The HVP from μ-e scattering and the lattice QCD data

Marina Krstić Marinković
CERN \& Trinity College Dublin

a_{μ} as a stringent test of the SM

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01
QED total	116584718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98.	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [Gc, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116591855.	59.

- Current TH estimate affected by
\Rightarrow the experimental uncertainties;
\Rightarrow perturbation theory/models
- Lattice QCD estimate \longrightarrow for a final crosscheck of the SM result and to keep up with the planned experimental improvements
$a_{\mu}^{H V P}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2}\left\{\int_{m_{\pi}^{2}}^{E_{c u t}^{2}} d s \frac{R_{\mathrm{had}}^{\mathrm{data}}(s) \hat{K}(s)}{s^{2}}+\int_{E_{c u t}^{2}}^{\infty} d s \frac{R_{\mathrm{had}}^{\mathrm{pQCD}}(s) \hat{K}(s)}{s^{2}}\right\}$
- HVP leading order: largest uncertainty! (around 50\% of total th. error)
- Lattice QCD provides a way to compute this contribution in a model-independent way

Non - perturbative computation of a_{μ}

- Recipe for lattice QCD computation:

1. Generate ensembles of field configuratio is using Monte Carlo
2. Average over a set of configurations:

- Compute correlation function of fields, extract Euclidean matrix elements or amplitude
- Computational cost dominated by quarks: inverses of large, sparse matrix

3. Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Activity in the lattice community

- HVP from the lattice:
\Rightarrow RBC/UKQCD, Mainz U.[CLS], HPQCD[MILC], BMW, MILC, ABGP, Regensburg U., ...
- HLbL from the lattice
\Rightarrow RBC, Mainz U.(2 approaches)
- HVP from the lattice+experiment (R-ratio data):
\Rightarrow Bernecker\&Meyer [arXiv:1107.4388]
\Rightarrow ETM, MILC, RBC/UKQCD ...
- HVP from the lattice+experiment (space-like data):
\Rightarrow this talk...

The leading hadronic contribution - HVP

Vacuum polarisation inserted in
the photon propagator

$$
\begin{aligned}
& \left.a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2}\left(Q^{2}\right)\right) \times \hat{\Pi}\left(Q^{2}\right) \\
& f\left(Q^{2}\right)=m_{\mu}^{2} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)} \\
& Z\left(Q^{2}\right)=\frac{\sqrt{Q^{4}+4 m_{\mu}^{2} Q^{2}}-Q^{2}}{2 m_{\mu}^{2} Q^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0) \\
& \Pi_{\mu \nu}(Q)=\sum_{f} Q_{f}^{2} \sum_{x} e^{i Q x}\left\langle J_{\mu}^{f}(x) J_{\nu}^{f}(0)\right\rangle
\end{aligned}
$$

$$
\Pi_{\mu \nu}(Q)=\left(Q_{\mu} Q_{\nu}-g_{\mu \nu} Q^{2}\right) \Pi\left(Q^{2}\right)
$$

The leading hadronic contribution - HVP

Vacuum polarisation inserted in
the photon propagator
strange quark HVP, RBC-UKQCD ‘16

$$
\begin{aligned}
a_{\mu}^{H V P} & =\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2}\left(f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right)\right. \\
f\left(Q^{2}\right) & =m_{\mu}^{2} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)} \\
Z\left(Q^{2}\right) & =\frac{\sqrt{Q^{4}+4 m_{\mu}^{2} Q^{2}}-Q^{2}}{2 m_{\mu}^{2} Q^{2}}
\end{aligned}
$$

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith,T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

The leading hadronic contribution - HVP

Vacuum polarisation inserted in
the photon propagator
light quark HVP, RBC-UKQCD ‘12

$$
\begin{aligned}
& a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right) \\
& f\left(Q^{2}\right)=m_{\mu}^{2} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)} \\
& Z\left(Q^{2}\right)=\frac{\sqrt{Q^{4}+4 m_{\mu}^{2} Q^{2}}-Q^{2}}{2 m_{\mu}^{2} Q^{2}}
\end{aligned}
$$

Phys. Rev. D85 (2012) [P.A.Boyle, L. Del Debbio, E.Kerrane, J.Zanotti]

The leading hadronic contribution - HVP

Vacuum polarisation inserted in
the photon propagator
strange quark HVP, RBC-UKQCD ‘16

$$
a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right)
$$

$$
f\left(Q^{2}\right)=m_{\mu}^{2} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)}
$$

$$
Z\left(Q^{2}\right)=\frac{\sqrt{Q^{4}+4 m_{\mu}^{2} Q^{2}}-Q^{2}}{2 m_{\mu}^{2} Q^{2}}
$$

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith,T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

Summary: strange quark HVP

Plot from H. Wittig @ Lattice 2016
light: u/d strange charm

[HPQCD: arXiv:1601.03071, Mainz: arXiv:1705.01775, ETM: arXiv:1505.03283]

1. Generate ensembles of field configurations using Monte Carlo
2. Average over a set of configurations:

- Compute correlation function of fields, extract Euclidean matrix elements or amplitude
- Computational cost dominated by quarks: inverses of large, sparse matrix Extrapolate to continuum, infinite volume, physical quark masses)(now directly accessible)

Dominant sources of errors

- Three complete computations of $a_{\mu}^{\mathrm{HVP}}(\mathbf{u} / \mathbf{d} \mathbf{+} \mathbf{s}+\mathbf{c})$
\Rightarrow recent HPQCD: $\mathbf{\sim 1 . 8 \%}$ precision for (u/d+s+c+b) [HPQCD arXiv:1601.03071]
\Rightarrow recent Mainz: [arXiv:1705.01775]
= ETM '15: [JHEP 1511(2015) 215, arXiv:
- Understanding the systematics is extremely important and more challenging:
\Rightarrow deterioration of signal at $\mathbf{Q}^{2}->\mathbf{0}$
\Rightarrow disconnected diagrams, isospin breaking effects

$\begin{aligned} u, d, s, c & \longmapsto \\ u, d, s & \longmapsto \\ u, d & \longmapsto\end{aligned}$
[Plot: H. Wittig @ LATTICE 2016]

Hybrid method

strategy applied for the strange quark contribution to the HVP [RBC/UKQCD]

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith,T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

Hybrid method

strategy proposed for the hybrid determination
of the total HVP $(u+d+s+c+b)$

Proposals for new experimental measurements of $a_{\mu}^{H V P}$

- Goal precision for HVP contribution to is $<1 \%$
\Rightarrow New proposals for the space-like experimental measurements of HVP
\Rightarrow [Phys.Lett. B746 (2015) 325-329 by Carloni, Passera, Trentadue, Venanzoni] @KLOE2
\Leftrightarrow [Eur.Phys.J. C77 (2017) no.3, 139 by Abbiendi et al.] @CERN
- Estimated precision for the HVP from the $\boldsymbol{\mu e}$ scattering experiment is $\mathbf{0 . 3 \%}$ [see slides by G. Venanzoni and U. Marconi]
- Relevance for lattice QCD determinations of HVP:

1. "hybrid method" [Phys. Rev. D 90, 074508 (2014) Golterman,Maltman,Peris] with experimental+lattice QCD data
a) to complete the exp. result
b) to cross-check lattice data
2. continuum limit of $\Pi\left(Q^{2}\right)$ at fixed \mathbf{Q}^{2}
3. help in choosing the parametrization for $\Pi\left(Q^{2}\right)$ with less FV/cutoff effects

Hybrid method: $a_{\mu}^{H V P}$ from experimental + lattice QCD data

- Estimated precision for the HVP from the $\boldsymbol{\mu} \mathbf{e} \exp$. is $\mathbf{0 . 3} \%$ in $[\mathbf{0}, \mathbf{0} \mathbf{1 3 8}] \mathrm{GeV}^{\mathbf{2}}$ [see slides by G . Venanzoni and U. Marconi]
- Due to the experimental constraints: region $[\mathbf{0 . 1 3 8}, \infty] \mathrm{GeV}^{2}$ cannot be covered by this exp.
\Rightarrow complementary to the lattice QCD data
$|t|\left(10^{-3} \mathrm{GeV}^{2}\right)$

$\Rightarrow \quad x_{\max }=0.93$
$\Rightarrow \quad Q^{2}=\frac{x^{2} m_{\mu}^{2}}{1-x}$
$\Rightarrow Q_{\exp , \max }^{2}=0.138 \mathrm{GeV}^{2}$

Hybrid method: $a_{\mu}^{H V P}$ from experimental + lattice QCD data

- Estimated precision for the HVP from the $\boldsymbol{\mu} \mathbf{e} \exp$. is $\mathbf{0 . 3} \%$ in $[\mathbf{0}, \mathbf{0} \mathbf{1 3 8}] \mathrm{GeV}^{\mathbf{2}}$ [see slides by G . Venanzoni and U. Marconi]
- Due to the experimental constraints: region $[\mathbf{0 . 1 3 8}, \infty] \mathrm{GeV}^{2}$ cannot be covered by this exp.
\Rightarrow complementary to the lattice QCD data
$|t|\left(10^{-3} \mathrm{GeV}^{2}\right)$

$\Rightarrow \quad x_{\text {max }}=0.93$
$\Rightarrow \quad Q^{2}=\frac{x^{2} m_{\mu}^{2}}{1-x}$
$\Rightarrow Q_{\exp , \max }^{2}=0.138 \mathrm{GeV}^{2}$

Hybrid method: $a_{\mu}^{H V P}$ from experimental + lattice QCD data

- Estimated precision for the HVP from the $\boldsymbol{\mu} \mathbf{e} \exp$. is $\mathbf{0 . 3} \%$ in $[\mathbf{0}, \mathbf{0} \mathbf{1 3 8}] \mathrm{GeV}^{\mathbf{2}}$ [see slides by G . Venanzoni and U. Marconi]
- Due to the experimental constraints: region $[\mathbf{0 . 1 3 8}, \infty] \mathbf{G e V}^{2}$ cannot be covered by this exp.
\Rightarrow complementary to the lattice QCD data

$\Rightarrow \quad N f=2, E 5, L / a=32(C L S), m_{\pi} \approx 440 \mathrm{MeV}$
$\Rightarrow \quad$ Pade $[1,1]$
$\Rightarrow \quad a_{\mu}^{H V P, u d s}=3.61(10) \times 10^{-8}$
$\Rightarrow \quad\left[0, \mathrm{Q}^{2}{ }_{\text {exp,max }}\right] \longrightarrow>87 \%$ of total $a_{\mu}^{H V P, u d s}$
$\Rightarrow \quad\left[Q^{2}{ }_{\text {exp,max }}, Q^{2}{ }_{\text {high }}\right] \longrightarrow 12 \%$ total $a_{\mu}^{H V P, u d s}$
$\Rightarrow \quad\left[\mathrm{Q}^{2}{ }_{\text {high, }} \infty\right] \longrightarrow<1 \%$ of total $a_{\mu}^{H V P, u d s}$
- ABGP Pade approximants [Aubin,Blum,Golterman,Peris, Phys.Rev. D86 (2012) 054509]:
\Rightarrow guaranteed to converge on the interval [$\mathbf{Q}^{2} \mathbf{e x p}$, max $\left.\mathbf{Q}^{2}{ }_{\text {high }}\right]$
\Rightarrow possible to combine with the numerical integration

Hybrid method

\Rightarrow Experiment (NLO, NNLO, radiative corrections ...)

- Vary low and high \mathbf{Q}^{2} cut
- Low momentum region
strategy proposed for the hybrid determination
of the total HVP $(u+d+s+c+b)$

Cross-check experimental $\Pi\left(Q^{2}\right)$ vs. continuum limit from the lattice

- Take individual $\Pi\left(Q^{2}\right)$ values $[\mathbf{0}, \mathbf{0} \mathbf{1 0 8}] \mathbf{G e V}^{2}$
- Continuum limit at fixed Q^{2} (previously extrapolated or measured at $\mathbf{m}_{\pi, \text { phys }}$)
- Compare to the slope and curvature for HVP function [see arXiv:1612.02364]
- For the continuum limit of $\Pi\left(Q^{2}\right)$ at fixed \mathbf{Q}^{2} :
\Rightarrow twisted bc's / SCl
\Rightarrow interpolate between the values measured by conventional methods
1.The HVP integral on a range $\left[Q_{\text {min }}^{2}, Q_{\text {max }}^{2}\right]$ has continuum \&FV limit:

$$
a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{Q_{e x p, \max }^{2}}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \tilde{\Pi}\left(Q^{2}\right)
$$

\Rightarrow radiative corrections might be relevant ($\approx 1 \%$) [c.f. slides by C. Carloni Calame for region [$\left.0, Q^{2}{ }_{\text {exp,max }}\right]$)
= cutoff effects need to be assessed systematically
2. Plan to engage whole lattice community, look in the momentum range $[0.138, \infty] \mathrm{GeV}^{2}$
\Rightarrow Ideally, perform continuum limit (\&infinite volume limit)
\Rightarrow Help us put together yet another estimate for $a_{\mu}^{H V} P_{\text {joining th. and exp. efforts }}$

Work in progress: QED+QCD simulations with C* bc's

- Generating configurations for $\mathrm{N}_{\mathrm{f}}=2+1 \mathrm{O}(\mathrm{a})$ improved Wilson fermions (QCD, QCD+QED)
- Next 1-2 years, expect to have first results on $a_{\mu}^{H V P}$
- Particularly convenient for computing isospin breaking effects
\Rightarrow local formulation of QED+QCD
\Rightarrow different (smaller and better controlled?) F.V. effects
- RC* collaboration: http://rcstar.web.cern.ch/
- [A.Patella, M.K.M @ Lattice 2017] openQCD code $\longrightarrow>$ added C* bc's and dynamical SU(3)+U(1)
- [M. Hansen @ Lattice 2017] —> first physics results with C* bc's

RC* Collaboration http://rcstar.web.cern.ch/

Rome II - University of Rome Tor Vergata

- N. Tantalo
- G.M. de Divitiis

IFT/UAM Madrid

- Isabel Campos

CP3 - University of Southern Denmark

- Martin Hansen

CERN

- Patrick Fritzsch
- Agostino Patella (\&Plymouth University)
- Alberto Ramos
- Marina Krstic Marinkovic (\&TCD)

Leading Isospin Breaking Effects of the HVP

- R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE)
\Rightarrow Expanding an observable (in the full theory) with respect to the isosymmetric ($\mathbf{m}_{\mathbf{u}}=\mathbf{m}_{\mathbf{d}}$ and $\mathbf{a}_{\mathrm{em}}=\mathbf{0}$) QCD result
- For a start: applying it to the connected part of the HVP
- Main advantage w. respect to simulating QED+QCD:
\Rightarrow Diagrams obtained individually [before multiplying with $O\left(\alpha_{e m}\right), O\left(m_{u}-m_{d}\right)$ coeff.]
\Rightarrow No extrapolation in $\alpha_{e m}$
- Example:

$$
\Delta \longrightarrow{ }^{ \pm}=
$$

electroquenched approximation

LIBE of the HVP in the electro-quenched approx.

- Expanding the connected part of the HVP

$$
=\quad \operatorname{Tr}\left\{\gamma_{\mu} S_{f} \gamma_{\nu} S_{f}\right\}
$$

- Electro-quenched approximation:

$$
\Pi\left(q^{2}\right)=\Pi^{0}\left(q^{2}\right)+\Delta \Pi\left(q^{2}\right)
$$

Summary \& Outlook

- Lattice gives an independent theory prediction of hadronic contributions to a_{μ}
- Lattice goals: for HVP is $<1 \%$ and goal for HLbL is $<10 \%$
- Full control of the systematics is needed — the first one (HVP) might be achieved by utilising experimental data (R-ratios, space-like)
- Proposal to do a "hybrid determination" from μ-e scattering and lattice data (+p.t.)
- Preliminary estimate: 12% of the total $a_{\mu}^{H V P, u d s}$ coming from the intermediate region $\left[\mathbf{Q}^{\mathbf{2}}{ }_{\text {exp }, \mathbf{m a x}}, \mathbf{Q}^{\mathbf{2}}{ }_{\text {high }}\right.$]
\Rightarrow continuum limit, infinite volume limit, isospin breaking corrections are the next challenges
- Isospin breaking corrections:
- HVP: gather statistics, continuum limit, chiral limit, estimate FV effects
\Rightarrow HVP: repeat the study on QCD configurations with C* bc's
\Rightarrow Full QCD+QED simulations with C* bc's: stability with TM preconditioning, generate set of ensembles for a pilot measurement phase (optimisation), meson mass splittings, HVP, ...

