

The HVP from µ-e scattering and the lattice QCD data

Marina Krstić Marinković

CERN & Trinity College Dublin

a_{μ} as a stringent test of the SM

	a [10-11]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(lpha^2)$	413 217.63	0.01
QED $\mathcal{O}(lpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6 949.	43.
HVP (NLO) [Hagiwara et al. 11]	–98 .	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116 591 855.	59.

- Current TH estimate affected by
 - the experimental uncertainties;
 - perturbation theory/models
- Lattice QCD estimate —> for a final crosscheck of the SM result and to keep up with the planned experimental improvements

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \left\{ \int_{m_{\pi}^{2}}^{E_{cut}^{2}} ds \frac{R_{\text{had}}^{\text{data}}(s)\hat{K}(s)}{s^{2}} + \int_{E_{cut}^{2}}^{\infty} ds \frac{R_{\text{had}}^{\text{pQCD}}(s)\hat{K}(s)}{s^{2}} \right\}$$

- (HVP leading order: largest uncertainty! (around 50% of total th. error)
- Lattice QCD provides a way to compute this contribution in a model-independent way

Non - perturbative computation of $\,a_{\mu}$

- 1. Generate ensembles of field configurations using *Monte Carlo*
- 2. Average over a set of configurations:
 - Compute correlation function of fields, extract Euclidean matrix elements or amplitude
 - Computational cost dominated by quarks: inverses of large, sparse matrix
- 3. Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Activity in the lattice community

- HVP from the lattice:
 - RBC/UKQCD, Mainz U.[CLS], HPQCD[MILC], BMW, MILC, ABGP, Regensburg U., ...
- HLbL from the lattice
 - → RBC, Mainz U.(2 approaches)
- HVP from the lattice+experiment (R-ratio data):
 - Bernecker&Meyer [arXiv:1107.4388]
 - ➡ ETM, MILC, RBC/UKQCD ...
- HVP from the lattice+experiment (space-like data):
 - this talk...

Vacuum polarisation inserted in the photon propagator

Fit

$$-0.0130$$
 -0.0135
 -0.0140
 -0.0145
 -0.0150
 -0.0150
 -0.0160
 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.7

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

$$f(Q^2) = m_{\mu}^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}$$

$$\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0)$$

$$\Pi_{\mu\nu}(Q) = \sum_{f} Q_f^2 \sum_{x} e^{iQx} \langle J_{\mu}^f(x) J_{\nu}^f(0) \rangle$$

$$\Pi_{\mu\nu}(Q) = (Q_{\mu}Q_{\nu} - g_{\mu\nu}Q^2)\Pi(Q^2)$$

Vacuum polarisation inserted in the photon propagator

strange quark HVP, RBC-UKQCD '16

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

$$f(Q^2) = m_\mu^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_\mu^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}$$

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith, T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

Vacuum polarisation inserted in the photon propagator

light quark HVP, RBC-UKQCD '12

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

$$f(Q^2) = m_{\mu}^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}$$

Phys. Rev. D85 (2012) [P.A.Boyle, L. Del Debbio, E.Kerrane, J.Zanotti]

Vacuum polarisation inserted in the photon propagator

strange quark HVP, RBC-UKQCD '16

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

$$f(Q^2) = m_{\mu}^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}$$

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith, T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

Summary: strange quark HVP

Plot from H. Wittig @ Lattice 2016

[HPQCD: arXiv:1601.03071, Mainz: arXiv:1705.01775,

ETM: arXiv:1505.03283

- 1. Generate ensembles of field configurations using Monte Carlo
- 2. Average over a set of configurations:
 - → Compute correlation function of fields, extract Euclidean matrix elements or amplitude
 - Computational cost dominated by quarks: inverses of large, sparse matrix
- 3 Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Dominant sources of errors

- Three complete computations of a_{μ}^{HVP} (u/d+s+c)
 - → recent HPQCD: ~1.8% precision for (u/d+s+c+b)
 [HPQCD arXiv:1601.03071]
 - recent Mainz: [arXiv:1705.01775]
 - **ETM** '15: [JHEP 1511(2015) 215, arXiv: 1505.03283]
- Understanding the systematics is extremely important and more challenging:
 - \rightarrow deterioration of signal at $\mathbb{Q}^2 \rightarrow 0$
 - disconnected diagrams, isospin breaking effects
 - scale setting error [arXiv:1705.01775]

[Plot: H. Wittig @ LATTICE 2016]

Hybrid method

Phys. Rev. D 90, 074508 (2014), [Golterman, Maltman, Peris]

Hybrid method

Phys. Rev. D 90, 074508 (2014), [Golterman, Maltman, Peris]

Proposals for new experimental measurements of a_{μ}^{HVP}

- Goal precision for HVP contribution to is <1%
- New proposals for the space-like experimental measurements of HVP
 - **▶** [Phys.Lett. B746 (2015) 325-329 by Carloni, Passera, Trentadue, Venanzoni] @KLOE2
 - **■** [Eur.Phys.J. C77 (2017) no.3, 139 by Abbiendi et al.] @CERN
- Estimated precision for the HVP from the **µe scattering** experiment is **0.3%** [see slides by G. Venanzoni and U. Marconi]

- Relevance for lattice QCD determinations of HVP:
 - 1. "hybrid method" [Phys. Rev. D 90, 074508 (2014) Golterman, Maltman, Peris] with experimental+lattice QCD data
 - a) to complete the exp. result
 - b) to cross-check lattice data
 - 2. continuum limit of $\Pi(Q^2)$ at fixed $\mathbf{Q^2}$
 - 3. help in choosing the parametrization for $\Pi(Q^2)$ with less FV/cutoff effects

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

- Estimated precision for the HVP from the μe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni
- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

and U. Marconi]

$$\Rightarrow x_{\text{max}} = 0.93$$

$$\Rightarrow Q^2 = \frac{x^2 m_{\mu}^2}{1 - x}$$

$$\Rightarrow Q_{\text{exp,max}}^2 = 0.138 \text{GeV}^2$$

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

- Estimated precision for the HVP from the μe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni
 - and U. Marconi]
- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

$$x_{\text{max}} = 0.93$$

$$Q^2 = \frac{x^2 m_{\mu}^2}{1 - x}$$

$$Q^2_{\text{exp,max}} = 0.138 \text{GeV}^2$$

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

- Estimated precision for the HVP from the μe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni and U. Marconi]
- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

- → Nf=2, E5, L/a=32 (CLS), m_π≈440MeV
- → Pade [1,1]
- $a_{\mu}^{HVP,uds} = 3.61(10) \times 10^{-8}$
- \rightarrow [0,Q²_{exp,max}] —>87% of total $a_{\mu}^{HVP,uds}$
- \rightarrow [Q²_{exp,max},Q²_{high}]—>12% total $a_{\mu}^{HVP,uds}$
- $[Q^2_{\text{high}}, \infty] \longrightarrow <1\% \text{ of total } a_{\mu}^{HVP,uds}$

- ABGP Pade approximants [Aubin,Blum,Golterman,Peris, Phys.Rev. D86 (2012) 054509]:
 - guaranteed to converge on the interval [Q²_{exp,max},Q²_{high}]
 - possible to combine with the numerical integration

Hybrid method

Phys. Rev. D 90, 074508 (2014), [Golterman, Maltman, Peris]

Cross-check experimental $\Pi(Q^2)$ vs. continuum limit from the lattice

- Take individual $\Pi(Q^2)$ values [0,0.108]GeV²
- Continuum limit at fixed Q² (previously extrapolated or measured at m_{π,phys})
- Compare to the slope and curvature for HVP function [see arXiv:1612.02364]
- For the continuum limit of $\Pi(Q^2)$ at fixed $\mathbf{Q^2}$:
 - twisted bc's / SCI
 - interpolate between the values measured by conventional methods
- 1. The HVP integral on a range $[Q^2_{min}, Q^2_{max}]$ has continuum&FV limit:

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_{Q_{exp,max}^2}^{\infty} dQ^2 f(Q^2) \times \tilde{\Pi}(Q^2)$$

- ⇒ radiative corrections might be relevant (≈ 1‰) [c.f. slides by C. Carloni Calame for region [0,Q²_{exp,max}])
- cutoff effects need to be assessed systematically
- 2.Plan to engage whole lattice community, look in the momentum range [0.138, ∞]GeV²
 - → Ideally, perform continuum limit (&infinite volume limit)
 - ightharpoonup Help us put together yet another estimate for a_{μ}^{HVP} joining th. and exp. efforts

Work in progress: QED+QCD simulations with C* bc's

- Generating configurations for N_f=2+1 O(a) improved Wilson fermions (QCD, QCD+QED)
- Next 1-2 years, expect to have first results on a_{μ}^{HVP}
- Particularly convenient for computing isospin breaking effects
 - local formulation of QED+QCD
 - different (smaller and better controlled?) F.V. effects

- RC* collaboration: http://rcstar.web.cern.ch/
- [A.Patella, M.K.M @ Lattice 2017] openQCD code —> added C* bc's and dynamical SU(3)+U(1)
- [M. Hansen @ Lattice 2017] —> first physics results with C* bc's

RC* Collaboration http://rcstar.web.cern.ch/

Rome II - University of Rome Tor Vergata

- N. Tantalo
- G.M. de Divitiis

IFT/UAM Madrid

Isabel Campos

CP3 - University of Southern Denmark

Martin Hansen

CERN

- Patrick Fritzsch
- Agostino Patella (&Plymouth University)
- Alberto Ramos
- Marina Krstic Marinkovic (&TCD)

Leading Isospin Breaking Effects of the HVP

- R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE)
 - Expanding an observable (in the full theory) with respect to the isosymmetric (m_u=m_d and α_{em}=0) QCD result
- For a start: applying it to the connected part of the HVP
- Main advantage w. respect to simulating QED+QCD:
 - ightharpoonup Diagrams obtained individually [before multiplying with $O(\alpha_{em})$, $O(m_u m_d)$ coeff.]
 - ightharpoonup No extrapolation in $lpha_{em}$
- Example: $\Delta \longrightarrow \pm =$

electroquenched approximation

considering sea quarks as electrically neutral

LIBE of the HVP in the electro-quenched approx.

Expanding the connected part of the HVP

• Electro-quenched approximation: $\Pi(q^2) = \Pi^0(q^2) + \Delta \Pi(q^2)$

Summary & Outlook

- Lattice gives an independent theory prediction of hadronic contributions to a_µ
- Lattice goals: for HVP is <1% and goal for HLbL is <10%
- Full control of the systematics is needed the first one (HVP) might be achieved by utilising experimental data (R-ratios, space-like)
- Proposal to do a "hybrid determination" from μ-e scattering and lattice data (+p.t.)
- Preliminary estimate: 12% of the total $a_{\mu}^{HVP,uds}$ coming from the intermediate region [Q²_{exp,max},Q²_{high}]
 - continuum limit, infinite volume limit, isospin breaking corrections are the next challenges
- Isospin breaking corrections:
 - → HVP: gather statistics, continuum limit, chiral limit, estimate FV effects
 - → HVP: repeat the study on QCD configurations with C* bc's
 - → Full QCD+QED simulations with C* bc's: stability with TM preconditioning, generate set of ensembles for a pilot measurement phase (optimisation), meson mass splittings, HVP, ...