theoretical models
 Results

 00000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <t

Conclusions and open questions

- What is the behaviour of pre-equilibrium depending on the studied reaction?
- Which parametrization of the symmetry energy term of EoS works better?
- How cluster states decay?

Conclusions and open questions

- What is the behaviour of pre-equilibrium depending on the studied reaction?
- Which parametrization of the symmetry energy term of EoS works better?
- How cluster states decay?
- And many others...

Conclusions and open questions

After a century of activity and many important discoveries, the field of heavy-ion nuclear reactions is still full of questions:

- What is the behaviour of pre-equilibrium depending on the studied reaction?
- Which parametrization of the symmetry energy term of EoS works better?
- How cluster states decay?
- And many others...

Thanks for your attention and...

 Introduction
 Physics cases
 Apparatuses
 Theoretical models
 Results

 00000
 000000000
 000
 000
 000
 0000000000
 000

Conclusions and open questions

After a century of activity and many important discoveries, the field of heavy-ion nuclear reactions is still full of questions:

- What is the behaviour of pre-equilibrium depending on the studied reaction?
- Which parametrization of the symmetry energy term of EoS works better?
- How cluster states decay?
- And many others...

Thanks for your attention and...

happy birthday Prof. Ricci