

The SPES facility at LNL

T. Marchi, IKS-KU Leuven

Ę

Contemporary alchemy

IOP PUBLISHING Rep. Prog. Phys. **76** (2013) 056301 (14pp)

REPORTS ON PROGRESS IN PHYSIC doi:10.1088/0034-4885/76/5/05630

Current status and future potential of nuclide discoveries

M Thoennessen

Beyond Isotopes discovery

Nuclear Physics will focus on Radioactive ion beams to:

- <u>Explore</u> and locate the extremes of nuclear existence
- <u>Discover</u> exotic properties of nuclei (shapes, structure evolution)
- <u>Explain</u> the role of isospin in complex systems (nEOS, E_{sym})

KUL

[A. Gade, Nucl Phys News 23-4 (2013) 10]

feature article

Excitation Energies in Rare Isotopes as Indicators of Shell Evolution

Alexandra Gade

ews

Nuclear Physics

International

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

Beyond Isotopes discovery – challenges

Nuclear Structure

- Shell evolution
- G.s. & E.s. properties (masses, radii, deformation, ...)
- Decay properties
- Collectivity
- Ab-initio models

Reaction Dynamics

- Characterize the mechanisms that drive nuclear reactions and describe reaction dynamics
- Study the interplay between structure and reactions (e.g. clusters)

Nuclear Astrophysics and Applications

• Provide Nuclear Data (cross sections, lifetimes ...)

KU LEU

Beyond Isotopes discovery

RIB production methods

ISOL

Small beam emittance Small energy spread Pure beams (HRS+lasers) Slow A lot of Chemistry involved Needs post-acceleration

SE

In-flight

Fast No chemistry

Limited to high energy Cocktail beam tagging

Operating facilities at LNL

EXP HALL 3

H.I.

accelerators

The SPES project at LNL: overview and timeline Present and future Instrumentation

KU LEUVEN

Slides mainly from F. Gramegna and G. Prete (LNL)

Operating facilities at LNL

The SPES project at LNL

KU LEUVEN

SPES mixing $\psi_{N.P.} = \alpha \psi_{SPES\alpha} + \beta \psi_{SPES\beta}$

SPES infrastructure - layout

SPES infrastructure - layout

The weight of science

SPES core: α

BEST B70 •H⁻ •35-70 MeV •0.750 mA •2 exits

SAT and commissioning close to completion (2017)

Main Parameters

Accelerator Type	Cyclotron AVF 4 sectors
Particle	Protons (H ⁻ accelerated)
Energy	Variable within 30-70 MeV
Max Current Accelerated	750 μA (52 kW max beam power)
Available Beams	2 beams at the same energy (upgrade to different energies)
Max Magnetic Field	1.6 Tesla
RF frequency	56 MHz, 4 th harmonic mode
lon Source	Multicusp H ⁻ I=15 mA, Axial Injection
Dimensions	Φ=4.5 m, h=1.5 m
Weight	150 tons

SPES core: β

Beam test at iThemba lab. (2014): 66MeV protons, 60 μA on full scale SiC prototype at 1600 °C (FEM sim. Validation) Former beam tests: ORNL (2007, 2010-2011) SiC, Ucx; ISOLDE(2009) UCx, IPNO (2013) UCx. Front End and Target System: advanced nuclearization phase. Target handling systems, <u>Heat resistance tests</u>, Nuclear Safety.

Low energy beams and beam diagnostic

Tape station for beam characterization

Low intensity beam monitors

MCP & grid beam monitor

Reacceleration

Towards ALPI: Charge breeder + MRMS + RFQ

Towards ALPI: Charge breeder + MRMS + RFQ

Development at LPSC (Grenoble) of an Upgraded PHOENIX booster as Part of a MoU in the frame of the European Associated Laboratories (LEA-Colliga)

- 2010 Preliminary measurements
- 2011 Conceptual design
- 2012 Design
- 2013 Agreement definition
- 2014 Construction
- 2015 Commissioning at LPSC
- 2015 Delivery to LNL
- 2016 Installation and test

			EFFICIENCY* [%]			
ION	Q	SPES req	Best LPSC	SPES-CB		
Cs	26	≥ 5	8,6	11,7		
Xe	20	≥ 10	10,9	11,2		
Rb	19	≥ 5	6,5	7,8		
Ar	8	≥ 10	16,2	15,2		

*results obtained for the same 1+ injected current

Reacceleration using ALPI

SPES BEAMS (ReA)

Physics at SPES

Third International SPES Workshop

10-12 October 2016 INFN Laboratori Nazionali di Legnaro

The SAC was impressed with the number of LOI's and the broad scientific spectrum proposed to be studied with the SPES Radioactive Ion Beams (RIB). The SAC appreciates the of the SPES progress project

KU LEUVEN

One Day Workshops

Napoli (2012): Transfer Reactions
Firenze (2012): Coulomb Excitation
Catania (2013): Isospin in Reaction Mechanisms with RIBs
Milano (2013): Collective Excitations of Exotic Nuclei
Legnaro (2014): Fusion-evaporation Reactions with RIBs
Milano (2015): Physics at SPES with non re-accelerated beams
Caserta (2015): Nuclear Astrophysics at SPES

Detector's portfolio: resident setups I

PRISMA Large acceptance magnetic spectrometer $\Omega \approx 80$ msr; $B\rho_{max} = 1.2$ Tm $\Delta A/A \sim 1/200$ Energy acceptance $\sim \pm 20\%$

GARFIELD

Charged particle array 1-192 MSGC - CsI(TI) telescopes (30°-150°) 2-Rco IC-Si-CsI (5°-18°)

Detector's portfolio: resident setups II

GALILEO

Phase 1: 25 HPGe + 25 BGO + ancillaries 240 ch digital electronics (AGATA)

Phase 2: 30 HPGe + 30 BGO + 10 TC

- Light charged particle detectors EUCLIDES, SPIDER, TRACE
- Neutron detector N–Wall
- Lifetime measurements Plunger from Cologne
- Recoil detectors
 RFD
- Fast timing High–energy gamma– rays detector LaBr3 detectors

Study of weak reaction channels stable beams

High efficiency
 High resolving power

Commissioned dets Commissioning phase To be commissioned

Courtesy of D. Mengoni

Detector's portfolio: "traveling" setups

FAZIA: LCP & fragments detection

AGATA : innovative γrays tracking array) PARIS (High Energy γ-ray Detector Array)

NEDA (NEutron Detector Array)

FARCOS

Free room for your favorite detector

Active Target For SPES

Work of P. Gangnant

Two letters of intent for SPES endorsed by the SAC:

B. Fernandez Dominguez et al, Direct Reactions with exotic nuclei in the r-process using an active target R. Raabe, T. Marchi et al, Shell Structure in the vicinity of ¹³²Sn with an active target

With a lesson to learn from the past about:

- ✓ People
- ✓ Competences
- ✓ Cohesion
- ✓ Enthusiasm
- ✓ Engagement

"E' bene che i fisici ritornino a investigare serenamente le proprietà nucleari, con puro spirito scientifico: dalla più completa conoscenza delle cose non mancheranno di scaturire le più fruttuose applicazioni".

A. Rostagni (1950)

Enjoying it, a lot!

[https://agenda.infn.it/conferenceDisplay.py?confld=10539]

Join LNL User Group

www.lnl. infn.it /index.php/en/join-Inl-us	ers-group 🖾 🤇 📿 img size	→ ☆ 自	🛡 🕂 🏠	9 🛯
ti 🕷 Come iniziare 🔜 Ultime notizie	Access - Nuclear physia INI CH418/518 Svilabus W			
Working at LNL				
= Crasial Events				
Environment				
	You are here: > Home > Join LNL User Group			
LNL Seminars	•		ents	- 8
		Third Into	mational CDE C	
Magnetic phase diagram of	LNL User Group and User Board User Board Members User Group Members	Workshop)	
understand field induced phase	Join LNL User Group	10-12 Octo	ober 2016, INFN-LI	L
transitions				- 8
by Prof. Michael Bernhard		All events		
Tuesday, 10 May 2016 from 10:00 to				- 8
11:00 M. Ceolin meeting room	In order to register as LNL User, please fill in the following form with you	ir 👘		
	personal information:			
Effect of the pairing correlations on		USEF	JL LINKS	- 8
transfer reactions at energies belo the Coulomb barrier	Name *	1 .		- 11
by Dr. Guillaume Scamps		INFN Porta	1	- 8
(Department of Physics, Tohoku	Family name *	INFN Amm	inistrazione	
Tuesday, 17 May 2016 from 11:00 to	email *	Centrale		
12:00 Rostagni meeting room		INFN Pres	idenza	
		J Trans III -		
		ravelling		
Irradiation Effects in High Melting				
Irradiation Effects in High Melting Oxides and Synthesis of New		Meeting ro	oom booking syste	m
Irradiation Effects in High Melting Oxides and Synthesis of New Luminescent Composite Materials by Dr. Abu Zayad Rahman (Universit	LNL facilities of interest:	Meeting read	oom booking syste	m
Irradiation Effects in High Melting Oxides and Synthesis of New Luminescent Composite Materials by Dr. Abu Zayed Rahman (Universit of Malaya - Malaysia)	y LNL facilities of interest:	Meeting ro at LNL	oom booking syste	m

SPES Project Phases and Timeline

- Phase 1. 2016- Cyclotron operation
- Phase 2a. 2017- RNB ALPI Injector
- Phase 2b. 2018- SPES target, LRMS, experimental 1+ Beam Lines
- Phase 3a. 2019- HRMS and beam line to CB
- Phase 3b. 2019- RFQ and ALPI