Preliminary considerations on the expansion by regions for $\boldsymbol{\mu}$-e scattering

Alessandro Broggio

T11

μ-e scattering kickoff workshop, Padova, 4-5 September 2017

Outline

- Introduction: kinematics and counting
- Expansion by regions of a scalar virtual diagram
- Small mass limit
- Open questions \& Summary

Kinematics and counting

$$
\begin{aligned}
m_{\mu} & \sim 105 \mathrm{MeV} \\
m_{e} & \sim 0.5 \mathrm{MeV}
\end{aligned}
$$

Fixed target experiment
frame

Invariants

$$
\begin{aligned}
& p_{1}=\left(m_{e}, \overrightarrow{0}\right) \\
& p_{2}=\left(\sqrt{m_{\mu}^{2}+\left|\vec{p}_{2}\right|^{2}}, \vec{p}_{2}\right)
\end{aligned}
$$

$$
s=\left(p_{1}+p_{2}\right)^{2}
$$

$$
t=\left(p_{1}-p_{3}\right)^{2}
$$

$$
u=\left(p_{1}-p_{4}\right)^{2}
$$

$$
s=m_{e}^{2}+m_{\mu}^{2}+2 m_{e} \underbrace{\sqrt{m_{\mu}^{2}+\left|\overrightarrow{p_{2}}\right|^{2}}}_{\sim 150 \mathrm{GeV}} \rightarrow \sqrt{s} \sim 400 \mathrm{MeV}
$$

It follows that $\quad \frac{m_{\mu}}{\sqrt{s}} \sim 0.25, \quad \frac{m_{e}}{\sqrt{s}} \sim 0.00125 \quad \rightarrow \quad \begin{aligned} & s \sim t \sim m_{\mu} \gg m_{e} \\ & \text { hard scales collinear }\end{aligned}$ hard scales collinear scale

$$
\ln \left(s / m_{\mu}^{2}\right) \simeq 3 \quad L \equiv \ln \left(s / m_{e}^{2}\right) \simeq 14 \quad \alpha L \simeq 0.1 \quad \rightarrow \quad L \sim 1 / \sqrt{\alpha}
$$

No resummation needed for these logs

Proposed counting, different from standard QCD counting

Expansion by regions example

We focus on the electron part since m_{μ} is of the order of the hard scale

After Feynman parametrisation and loop integration I obtain

$$
I=\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left(\frac{1}{-t}\right) \int_{0}^{1} d x \int_{0}^{x} d y \frac{\Gamma(1+\epsilon)}{\left[-y^{2}+\lambda x^{2}+x y\right]^{1+\epsilon}}
$$

After integration over the Feynman parameters and expansions

$$
I=\frac{\Gamma(1+\epsilon)}{-t}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left[\frac{\ln \lambda}{\epsilon}-\frac{\pi^{2}}{6}-\frac{\ln ^{2} \lambda}{2}+\mathcal{O}(\epsilon)+\mathcal{O}(\lambda)\right]
$$

Now we should find/calculate the different regions that contribute to this integral

Expansion by regions example

Light-cone components $\quad n_{\mu}=(1,0,0,1) \quad$ and $\quad \bar{n}_{\mu}=(1,0,0,-1)$

$$
p^{\mu}=(\underbrace{n \cdot p}_{\text {comp."" }}, \underbrace{\bar{n} \cdot p}_{\text {comp." }}, p_{\perp}^{\mu})
$$

Scalar products $\quad p \cdot q=p_{+} \cdot q_{-}+p_{-} \cdot q_{+}+p_{\perp} \cdot q_{\perp}$
External momenta scaling $\quad p_{3} \sim(\lambda, 1, \sqrt{\lambda}) Q, \quad p_{1} \sim(1, \lambda, \sqrt{\lambda}) Q$
hard-collinear scaling anti-hard-collinear scaling
Hard Region $\quad k \sim(1,1,1) Q$

$$
k^{2} \rightarrow \mathcal{O}(1)
$$

Expanded Propagators

$$
\begin{aligned}
& \left(k+p_{1}\right)^{2}-m_{e}^{2}=k^{2}+2 k_{-} \cdot p_{1+}+\mathcal{O}(\lambda) \\
& \left(k+p_{3}\right)^{2}-m_{e}^{2}=k^{2}+2 k_{+} \cdot p_{3-}+\mathcal{O}(\lambda) \\
& I_{h}=\frac{\Gamma(1+\epsilon)}{-t}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left[\frac{1}{\epsilon^{2}}-\frac{\pi^{2}}{6}\right] \quad \text { Single scale integral }
\end{aligned}
$$

Expansion by regions example

Anti-h-collinear Region $k \sim(1, \lambda, \sqrt{\lambda}) Q$

$$
\begin{aligned}
& \quad \begin{array}{l}
k^{2} \sim \mathcal{O}(\lambda) \\
\\
\text { Expanded Propagators }\left(k+p_{1}\right)^{2}+m_{e}^{2}=k^{2}+2 k \cdot p_{1} \sim \mathcal{O}(\lambda) \\
\\
\left(k+p_{3}\right)^{2}+m_{e}^{2}=k^{2}+2 k \cdot p_{3}=2 k_{+} \cdot p_{3-}+\mathcal{O}(\lambda) \\
I_{c}=i \pi^{-\frac{d}{2}} \mu^{4-d} \int d^{d} k \frac{1}{k^{2}\left[k^{2}+2 k \cdot p_{1}\right]\left[2 k_{+} \cdot p_{3-}\right]} \\
I_{c}=\frac{\Gamma(1+\epsilon)}{\left(2 p_{1+} p_{3-}\right)}\left(\frac{\mu^{2}}{m_{e}^{2}}\right)^{\epsilon}\left[-\frac{1}{2 \epsilon^{2}}+\mathcal{O}(\epsilon)\right]=\quad \text { Single scale integral } \\
= \\
=\frac{\Gamma(1+\epsilon)}{-t}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left[-\frac{1}{2 \epsilon^{2}}+\frac{\ln \lambda}{2 \epsilon}-\frac{\ln ^{2} \lambda}{4}+\mathcal{O}(\epsilon)+(O)(\lambda)\right] \quad \begin{array}{l}
\text { integral has been } \\
\text { rewritten }
\end{array}
\end{array}
\end{aligned}
$$

The h-collinear region $k \sim(\lambda, 1, \sqrt{\lambda}) Q$ gives the same contribution as the anti-collinear region

Expansion by regions example

Sum hard, h-collinear and anti-h-collinear regions

$$
\begin{aligned}
I_{h}+2 I_{c} & =\frac{\Gamma(1+\epsilon)}{-t}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left[\frac{1}{\epsilon^{2}}-\frac{\pi^{2}}{6}+2\left(-\frac{1}{2 \epsilon^{2}}+\frac{\ln \lambda}{2 \epsilon}-\frac{\ln ^{2} \lambda}{4}\right)\right]= \\
& =\frac{\Gamma(1+\epsilon)}{-t}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}\left[\frac{\ln \lambda}{\epsilon}-\frac{\pi^{2}}{6}-\frac{\ln ^{2} \lambda}{2}\right]=I
\end{aligned}
$$

The sum of these 3 regions reproduces the initial integral, this proves that other regions do not contribute, for example (ultra-)soft regions must give scaleless integrals

```
Soft Region k~ (\lambda,\lambda,\lambda)Q
```

$$
\begin{aligned}
& k^{2} \sim \mathcal{O}\left(\lambda^{2}\right) \\
& \left(k+p_{1}\right)^{2}-m_{e}^{2}=2 k_{-} \cdot p_{1+}+\mathcal{O}\left(\lambda^{2}\right) \quad \longrightarrow \quad I_{s, u s}=0 \\
& \left(k+p_{3}\right)^{2}-m_{e}^{2}=2 k_{+} \cdot p_{3-}+\mathcal{O}\left(\lambda^{2}\right)
\end{aligned}
$$

It is possible to prove that this integral vanishes in dimensional regularisation, the integral in the ultra-soft region $k \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) Q$ is the same as the one in the soft region (but with a different scaling) and it also vanishes

Factorization

The expansion by regions is important to find a factorization theorem (separation of scales)

$$
d \underset{\text { hard scales }}{d \sigma} \underset{\substack{\text { collinear scale } \\ \text { Missing terms/regions }}}{H\left(s, t, m_{\mu}, \mu\right)} F_{j}\left(m_{e}, \mu\right) F_{j}\left(m_{e}, \mu\right) \ldots
$$

- Single scale objects, then resummation is possible via RG-evolution
- We need to look at the real emission diagrams, new scales and regions (usually) appear
- Question? Is there an experimental soft cutoff in the energy of the emitted photons? I think in practice there is one: "The angles of the scattered electron and muon are correlated...This constraint is extremely important to select elastic scattering events, rejecting background events from radiative or inelastic processes"
- We call this cutoff ΔE. What is the size of this cutoff/scale ΔE ? $m_{e} \ll \Delta E \ll m_{\mu}$, s,t or $\mathrm{m}_{\mathrm{e}} \sim \Delta \mathrm{E}$?

Regions in the real emission diagrams

Soft real emission from static source, Moeller scattering, (R. Hill, [arXiv:1605.026|3]) in HQET then expanded in $\mathrm{m}_{\mathrm{e}}^{2} \ll \mathrm{Q}^{2}$, with soft cutoff on the photon energy

Soft function (IR subtracted)

$$
S^{(1)}=-4\left(\log \frac{\mu^{2}}{m^{2}}+\log \frac{E_{e}^{2}}{(\Delta E)^{2}}\right)(L-1)+2 L^{2}+4 \operatorname{Li}_{2}\left(\cos ^{2} \frac{\theta}{2}\right)-\frac{4 \pi^{2}}{3}
$$

- Large logarithmic corrections are still present in this formula, further separation of regions is needed
- It seems to be a situation similar to the boosted heavy quark regime: need to study the enhanced $\ln \left(m_{e}^{2} / Q^{2}\right)$ contributions in the soft-emission limit $\quad \Delta E^{2} \ll Q^{2}$ at fixed $(\Delta E)^{2} / E_{e}^{2}$ (joint limit)

Small mass limit \& factorization

Mele Nason '91, Melnikov Mitov '04, Mitov Moch '07,....

$$
\frac{d \sigma_{\mathcal{Q}}}{d z}(z, Q, m)=\sum_{a} \int_{z}^{1} \frac{d x}{x} \frac{d \hat{\sigma}_{a}}{d x}(x, Q, \mu) D_{a / \mathcal{Q}}\left(\frac{z}{x}, \frac{\mu}{m}\right)
$$

Cross section for the production of a massless parton a

Fragmentation function: probability that a massless parton fragments into a massive quark. Describes collinear radiation to final-state particles

Similar to the simple example of the expansion by regions above
Now expand in the soft limit, further factorization (limits should be independent and commutative?)

$$
D\left(z, m_{e}, \mu\right)=F_{j}\left(m_{e}, \mu\right) S_{j}\left(m_{e}, \Delta E, \mu\right)+\mathcal{O}(1-z) \quad \begin{aligned}
& \text { Korchemsky Marchesini '93, Cacciari Catani '0।, } \\
& \text { Gardi '05, Neubert '07, Ferroglia Pecjak Yang 'I2 }
\end{aligned}
$$

Naive/Guess factorization theorem

$$
d \sigma \sim H\left(s, t, m_{\mu}, m_{e}=0, \mu\right) F_{j}\left(m_{e}, \mu\right) F_{j}\left(m_{e}, \mu\right) S\left(\Delta E, s, t, m_{\mu}, m_{e}=0, \mu\right) S_{j, i}\left(m_{e}, \Delta E, \mu\right) S_{j, f}\left(m_{e}, \Delta E, \mu\right)
$$

Hard function, virtual corrections with $\mathrm{m}_{\mathrm{e}}=0$
virtual corrections of the fragmentation functions

Soft function, could contain ratio
of hard scales

Soft-collinear functions for initial and final state e

$$
+\mathcal{O}\left(\Delta E / E_{e}\right)+\mathcal{O}\left(m_{e}^{2} / s\right)
$$

Resummation

In some convenient space (momentum or Laplace/Mellin...) the functions appearing in the factorization formula satisfy RG equations of the type

RG equation

$$
\frac{d}{d \ln \mu} H\left(Q^{2}, \mu\right)=2\left[\gamma_{\text {cusp }} \ln \frac{Q^{2}}{\mu^{2}}+\gamma(\alpha)\right] H\left(Q^{2}, \mu\right)
$$

Formal solution

$$
H\left(Q^{2}, \mu\right)=\exp \left\{\int_{\mu_{h}}^{\mu} 2\left[\gamma_{\text {cusp }} \ln \frac{Q^{2}}{\mu^{2}}+\gamma(\alpha)\right] d \ln \mu^{\prime}\right\} H\left(Q^{2}, \mu_{h}\right)
$$

Change of variables, QED running coupling is needed

$$
\frac{d \alpha(\mu)}{d \ln \mu}=\beta(\alpha(\mu)) \quad \longrightarrow \ln \frac{\nu}{\mu}=\int_{\alpha(\mu)}^{\alpha(\nu)} \frac{d \alpha}{\beta(\alpha)}
$$

$$
\begin{aligned}
\log \left(\frac{H\left(\mu_{L}\right)}{H\left(\mu_{H}\right)}\right) & =\underbrace{-\frac{\gamma_{0}^{1 / 2}}{\beta_{0}}\{\log r+\ldots\}-\frac{\gamma_{0}^{\text {cusp }}}{\beta_{0}}\left\{\log \frac{Q^{2}}{\mu_{H}^{2}} \log r+\frac{1}{\beta_{0}}\left[\frac{4 \pi}{\alpha\left(\mu_{H}\right)}\left(\frac{1}{r}-1+\log r\right)\right]^{0}\right.} \alpha^{\left.\left.0\left(\frac{\gamma_{1}^{\text {cusp }}}{\gamma_{0}^{\text {cusp }}}-\frac{\beta_{1}}{\beta_{0}}\right)(-\log r+r-1)-\frac{\beta_{1}}{2 \beta_{0}} \log ^{2} r\right]+\ldots\right\} \quad r=\alpha\left(\mu_{L}\right) / \alpha\left(\mu_{H}\right)}
\end{aligned}
$$

Different counting than QCD

What do we need to do

- Find all the relevant hard, collinear and soft kinematic scales of the process ($m_{\mu}, s, t, E_{e}, m_{e}, \Delta E, \ldots$), be careful with hidden low energy scales that could possibly be introduced experimentally $(\Delta \mathrm{E})$. How do $\Delta \mathrm{E}$ and m_{e} relate to each other?
- Expansion by region analysis of real emission diagrams: find all the relevant modes, achieve scale separation
- Formally prove factorization formula by employing effective field theory methods
- Explicit computation of the matching coefficients entering the factorization formula (at NLO first and next at NNLO)
- Fixed order results from factorization theorem where power corrections in m_{e}^{2} / Q^{2} and $\Delta E / E_{e}$ are neglected, but probably it is enough for out purposes
- Resummation by RG evolution (it directly depends on the structure of the factorization theorem)

