

The Quark Gluon Plasma: results and prospects with the ALICE experiment

A. Rossi, INFN Padova

Legnaro, 5th July 2017

RICCI90 SYMPOSIUM

Phase diagram of strongly-interacting (QCD) matter

At high energy density ε (high temperature and/or high density) hadronic matter undergoes a phase transition to the Quark-Gluon Plasma (QGP): a state in which colour confinement is removed

Phase transition: confined state \rightarrow deconfined state

Lattice QCD calculations: Critical temperature at 0 baryon density~ 155 MeV Critical energy density $\varepsilon_c \sim 1 \text{ GeV/fm}^3 \sim 6-7 \varepsilon_{nucleus}$

QGP in laboratory: nucleus-nucleus collisions

 Can we form the QGP in laboratory? Need to compress/heat matter to very high energy densities.

- By colliding two heavy nuclei at ultra-relativistic energies we recreate, for a short time span (about 10⁻²³ s, or a few fm/c) the conditions for deconfinement
- As the system expands and cools down it undergoes a phase transition from QGP to hadron again, like at the beginning of the life of the Universe: we end up with confined matter again
- Chemical freeze out: time at which inelastic interactions cease
 →abundances of particle species (π,K,p,... yields, not resonances) are fixed
- Kinetic freeze out: all interactions cease → free streaming of particles to detector

Ultra-relativistic heavy-ion accelerators

-- only main collision systems are indicated --

- **BNL-AGS**, early '90s, Au-Au up to $\sqrt{s_{NN}} = 5 \text{ GeV}$
- **CERN-SPS**, from 1994, Pb-Pb up to $\sqrt{s_{NN}} = 17 \text{ GeV}$
- BNL-RHIC, from 2000, Au-Au $\sqrt{s_{NN}} = 8 200 \text{ GeV}$
- **CERN-LHC**, from 2010, Pb-Pb $\sqrt{s_{NN}} = 2.76 5.5 \text{ TeV}$

Pb-ion facility at CERN

Approved 1990, started operating 1994

First acceleration stage (LNL)

A Heavy Ion Linac for the CERN Accelerator Complex

G. Amendola*, N. Angert**, M.-P. Bourgarel***, B. Bru***, F. Cervellera#, G. Fortuna#, H. Haseroth*, C. Hill*, G. Hutter**, J. Klabunde**, H. Klein##, H. Kugler*, D. Liska###,
A. Lombardi#, H. Lustig*, E. Viatwicz, A. Musso^o, H. O'Hanlon*, G. Parisi#, A. Pisent#, U. Raich*, U. Ratzinger**, L. Riccaii, R. Ricci#, A. Schempp##, T. Sherwood*, P. Sortais***, E. Tanke*, P. Tétu*, A. van der Schueren*, M. Vretenar*, D. Warner*, M. Weiss*

***GANIL (F 14021 Caen), #INFN Legnaro (Laboratori Nazionali di Legnaro, I-35020 Legnaro), ##Univ, Frankfurt (Inst. für Angewandte Physik, D-6000 Frankfurt/Main 11), ###CERN Associate from LANL (Los Alamos National Lab., Los Alamos, NM 87545, USA), *University and INFN Torino (I-10125 Torino)

Abstract

The injector linac required by CERN for heavy ions, e.g. Pb^{28+} , is being made in collaboration with several

charge state ions, e.g. pulses of O^{6+} to O^{7+} , Ar^{10+} to Ar^{14+} , Pb^{25+} to Pb^{29+} could be obtained. The phenomenon is stable and reproducible and the afterglow peak, dependent on the adjustment of the source parameters, is about 2 or 3 times the

Still in use at the LHC!

Heavy-ion experiments at the LHC

The ALICE detector

The Silicon Pixel Detector

8192 pixel cells (256x32) with size

50x425 μm²

The Silicon Pixel Detector

One of the most important ALICE sub-detectors trigger, primary vertex reconstruction, event multiplicity, ...

Resolution on track position at the primary vertex better than 70 micron for p_T >1 GeV/*c*

SPD crucial for charm and beauty measurements

Few introductory concepts: centrality, R_{AA}

Nuclear modification factor (R_{AA}) : compare particle production in Pb-Pb with that in pp scaled by a "geometrical" factor (from Glauber model) to account for the larger number of nucleon-nucleon collisions

Quarkonia and QGP (re)discovery

Quarkonium in the QGP

Bound quark-antiquark states: "charmonia" χ_c , J/ ψ , ψ (2S),... "bottomonia" Y, Y(2S), Y(4S),...

Recall: quant-antiquark QCD potential

$$V(r) = -\frac{\alpha}{r} + kr$$

The QGP consists of deconfined colour charges → screening effect

$$V(r) = -\frac{\alpha}{r} e^{-r/\lambda_D}$$

 λ_{D} : screening radius

The binding of a $q\overline{q}$ pair is subject to the effects of colour Debye-like screening:

• the "confinement" contribution disappears

• the coulumbian term of the potential is screened by the high color density

J/ψ suppression -- QGP discovery smoking gun --

N.b. "expected suppression" = J/ψ absorption in "cold" nuclear matter (no QGP). Not discussed in the slides, but note: p-A needed as reference

Also previous indications: NA51 Collaboration, PLB 438 35 (1998) NA38 Collaboration, PLB 444 516 (1998); PLB 449 128 (1999)

J/ψ suppression -- QGP discovery smoking gun --

Also previous indications: NA51 Collaboration, PLB 438 35 (1998) NA38 Collaboration, PLB 444 516 (1998); PLB 449 128 (1999)

Adding RHIC data: similar suppression than SPS, despite the x12 larger collision

energy (x2 ε)... unexpected!

Quarkonium suppression & regeneration

Hot QGP \rightarrow quarkonia suppression due to Debye-like screening of QCD Q \overline{Q} potential ("melting" of bound Q \overline{Q} states) \rightarrow signature of deconfinement (T. Matsui and H. Satz, PLB 178 (1986) 416)

Surprisingly similar J/ ψ suppression at SPS and RHIC (ϵ x2) energies

→ Could quarkonia states be (re)generated via recombination (coalescence) of deconfined quarks? (P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196)

J/ψ suppression: LHC vs. RHIC

- J/ψ suppression stronger in central events than peripheral
- Smaller suppression at LHC than RHIC
- Analysis vs. transverse momentum: suppression stronger at higher momentum. In agreement with models expecting about 50% contribution of J/ ψ from recombination at low p_{T} .

"Twice a signature of QGP"

Quarkonia: sequential suppression

Indication that $\psi(2S)$ is more suppressed than J/ ψ

Y (2S) ~4 times more suppressed than Y(1S)

"Soft probes" --few selected topics--

Particle ratios

central Pb-Pb collisions ("radial flow peak")

- Pressure gradients leads to radial flow
- Same "velocity" boost gives larger momentum to heavier particles
- Alternative/concurrent explanation: hadronisation via quark coalescence → higher momentum for baryons (3 quarks) than mesons (2 quarks): challenged by φ/p ratio

3 tio $p(qqq)>p(qq) \leftarrow \vec{p} = \sum_{quarks} \vec{p}_i^{21}$

3

p_{_} (GeV/*c*)

2

Anisotropic (Elliptic) flow

Non-central collisions: azimuthal anisotropy of nuclei overlap region

→ Asymmetric pressure gradients transfer the anisotropy to momentum space

→ The transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena

Effects addressed by measuring the azimuthal distribution of the particles with respect to the "Reaction Plane" \rightarrow Fourier analysis

$$N(\varphi) \propto 1 + 2\sum_{n} v_n \cos(n(\varphi - \psi_{RP})) = 1 + 2v_1 \cos(\varphi - \psi_{RP}) + 2v_2 \cos(2(\varphi - \psi_{RP})) + \dots$$

v_e = Elliptic flow, main parameter

Anisotropic (Elliptic) flow

Elliptic flow (v₂) significantly>0

- Evidence of system collective motion
- "Early signal": develops in partonic phase
- Well described by hydrodinimical models
- Expected trends vs. particle mass
- ightarrow Thermalized partonic system
- → (via more detailed comparisons with models) Data suggest very low viscosity (← small mean free path)

System behaves as ~perfect liquid (the RHIC "paradigm")

JHEP 1609 (2016) 164

Constraining further viscosity: higher harmonics

Initial geometry is not an ideal almond shape

 ○ Fluctuations of initial energy/pressure distributions lead to "irregular" shapes (→ need more harmonics to describe them) that fluctuate event-by-event

Simulation of energy density evolution

Viscosity determines the "conversion efficiency" of the initial shape into final momentum azimuthal distribution

Higher harmonics add sensitivity to the value of shear viscosity

Constraining further viscosity: higher harmonics

2.76 TeV (Run 1): PRL 107 (2011) 032301 5 TeV (Run 2): PRL116,132302 (2016)

Higher-harmonic coefficients significantly non-zero

QGP viscosity very low (lower than any atomic matter)

High-energy probes \rightarrow microscopic processes (local interactions) in the medium

QGP tomography with high-energy partons

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium

"Calibrated probes" of the medium $\omega = x E$ Study parton interaction with the medium ω=(1-x)E Hard **energy loss via radiative** ("gluon Bremsstrahlung") Production collisional processes Medium ~ Study QCD "Bethe-Block" curve µ⁺ on Cu for partons in the QGP Bethe-Bloch Radiative Anderson-Ziegler indhard Scharff $E_{\mu c}$ Radiative Radiative losses **Connection of "local" interactions** Minimum effects ionization reach 1% Nuclear losses with global medium properties Without **b** \rightarrow Microscopic description of the 10^4 0.11000 105 10⁶ 0.001 0.01 1 10100βγ medium 0.11 101001010010100ı 1 1 [MeV/c][GeV/c][TeV/c]Muon momentum

QGP tomography with high-energy partons

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium

Calibrated probes" of the medium

Study parton interaction with the medium

 energy loss via radiative ("gluon Bremsstrahlung") collisional processes

~ Study QCD "Bethe-Block" curve for partons in the QGP

Connection of "local" interactions with global medium properties → Microscopic description of the medium

e.g. in BDMPS-Z formalism*

$$\left<\Delta E\right>^{\rm rad} \propto \alpha_s C_R \hat{q} L^2$$

 $\left< k_{\rm T}^2 \right> (z^2)$

$$\hat{q} = \frac{\langle n_{\rm T} \rangle}{\lambda} = \left\langle k_{\rm T}^2 \right\rangle \rho \sigma$$

Transport coefficient(s)

*Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 29 Zakharov, JTEPL 63 (1996) 952.

QGP tomography with high-energy partons

Jet quenching

ALI-PREL-114186

- Is the jet internal structure modified?
 - Kinetic properties
 - Spatial distribution of jet constituents
- Particle specie composition
 Many studies performed/ongoing

Jets are "extended" objects
→ provide complementary information to single particle observables
→Address spatial distribution and kinetic properties of radiated energy

Jet suppression → Out-of-cone radiation

Open charm and beauty

 R_{AA} (J/ ψ from B) > R_{AA} (D) in central collisions

Indication of $\tilde{R}_{AA}(B) > R_{AA}(D)$

The different suppression and the centrality dependence as expected from **models with quark-mass dependent energy loss**

 $(\Delta E_{g} > \Delta E_{lq} \ge \Delta E_{c} > \Delta E_{b})$

Expected from dead cone effect:

Open charm and beauty

Charm flows \rightarrow important constraints to models D_s vs. non strange D: modification of particle species abundances? \rightarrow hadronisation via coalescence?

- \rightarrow Charm participates to system collective motion
- → Possible thermalisation? Need more precision at low $p_{\rm T}$

Prospects for the future

ALICE data-taking in Run-2

System	Year	√s _{nn} (TeV)	L _{int}
рр	2015-2016	13	~14 pb ⁻¹
рр	2015 (~4 days)	5.02	~100 nb⁻¹
p-Pb	2016	5.02	~3 nb ⁻¹
p-Pb	2016	8.16	~20 nb⁻¹
Pb-p	2016	8.16	~20 nb ⁻¹
Pb-Pb	2015	5.02	~0.4 nb ⁻¹

- Goals for 2017-18:
 - Pb-Pb: reach 1/nb target
 - pp 13 TeV: reach 40/pb target
 - High statistics pp 5 TeV sample

ALICE after Run-2

Performance examples for HF signals

Access to charm and beauty down to very low p_{T}

QGP in small systems?

The future has already started!!

The multi collision-system experimental approach: the initial design

Local structure of QCD vacuum

Local QCD + initial state/cold nuclear matter

Local QCD + initial state/cold nuclear matter + Quark-Gluon Plasma

Copied by. C. Loizides who adapted it from G. Roland

Long range correlations and flow in p-Pb

Large v_2 (elliptic flow) values!

Mass ordering and "crossing" similar to Pb-Pb, where data are reproduced by hydrodynimical models

Strangeness enhancement

- Increase of strange particle yield with collision centrality
- Stronger effect for particles with larger strangeness content
- Historical QGP "smoking gun" (Rafelski, Müller, PRL48(1982)1066), associated with partial chiral symmetry restoration (see backup) and removal of canonical suppression

PHYSICS LETTERS B

- Increase of strange particle yield v
- Stronger effect for particles with la
- Historical QGP "smoking gun" (Rat chiral symmetry restoration (see b)

Physics Letters B 449 (1999) 401-406

ELSEVIER

Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 A GeV/c

WA97 Collaboration

E. Andersen^b, F. Antinori^{e,k}, N. Armenise^a, H. Bakke^b, J. Bán^g, D. Barberis^f, H. Beker^e, W. Beusch^e, I.J. Bloodworth^d, J. Böhm^m, R. Caliandro^a, M. Campbell ^e, E. Cantatore ^e, N. Carrer ^k, M.G. Catanesi ^a, E. Chesi ^e, M. Dameri ^f, G. Darbo ^f, A. Diaczek ¹, D. Di Bari ^a, S. Di Liberto ⁿ, B.C. Earl ^d, D. Elia ^a, D. Evans ^d, K. Fanebust ^b, R.A. Fini ^a, J.C. Fontaine ⁱ, J. Ftáčnik ^g, B. Ghidini ^a, G. Grella ^o, M. Guida ^o, E.H.M. Heijne ^e, H. Helstrup ^c, A.K. Holme ^j, D. Huss ⁱ, A. Jachołkowski ^a, G.T. Jones ^d, P. Jovanovic ^d, A. Jusko ^g, T. Kachelhoffer ^p, J.B. Kinson ^d, A. Kirk ^d, W. Klempt ^e, B.T.H. Knudsen ^b, K. Knudson e, I. Králik e, V. Lenti a, R. Lietava g, R.A. Loconsole a. G. Løvhøiden ^j, M. Lupták ^g, V. Mack ⁱ, V. Manzari ^a, P. Martinengo ^e, M.A. Mazzoniⁿ, F. Meddiⁿ, A. Michalon^p, M.E. Michalon-Mentzer^p P. Middelkamp ^e, M. Morando ^k, M.T. Muciaccia ^a, E. Nappi ^a, F. Navach ^a, P.I. Norman^d, B. Osculati^f B. Pastirčák^g, F. Pellegrini^k, K. Píška^m F. Posa^a, E. Quercigh^e R.A. Ricci^h, G. Romano^o, G. Rosaⁿ, L. Rossi^f H. Rotscheidt ^e, K. Šatařík ^e, S. Šaladino ^a, C. Salvo ^f, L. Šándor ^{e,g}, G. Segato k, M. Sené l, R. Sené l, S. Simone a, W. Snoeys e, P. Staroba m S. Szafran¹, M. Thompson^d, T.F. Thorsteinsen^b, G. Tomasicchio^a, G.D. Torrieri^d, T.S. Tveter ^j, J. Urbán ^g, M. Venables ^d, O. Villalobos Baillie ^d, T. Virgili °, A. Volte¹, M.F. Votruba^d, P. Závada^m * Dipartimento I.A. di Fisica dell'Università e del Politecnico di Bari and Sezione INFN, Bari, Italy ^b Fysisk Institutt, Universitetet i Bergen, Bergen, Norway ° Høgskolen i Bergen, Bergen, Norway

⁴ School of Physics and Astronomy, University of Birmingham, Birmingham, UK ^e CERN, European Laboratory for Particle Physics, Geneva, Switzerland

[†] Dipartimento di Fisica dell'Università and Sezione INFN, Genoa, Italy

⁸ Institute of Experimental Physics, Slovak Academy of Sciences, Kožice, Slovakia ^h INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

¹ GRPHE, Université de Haute Alsace, Mulhouse, France

¹ Fysisk institutt, Universitetet i Oslo, Oslo, Norway

^k Dipartimento di Fisica dell'Università and Sezione INFN, Padua, Italy

0370-2693/99/\$ - see front matter © 1999 Published by Elsevier Science B.V. All rights reserved. PII: \$0370-2693(99)00140-9

Strangeness enhancement

- Increase of strange particle yield with collision centrality
- Stronger effect for particles with larger strangeness content
- Historical QGP "smoking gun" (Rafelski, Müller, PRL48(1982)1066), associated with partial chiral symmetry restoration (see backup) and removal of canonical suppression
 Now observed also in pp collisions at high multiplicity
 → New research direction

... only a snapshot of the main results presented

After 30 years of studies QGP formation in heavy-ion collisions quite established

The experimental goal is now to measure precisely its properties and achieve a comprehensive microscopic description of the medium

- Event-by-event studies and fluctuations
- Push precision for particle chemistry (baryon/mesons, resonances,...)
- Hard-probes: still much room for improving precision and for more differential measurements → still a lot to learn!

Recent years: indication of collective QGP-like effects in small collision systems with particle multiplicity a possible "collant"/common scale \rightarrow Really QGP in pp/p-A collisions?

- \rightarrow Possibility to study onset of these phenomena?
- \rightarrow New research direction

A lot of work for ongoing and future/upgraded experiments!

SPARES

System size: HBT interferometry Hanbury-Brown and Twiss

Energy density

• Particle multiplicity at mid-rapidity \rightarrow transverse energy density

 $\varepsilon_c \simeq 0.6 \text{ GeV/fm}^3$

Thermal model and chemical freeze-out temperature

Chemical freeze-out temperature estimated from **relative particle abundances** Model assuming statistical hadronization: particle abundances determined by their mass and quantum numbers (spin) at by system properties (T_{ch} , u_{B} ,..)

Hadron yields described assuming chemical equilibrium and T_{ch} ~156 MeV \rightarrow close to lattice QCD expectation for T_{crit}

Some tension for protons and K*

Kinetic freeze-out temperature

Combined fit to several particle spectra \rightarrow system properties at kinetic freeze-out "Blast-wave" model: thermalized volume elements expanding in a common velocity field (\rightarrow convolution of thermal velocity with expansion velocity)

• Goodness of the global fit \rightarrow hydro-dynamical description holds

Kinetic freeze-out temperature

Combined fit to several particle spectra \rightarrow system properties at kinetic freeze-out "Blast-wave" model: thermalized volume elements expanding in a common velocity field (\rightarrow convolution of thermal velocity with expansion velocity)

- Goodness of the global fit \rightarrow hydro-dynamical description holds
- In central collisions at LHC: T_{kin}~ 90 MeV, transverse expansion velocity ~0.65 c

Elliptic flow at 5 TeV

ϕ flow vs. p_{T} :

- Mass ordering at low p_{T}
- Baryon vs. meson grouping at higher p_T (2-6 GeV/c)

Quark-level flow + recombination?

Temperature from Photon spectrum

- Photons in heavy-ion collisions
 - Photons from QCD hard scattering: power law spectrum – dominant at high $p_{\rm T}$
 - Thermal photons, emitted by the hot system (analogy with black body radiation): exponential spectrum dominant at low $p_{\rm T}$
 - From inverse slope:

$T_{eff}^{*} = 304 \pm 41 \text{ MeV}$ ~ 2 $T_c (T_c \sim 160 \text{ MeV})$ ~ 1.25 x $T_{eff}(\text{RHIC})$

* "Average" over whole medium evolution

ALICE, Phys.Lett. B754 (2016) 235

J/ψ elliptic flow

Positive J/ ψ elliptic flow Expected for J/ψ from recombination Remains high at high $p_{T} \rightarrow$ not expected from models

25

30

PbPb √s_{NN} = 2.76 TeV

Cent. 10-60%

High p_T

20

QGP tomography with heavy quarks

- Early production in hard-scattering processes with high $Q^2 \ll$ at all p_{T} for charm and beauty
- Production cross sections calculable with pQCD
- Strongly interacting with the medium

Study parton interaction with the medium • energy loss via radiative ("gluon Bremsstrahlung") collisional processes > path length and medium density > color charge (Casimir factor) > quark mass (e.g. from dead-cone effect) HQ Gluonsstrahlung probability Gluonsstrahlung probability $\frac{1}{\left[\theta^2 + \left(m_Q/E_Q\right)^2\right]^2}$ Dokshitzer, Khoze, Troyan, JPG 17 (1991) 1602.

Dokshitzer, Khoze, Iroyan, JPG 17 (1991) 1602. Dokshitzer and Kharzeev, PLB 519 (2001) 199.

(large masses >> Λ_{OCD})

Figure from A. Andronic *et al.*, EPJC C76 (2016) M. Djordjevic, Phys. Rev. C80 064909 (2009), Phys. Rev. C74 064907 (2006).

QGP tomography with heavy quarks

(large masses $>> \Lambda_{OCD}$)

- Production cross sections calculable with pQCD
- Strongly interacting with the medium
- Hard fragmentation → measured meson properties closer to parton ones

 "Calibrated probes" of the medium

participation in collective motion → azimuthal anisotropy of produced particle

Open charm and beauty

ALICE, JHEP 1511 (2015) 205 CMS, EPJ C 77 (2017) 252

Similar D meson and pion R_{AA} Expected from small charm-quark mass + differences between charm and gluon/LF spectra slope and fragmentation

 R_{AA} (J/ ψ from B) > R_{AA} (D) in central collisions

The different suppression and the centrality dependence as expected from **models with quark-mass dependent energy loss**

 $(\Delta E_{g} > \Delta E_{lq} \ge \Delta E_{c} > \Delta E_{b})$

Expected from dead cone effect:

Open charm and beauty

- Charm flows →important constraints to models D_s vs. non strange D: modification of particle species abundances? →hadronisation via coalescence?
- \rightarrow Charm participates to system collective motion
- → Possible thermalisation? Need more precision at low $p_{\rm T}$

QGP tomography with high-energy partons

Very similar result at 5 TeV (run-2)

Strong suppression of intermediate/ high p_T particles in central Pb-Pb collisions

Absent in p-Pb collisions (no QGP expected)

- → final-state effect
- → Evidence of in-medium partonic energy loss

QGP tomography with high-energy partons

Strong suppression of intermediate/ high $p_{\rm T}$ particles in central Pb-Pb collisions

Absent in p-Pb collisions (no QGP expected)

- \rightarrow final-state effect
- → Evidence of in-medium partonic energy loss

Started to extract information from data

From analysis of inclusive charged particle spectra at RHIC and LHC and considering many models

Nucl.Phys. A931 (2014) 404-409 $\hat{q} = 1.2 \pm 0.3 \text{ GeV}^2/\text{fm} \text{ (central Au-Au } \sqrt{s_{\text{NN}}} = 200 \text{ GeV} \text{)}$ $\hat{q} = 1.9 \pm 0.7 \text{ GeV}^2/\text{fm} \text{ (central Pb-Pb } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \text{)}$

from J. Liao, QM2017

Jet quenching

Jets are "extended" objects \rightarrow provide complementary information to single particle observables

· Address spatial distribution and kinetic properties of radiated energy

Out-of-cone radiation → jet suppression

- Kinetic properties
- Spatial distribution of jet constituents
- Particle specie composition Many studies performed

Jet-structure modifications

• First measurement of jet mass in Pb-Pb (and in p-Pb):

$$M = \sqrt{p^2 - p_T^2 - p_z^2}.
onumber \ p_z = \sum_{i=1}^n p_{T_i} \sinh \eta_i, \ \ p = \sum_{i=1}^n p_{T_i} \cosh \eta_i$$

- Large *M*: soft constituents far from jet axis
- Small *M*: few hard constituents close to axis

•
$$\langle M_{\text{quark jet}} \rangle < \langle M_{\text{gluon jet}} \rangle$$

p-Pb baseline described by PYTHIA and HERWIG

No significant modification of jet structure in central Pb-Pb wrt p-Pb Pb-Pb better described by PYTHIA than by generators with gluon radiation in a QGP

Bottomonium suppression

→Trend expected from "sequential suppression"

Few introductory concepts: centrality, R_{AA}

Nuclear modification factor (R_{AA}) : compare particle production in Pb-Pb with that in pp scaled by a "geometrical" factor (from Glauber model) to account for the larger number of nucleon-nucleon collisions

Geometry of heavy ion collisions

64

Signals reconstructed with central barrel

Lattice QCD: Phase Transition

Lattice QCD is neither a calculation not a simulation: "realization" of QCD over a discretized space. It allows to compute thermodynamical properties of a system even in a non-perturbative regime of QCD

 \mathcal{E}

Proportional to number of degrees of freedom (ndof) (S. Boltzmann's law)

- Zero baryon density, 2(u, d) or 3 (u, d, s) quark flavours
- ε changes rapidly around T_c
- → signal change in number of degrees of freedom
- Most recent calculations:

$$T_c \sim 155 \text{ MeV}$$
 :

$$\rightarrow \varepsilon_c \sim 0.6 \text{ GeV/fm}^3$$

F. Karsch. Lattice QCD at High Temperature and Density. Lecture Notes of Physics, vol. 583, 2002. arXiv:hep-lat/0106019.

Strangeness enhancement

Most of light particle mass (and thus of matter) is due to spontaneous breaking of chiral symmetry of QCD

In the QGP chiral symmetry is expected to be partially restored (more details in backup)

[Raf. Rep. elski: Phys88 (1982) 331] [Rafelski-Müller: Phys. Rev. Lett. 48 (1982) 1066]

Quarks reacquire the "bare" mass values they have in the QCD Lagrangian

m(u,d): ~ 350 MeV \rightarrow a few MeV m(s): ~ 500 MeV \rightarrow ~ 150 MeV

The symmetry is exact only for massless particles, therefore its restoration is only partial.

Consequence:

→abundant strange quark pair production
→easier to form multi-strange hadrons

QCD Lagrangian and spontaneous breaking of chiral symmetry

 $\mathcal{L}_{ ext{QCD}} = ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - ar{\delta}_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$

In the limit of vanishing quark masses, the QCD Lagrangian becomes symmetric under transformations under the group $SU(N_f)_L \times SU(N_f)_R$: chiral symmetry.

However, chiral symmetry is spontaneously broken by the non-zero expectation value of the chiral condensate in vacuum, $\langle \psi \bar{\psi} \rangle \neq 0$, i.e. the QCD vacuum (at *T*=0) breaks the chiral symmetry. This mechanisms generates a "dynamical" mass for quarks, which is responsible for most of the matter mass.

This symmetry is approximately valid for u,d,(s) quarks (lightest).

X.Zhu et al., PLB 647 (2007) 366

Restoration of bare quark masses in the QGP (T>0)

Deconfinement is expected to be accompanied by a "Partial Restoration of Chiral Symmetry", due to the vanishing of the $\langle \psi \bar{\psi} \rangle$ expectation value. Quarks reacquire the "bare" mass values they have in the QCD Lagrangian

- m(u,d): ~ 350 MeV → a few MeV
- m(s): ~ 500 MeV → ~ 150 MeV

Since the symmetry is exact only for massless particles, therefore its restoration here is only partial.

Consequence:

it's easier to produce strange quarks!

Constraining further viscosity: example with a model J. E. Bernhard et al. Phys. Rev. C 94, 024907 (2016)

9 parameters: 3 initial state, 4 for QGP response, 2 model parameters

The ALICE detector: "small-angle" detectors

The ALICE detector: central barrel

Possible interest by experiment for lighter ion run (Ar or Xe)

ALICE upgrade: New ITS

Design requirements:

- 1. Improve impact parameter resolution by a factor ~3 (5) in r ϕ (z)
 - → Reduce pixel size (currently 50 µm x 425 µm)
 - monolithic (MAPS) with size ~ 28 μ m x 28 μ m
 - ➔ Go closer to interaction point:
 - → new smaller beam pipe: 2.9 cm → 1.9 cm
 - → first layer with smaller radius (2.3 cm, currently 3.9 cm)
 - → Reduce material thickness: 50 µm silicon, X/X₀ from current ~1.13% to ~0.3(0.8)% per layer
- 2. High standalone tracking performance (efficiency, spatial and momentum resolutions)
 - ➔ Increase granularity
 - → Add 1 layer (from 6 to 7)
- **3. Faster (x50) readout**: Pb-Pb interactions up to 100 kHz
- **4. Maintenance:** allow for removal/ insertion of faulty detector components during annual winter shutdown

New ITS: performance

ITS TDR:

Studies done with simulations with realistic and complete detector geometry and material budget description.

Track spatial resolution at the primary vertex

Muon Forward Tracker

Complementing muon spectrometer at forward rapidity

Extrapolating back to the vertex region degrades the information on the kinematics and trajectory

→ Cannot separate prompt and displaced muons

Muon Forward Tracker

Complementing muon spectrometer at forward rapidity

Muon Spectrometer

Muon tracks are extrapolated and matched to the MFT clusters before the absorber

Muon Forward Tracker

5-6 planes of CMOS silicon pixel sensors (same technology as ITS):

- 50 < z < 80 cm
 - R_{min} ≈ 2.5 cm (beam pipe constraint)
 - 11 < R_{max} < 16 cm
- Area ≈ 2700 cm²
- $X/X_0 = 0.4\%$ per plane
- Current pixel size scenario: ~28 x 28 μ m²

ALICE at high rate: field cage TPC Upgrade

Goals

- Operate TPC at 50 kHz
- Preserving current momentum resolution and PID capability
- Current TPC readout based on MWPC limits the event readout rate to 3.5 kHz

→ Upgrade TPC strategy

- New readout chambers: MWPC replaced with micropattern gaseous detectors, including GEM (Gas Electron Multiplier)
 •No gating, small ion backflow
- Redesign TPC front-end and readout electronic systems to allow for continuous readout
- Significant online data reduction to comply with the limited bandwidth
 - •Online cluster finding and cluster-track association

Di-electron production

One of the most fundamental measurements, sensitive to:

- chiral-symmetry restoration by modification of $\rho\text{-meson}$ spectral function
- partonic equation of state studying space–time evolution with invariant-mass and $p_{\rm T}$ distributions of dileptons
- photon thermal emission extrapolating to zero dilepton mass

Target measurements:

- di-electron yield vs. mass and $p_{\rm T}$ (require background subtraction)
- di-electron elliptic flow

New ITS

- Reduced combinatorial background (reduce impact of γ-conversions)
- Charm rejection

Di-electron production

Excess after background subtraction

current ITS and event rate: new ITS and high-rate: large statistical and systematic uncertainties **precise measurement** Allows for an estimation of the **temperature at various phases of system expansion** with 10-20% precision (stat.+syst.)