Towards mu-e Scattering @NNLO in QED: intro

Pierpaolo Mastrolia

Muon-electron Scattering:
Theory kickoff workshop
Padova, Sept. 4-5, 2017

In collaboration with:

- Passera, Peraro, Primo, Ossola, Schubert, Torres-Bobadilla

Outline

\&Motivations
What we need and what we can provide
※Feynman Integrals in Dimensional Regularization
\& Integration-by-parts identities, Master Integrals \& Differential Equations
Magnus Exponential Matrix and Canonical Forms
\&Adaptive Integrand Decomposition
\&improved reduction @ 1- and 2-loop
Automated two-loop corrections for generic processes
\&Extra: on the scattering amplitudes involving massive particles
Algebra of Elliptic integrals from IBPs on the cuts
EResults
©Conclusions/Outlook

Motivations
 >> see Venanzoni's talk
 >> see Marconi's talk

What we need :: Anatomy of NNLO

$\not{ }^{\$}$ Double-real Radiation tree-level matrix elements

$$
\mathrm{d} \hat{\sigma}_{N N L O}^{R R}
$$

\& Single-real Radiation
1-loop matrix elements
$\mathrm{d} \hat{\sigma}_{N N L O}^{R V}$

>> see Carloni-Calame, Fael and Ossola's talks

YVirtual 2-loop matrix element $\mathrm{d} \hat{\sigma}_{N N L O}^{V}$


```
>> see this,
Primo and Schubert's
talks
```


What we need :: Anatomy of NNLO

Double-real Radiation tree-level matrix elements

$$
\mathrm{d} \hat{\sigma}_{N N L O}^{R R}
$$

\& Single-real Radiation 1-loop matrix elements

>> see Carloni-Calame, Fael and Ossola's talks

Virtual 2-loop matrix element

$$
\mathrm{d} \hat{\sigma}_{N N L O}^{V V}
$$

$$
\mathrm{d} \hat{\sigma}_{N N L O} \sim \int_{\mathrm{d} \Phi_{m+2}} \mathrm{~d} \hat{\sigma}_{N N L O}^{R R}+\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \hat{\sigma}_{N N L O}^{R V}+\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \hat{\sigma}_{N N L O}^{V V}
$$

Subtractions and MC-integration?
>> left as exercise to Pavia's people :)

Dimensionally Regulated Integrals

Graph Topology \& Integrals

$$
\begin{aligned}
& e=\# \text { legs }:: p_{i}, \quad(i=1, \ldots, e) \\
& \ell=\# \text { loops }:: q_{i} \quad(i=1, \ldots, \ell) \\
& n=\# \text { denominators }:: D_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

$N=$ \# scalar products (of types $q_{i} \cdot p_{j}$ and $\left.q_{i} \cdot q_{j}\right) \quad N=\ell(e-1)+\frac{\ell(\ell+1)}{2}$
$n=$ \# reducible scalar products (expressed in terms of denominators);
$m=\#$ irreducible scalar products $=N-n:: S_{i} \quad(i=1, \ldots, m)$

Graph Topology \& Integrals

$$
\begin{aligned}
& e=\# \text { legs }:: p_{i}, \quad(i=1, \ldots, e) \\
& \ell=\text { \# loops }:: q_{i} \quad(i=1, \ldots, \ell) \\
& n=\# \text { denominators }:: D_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

$N=\#$ scalar products (of types $q_{i} \cdot p_{j}$ and $\left.q_{i} \cdot q_{j}\right) \quad N=\ell(e-1)+\frac{\ell(\ell+1)}{2}$
$n=$ \# reducible scalar products (expressed in terms of denominators); $m=$ \# irreducible scalar products $=N-n:: S_{i} \quad(i=1, \ldots, m)$

Graph Topology \& Integrals

$$
\begin{aligned}
& e=\# \text { legs }:: p_{i}, \quad(i=1, \ldots, e) \\
& \ell=\# \text { loops }:: q_{i} \quad(i=1, \ldots, \ell) \\
& n=\# \text { denominators }:: D_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

$N=\#$ scalar products (of types $q_{i} \cdot p_{j}$ and $\left.q_{i} \cdot q_{j}\right) \quad N=\ell(e-1)+\frac{\ell(\ell+1)}{2}$
$n=$ \# reducible scalar products (expressed in terms of denominators);
$m=$ \# irreducible scalar products $=N-n:: S_{i} \quad(i=1, \ldots, m)$

Associated Integrals ::

$$
\begin{aligned}
F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_{1} \ldots q_{\ell}} f_{n, m}(\mathbf{x}, \mathbf{y}), & \int_{q_{1} \ldots q_{\ell}} \equiv \int \frac{\mathrm{d}^{d} q_{1}}{(2 \pi)^{d}} \cdots \frac{\mathrm{~d}^{d} q_{\ell}}{(2 \pi)^{d}} \\
f_{n, m}(\mathbf{x}, \mathbf{y})=\frac{S_{1}^{y_{1}} \cdots S_{m}^{y_{m}}}{D_{1}^{x_{1}} \cdots D_{n}^{x_{n}}} \longleftarrow & \longleftarrow
\end{aligned}
$$

Integration-by-parts Identities (IBPs)

Tkachov; Chetyrkin Tkachov; Laporta;

$$
\int_{q_{1} \ldots q_{\ell}} \frac{\partial}{\partial q_{i}^{\mu}}\left(v^{\mu} f_{n, m}(\mathbf{x}, \mathbf{y})\right)=0, \quad v=q_{1}, \ldots, q_{\ell}, p_{1}, \ldots, p_{e-1}
$$

$$
\forall(n, m), N_{\mathrm{IBP}}=\# \text { of IBP relations }=\ell(\ell+e-1)
$$

Relations between integrals associated to the same topology (or subtopologies)

$$
c_{0} F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y})+\sum_{i, j} c_{i, j} F_{n, m}^{[d]}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{j}}\right)=0
$$

$$
\begin{aligned}
\mathbf{x}_{\mathbf{i}} & =\left\{x_{1}, \ldots, x_{i} \pm 1, \ldots, x_{n}\right\} \\
\mathbf{y}_{\mathbf{j}} & =\left\{y_{1}, \ldots, y_{j} \pm 1, \ldots y_{n}\right\}
\end{aligned}
$$

public codes :: AIR; Reduze2; FIRE; LiteRed;
private codes :: ... many authors ... Laporta, Sturm ..

Master Integrals (MIs)

Independent set of integrals $M_{i}^{[d]}$,

$$
M_{i}^{[d]} \equiv \int_{q_{1} \ldots q_{\ell}} m_{i}(\overline{\mathbf{x}}, \overline{\mathbf{y}})
$$

with a definite set of powers $\overline{\mathbf{x}}, \overline{\mathbf{y}}$ such that

$$
F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\mathrm{IBP}}{=} \sum_{k} c_{k} M_{k}^{[d]}, \quad \forall(n, m)
$$

They form a basis for the integrals of the corresponding topology.

Two special cases

Two types of integrals generated from the master integrands

- Polynomial insertion:

$$
\int_{q_{1} \ldots q_{\ell}} P\left(q_{i} \cdot p_{j}, q_{i} \cdot q_{j}\right) m_{i}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=\sum_{n, m} \alpha_{n, m} F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\mathrm{IBP}}{=} \sum_{i} c_{i} M_{i}^{[d]}
$$

- External-leg derivatives:

$$
p_{i}^{\mu} \frac{\partial}{\partial p_{j}^{\mu}} M_{k}^{[d]}=\int_{q_{1} \ldots q_{\ell}} p_{i}^{\mu} \frac{\partial}{\partial p_{j}^{\mu}} m_{k}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=\sum_{n, m} \beta_{n, m} F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\mathrm{IBP}}{=} \sum_{i} c_{i} M_{i}^{[d]}
$$

Dimensional Recurrence Relations for MIs

Tarasov; Baikov; Lee
Gram determinant $\quad P\left(q_{i} \cdot p_{j}, q_{i} \cdot q_{j}\right)=\mathbf{G}\left(q_{i}, p_{j}\right)=\left|\begin{array}{ccc}q_{1}^{2} & \ldots & \left(q_{1} \cdot p_{e-1}\right) \\ \vdots & \ddots & \vdots \\ \left(p_{e-1} \cdot q_{1}\right) & \ldots & p_{e-1}^{2}\end{array}\right|$

Dimension-shifted integrals
$F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_{1} \ldots q_{\ell}} f_{n, m}(\mathbf{x}, \mathbf{y})$

Dimensional Recurrence Relations for MIs

Tarasov; Baikov; Lee

Dimensional Recurrence Relations for MIs

G-insertion generates shifted dim. integrals: $d-->d+2$

Dimensional Recurrence Relations for MIs

Tarasov; Baikov; Lee
Gram determinant $\quad P\left(q_{i} \cdot p_{j}, q_{i} \cdot q_{j}\right)=\mathbf{G}\left(q_{i}, p_{j}\right)=\left|\begin{array}{ccc}q_{1}^{2} & \cdots & \left(q_{1} \cdot p_{e-1}\right) \\ \vdots & \ddots & \vdots \\ \left(p_{e-1} \cdot q_{1}\right) & \cdots & p_{e-1}^{2}\end{array}\right|$

Dimension-shifted integrals
$F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_{1} \ldots q_{\ell}} f_{n, m}(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \int_{q_{1} \ldots q_{\ell}} \mathbf{G} f_{n, m}(\mathbf{x}, \mathbf{y})=\Omega\left(d, p_{i}\right) F_{n, m}^{[d+2]}(\mathbf{x}, \mathbf{y})$

In the case of Master integrals

$$
M_{k}^{[d+2]}=\Omega\left(d, p_{i}\right)^{-1} \int_{q_{1} \ldots q_{\ell}} \mathbf{G} m_{k}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \stackrel{\mathrm{IBP}}{=} \sum_{i} c_{k, i} M_{i}^{[d]}
$$

Dimensional Recurrence Relations for MIs

Gram determinant $\quad P\left(q_{i} \cdot p_{j}, q_{i} \cdot q_{j}\right)=\mathbf{G}\left(q_{i}, p_{j}\right)=\left|\begin{array}{ccc}q_{1}^{2} & \ldots & \left(q_{1} \cdot p_{e-1}\right) \\ \vdots & \ddots & \vdots \\ \left(p_{e-1} \cdot q_{1}\right) & \ldots & p_{e-1}^{2}\end{array}\right|$

Dimension-shifted integrals
$F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_{1} \ldots q_{\ell}} f_{n, m}(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \int_{q_{1} \ldots q_{\ell}} \mathbf{G} f_{n, m}(\mathbf{x}, \mathbf{y})=\Omega\left(d, p_{i}\right) F_{n, m}^{[d+2]}(\mathbf{x}, \mathbf{y})$

In the case of Master integrals

$$
M_{k}^{[d+2]}=\Omega\left(d, p_{i}\right)^{-1} \int_{q_{1} \ldots q_{\ell}} \mathbf{G} m_{k}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \stackrel{\mathrm{IBP}}{=} \sum_{i} c_{k, i} M_{i}^{[d]}
$$

which can be seen as a Dimensional recurrence relation

Dimensional Recurrence Relations for MIs

Gram determinant $P\left(q_{i} \cdot p_{j}, q_{i} \cdot q_{j}\right)=\mathbf{G}\left(q_{i}, p_{j}\right)=\left|\begin{array}{ccc}q_{1}^{2} & \ldots & \left(q_{1} \cdot p_{e-1}\right) \\ \vdots & \ddots & \vdots \\ \left(p_{e-1} \cdot q_{1}\right) & \ldots & p_{e-1}^{2}\end{array}\right|$

Dimension-shifted integrals
$F_{n, m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_{1} \ldots q_{\ell}} f_{n, m}(\mathbf{x}, \mathbf{y}) \quad \Rightarrow \int_{q_{1} \ldots q_{\ell}} \mathbf{G} f_{n, m}(\mathbf{x}, \mathbf{y})=\Omega\left(d, p_{i}\right) F_{n, m}^{[d+2]}(\mathbf{x}, \mathbf{y})$

In the case of Master integrals

$$
M_{k}^{[d+2]}=\Omega\left(d, p_{i}\right)^{-1} \int_{q_{1} \ldots q_{\ell}} \mathbf{G} m_{k}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \stackrel{\mathrm{IBP}}{=} \sum_{i} c_{k, i} M_{i}^{[d]}
$$

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

$$
\mathbf{M}^{[d]} \equiv\left(\begin{array}{c}
M_{1}^{[d]} \\
\vdots \\
M_{n}^{[d]}
\end{array}\right) \quad \mathbf{M}^{[d+2]}=\mathbb{C}(d) \mathbf{M}^{[d]}
$$

Differential Equations for MIs

Kotikov; Remiddi;
Gehrmann Remiddi
Argeri Bonciani Ferroglia Remiddi P.M.
Weinzierl

Henn; Henn Smirnov
Lee; Papadopoulos;
Argeri diVita Mirabella Schlenk Schubert Tancredi P.M. diVita Schubert Yundin P.M.
Remiddi Tancredi; Primo Tancredi
Papadopoulos Frellesvig
Zheng

$$
p^{2} \frac{\partial}{\partial p^{2}}\{p \backsim p\}=\frac{1}{2} p_{\mu} \frac{\partial}{\partial p_{\mu}}\{p \longrightarrow p\}
$$

$$
\ldots .
$$

$P^{2} \frac{\partial}{\partial P^{2}}\left\{p_{p_{2}}^{p_{1}} p_{3}\right\}=\left[A\left(p_{1, \mu} \frac{\partial}{\partial p_{1, \mu}}+p_{2, \mu} \frac{\partial}{\partial p_{2, \mu}}\right)+B\left(p_{1, \mu} \frac{\partial}{\partial p_{2, \mu}}+p_{2, \mu} \frac{\partial}{\partial p_{1, \mu}}\right)\right]\left\{\left\{_{p_{2}}^{p_{1}} \longrightarrow-p_{3}\right\}\right.$

$$
P=p_{1}+p_{2}
$$

$P^{2} \frac{\partial}{\partial P^{2}}\left\{\bigcup_{p_{2}}^{p_{1}}\right\}=\left[C\left(p_{1, \mu} \frac{\partial}{\partial p_{1, \mu}}-p_{3, \mu} \frac{\partial}{\partial p_{3, \mu}}\right)+D p_{2, \mu} \frac{\partial}{\partial p_{2, \mu}}+E\left(p_{1, \mu}+p_{3, \mu}\right)\left(\frac{\partial}{\partial p_{3, \mu}}-\frac{\partial}{\partial p_{1, \mu}}+\frac{\partial}{\partial p_{2, \mu}}\right)\right]\left\{\int_{p_{2}}^{p_{1}} \int_{p_{4}}^{p_{3}}\right\}$

In general, n MIs obey asystem of 1st ODE

$$
\partial_{z} \mathbf{M}^{[d]}=\mathbb{A}(d, z) \mathbf{M}^{[d]}
$$

Differential Equations for Master Integrals

Two-Loop Integrals for Mu-E Scattering

Feynman diagrams @ 2-loop

T_{1}

T_{7}

T_{8}

T_{3}

T_{6}

T_{9}

Feynman diagrams @ 2-loop

T_{4}

T_{5}

T_{6}

©Planar Integrals :: Family-1

Feynman diagrams @ 2-loop

\&Planar Integrals :: Family-1
©Planar Integrals :: Family-2

Feynman diagrams @ 2-loop

\&Planar Integrals :: Family-1
\&Planar Integrals :: Family-2
\#Non-Planar Integrals

> massless electron
> massive muon

34 MIs for Family-1

\mathcal{T}_{14}

A different set of MIs already known
Bonciani Ferroglia Gehrmann vonManteuffel
We recomputed them with alternative techniques

34 MIs for Family-1

$\mathcal{T}_{13} \quad \mathcal{T}_{14}$

\mathcal{T}_{15}
τ

\mathcal{T}_{19}

\mathcal{T}_{31}

τ_{22}
\mathcal{T}_{23}
\mathcal{T}_{24}

42 Mls for Family-2
Passera Primo Schubert \& P.M. (coming soon)

$\tau_{20} \quad \mathcal{T}_{21}$
$\tau_{22} \quad \tau_{23}$

\mathcal{T}_{31}
\mathcal{T}_{32}
\mathcal{T}_{33}
\mathcal{T}_{34}
\mathcal{T}_{35}
\mathcal{T}_{36}

\mathcal{T}_{42}

30 MIs for non-planar diagrams

TThe last missing pieces

\mathcal{T}_{24}

Quantum Mechanics

Schroedinger Eq'n (eps-linear Hamiltonian)

$$
i \hbar \partial_{t}|\Psi(t)\rangle=H(\epsilon, t)|\Psi(t)\rangle, \quad H(\epsilon, t)=H_{0}(t)+\epsilon H_{1}(t)
$$

\nsubseteq Interaction Picture

$$
H_{i, I}(t)=B^{\dagger}(t) H_{i}(t) B(t)
$$

©t-Evolution

Matrix Transform

$$
i \hbar \partial_{t} U_{I}(t)=\epsilon H_{1, I}(t) U_{I}(t)+\left(H_{0, I}(t)-i \hbar B^{\dagger}(t) \partial_{t} B(t)\right) U_{I}(t) \stackrel{!}{=} \epsilon H_{1, I}(t) U_{I}(t)
$$

Schroedinger Eq'n (canonical form)

$$
i \hbar \partial_{t}\left|\Psi_{I}(t)\right\rangle=\epsilon H_{1, I}(t)\left|\Psi_{I}(t)\right\rangle,
$$

Magnus Expansion

8 System of 1st ODE

$$
\partial_{x} Y(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0} . \quad A(x) \text { non-commutative }
$$

solution: Matrix Exponential

$$
\begin{aligned}
& Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0}, \quad \Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x) . \\
& \Omega_{1}(x)=\int_{x_{0}}^{x} d \tau_{1} A\left(\tau_{1}\right), \\
& \Omega_{2}(x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A\left(\tau_{1}\right), A\left(\tau_{2}\right)\right], \\
& \Omega_{3}(x)=\frac{1}{6} \int_{x_{0}}^{t} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3}\left[A\left(\tau_{1}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{3}\right)\right]\right]+\left[A\left(\tau_{3}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{1}\right)\right)\right] .
\end{aligned}
$$

$\$$ Iterated Integrals

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]} \equiv \int_{\gamma} d \log \eta_{i_{1}} \ldots d \log \eta_{i_{k}} \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} g_{i_{k}}^{\gamma}\left(t_{k}\right) \ldots g_{i_{1}}^{\gamma}\left(t_{1}\right) d t_{1} \ldots d t_{k} \quad g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))
$$

Magnus \& Dyson Series

${ }_{8}$ Magnus

$$
Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0},
$$

© Dyson

$$
Y(x)=Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x), \quad Y_{n}(x) \equiv \int_{x_{0}}^{x} d \tau_{1} \ldots \int_{x_{0}}^{\tau_{n-1}} d \tau_{n} A\left(\tau_{1}\right) A\left(\tau_{2}\right) \cdots A\left(\tau_{n}\right)
$$

$$
\sum_{j=1}^{\infty} \Omega_{j}(x)=\log \left(Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x)\right)
$$

$$
Y_{1}=\Omega_{1},
$$

$$
Y_{2}=\Omega_{2}+\frac{1}{2!} \Omega_{1}^{2},
$$

$$
Y_{3}=\Omega_{3}+\frac{1}{2!}\left(\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}\right)+\frac{1}{3!} \Omega_{1}^{3},
$$

$$
Y_{n}=\Omega_{n}+\sum_{j=2}^{n} \frac{1}{j} Q_{n}^{(j)}
$$

- Quantum Mechanics

Time-evolution in Perturbation Theory
© perturbation parameter: ε
Linear Hamiltonian in ε
$\$$ Unitary transform
©Schroedinger Equation
in the interaction picture (ε-factorization)
©solution: Dyson series

- Feynman Integrals
\&Kinematic-evolution in Dimensional Regularization
$\Psi_{\text {space-time }}$ dimensional parameter: $\varepsilon=(4-\mathrm{d}) / 2$
Linear system in ε
©non-Unitary Magnus transform
System of Differential Equations
in canonical form (ε-factorization) Henn (2013)
\$solution: Dyson/Magnus series

YFeynman integrals can be determined from differential equations that looks like gauge transformations

- Linear-eps Matrix

$$
\partial_{x} f(\epsilon, x)=A(\epsilon, x) f(\epsilon, x), \quad A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x),
$$

- change of basis :: Magnus \#1

$$
f(\epsilon, x)=B_{0}(x) g(\epsilon, x), \quad B_{0}(x) \equiv e^{\Omega\left[A_{0}\right]\left(x, x_{0}\right)} . \quad \partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x),
$$

- Canonical form Henn (2013)

$$
\partial_{x} g(\epsilon, x)=\epsilon \hat{A}_{1}(x) g(\epsilon, x) \quad \hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

\& Uniform Transcendentality ${ }^{* *}$

- Solution :: Magnus \#2 (or Dyson)

$$
g(\epsilon, x)=B_{1}(\epsilon, x) g_{0}(\epsilon), \quad B_{1}(\epsilon, x)=e^{\Omega\left[\epsilon \hat{A}_{1}\right]\left(x, x_{0}\right)}
$$

Feynman integrals can be determined from differential equations that looks like gauge transformations

- eps-linear basis

$$
\begin{aligned}
& \partial_{x} f(x, y, \epsilon)=\left(A_{10}(x, y)+\epsilon A_{11}(x, y)\right) f(x, y, \epsilon) \\
& \partial_{y} f(x, y, \epsilon)=\left(A_{20}(x, y)+\epsilon A_{21}(x, y)\right) f(x, y, \epsilon)
\end{aligned}
$$

- canonical form: Magnus \#1

$$
\begin{aligned}
\partial_{x} g(x, y, \epsilon) & =\epsilon \hat{A}_{1}(x, y) g(x, y, \epsilon) \\
\partial_{y} g(x, y, \epsilon) & =\epsilon \hat{A}_{2}(x, y) g(x, y, \epsilon)
\end{aligned}
$$

- Total Differential $\quad d g(x, y, \epsilon)=\epsilon d \hat{\mathcal{A}}(x, y) g(x, y, \epsilon), \quad d \hat{\mathcal{A}} \equiv \hat{A}_{1} d x+\hat{A}_{2} d y$ dLog-form

$$
d A=\sum_{i=1}^{n} M_{i} d \log \eta_{i} \ldots
$$

On the Canonical System of DEQ

1. Total-differential system \Leftrightarrow Path parametrization

- a posteriori (standard) ::
parametrizing the kinematic variables after deriving the corresponding diff. eqs. (as shown before)
- a priori (novel) ::
introducing a parameter-dependent external kinematics, say $p_{i}=p_{i}(\tau)$ (for a given i) and differentiating w.r.t. to τ.
- pre-Canonical form :: Linear-eps Matrix

$$
\partial_{x} f(\epsilon, x)=A(\epsilon, x) f(\epsilon, x),
$$

$$
A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x),
$$

- Canonical form

$$
\partial_{x} g(\epsilon, x)=\epsilon \hat{A}_{1}(x) g(\epsilon, x)
$$

$$
\hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

- change of basis :: Adjoint system of Diff.Eqs.

$$
\partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x), \quad f(\epsilon, x)=B_{0}(x) g(\epsilon, x)
$$

On the Canonical System of DEQ

1. Total-differential system \Leftrightarrow Path parametrization

- a posteriori (standard) ::
parametrizing the kinematic variables after deriving the corresponding diff. eqs. (as shown before)
- a priori (novel) ::
introducing a parameter-dependent external kinematics, say $p_{i}=p_{i}(\tau)$ (for a given i) and differentiating w.r.t. to τ.
- pre-Canonical form :: Linear-eps Matrix

$$
\partial_{x} f(\epsilon, x)=A(\epsilon, x) f(\epsilon, x), \quad A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x)
$$

- Canonical form

$$
\partial_{x} g(\epsilon, x)=\epsilon \hat{A}_{1}(x) g(\epsilon, x) \quad \hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

- change of basis :: Adjoint system of Diff.Eqs.

$$
\partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x), \quad f(\epsilon, x)=B_{0}(x) g(\epsilon, x)
$$

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation $\Longleftrightarrow B_{0}=W$ Remiddi Tancredi
3. The homogeneous solutions \Leftrightarrow maximal cuts of the integrals Primo Tancredi; Bosma Sogaard Zhang
4. The maximal cuts \Leftarrow Baikov parametrization Papadopoulos Frellesvig (Primo Schubert \& P.M.)
5. The homogeneous solutions \Leftrightarrow kernels of iterated integrals Euler
6. IBPs on the cuts \Leftrightarrow algebraic relations for iterated integrals
\Rightarrow Elliptic-integrals relations from IBPs on the cuts. Primo Schubert \& P.M.

Multi-loop Integrand Decomposition

Multi-Loop Integrand Recurrence

Ossola \& P.M. (2011);
Zhang (2012); Badger Frellesvig Zhang (2012)
Mirabella, Ossola, Peraro, \& P.M. (2012)

- -Loop Recurrence Relation

IV all orders (any number of loops and legs)
I any topology (planar and non-planar)
I- all kinematics (massless and massive)
V
high-power of denominators

Longitudinal and Transverse Space

- Dimensional Regularization

$$
d=4-2 \epsilon
$$

- if n-legs < 5

$$
\begin{aligned}
& \qquad d=d / /+d_{\perp} \\
& \qquad \begin{array}{c}
\text { Longitudinal space } \\
\text { spanned by the } \\
\text { (independent) legs }
\end{array}
\end{aligned}
$$

- Denominators do not depend on "the angular variables" of the Transverse Space
- Numerators depend on "all" loop variables

Adaptive Integrand Decomposition

Peraro Primo \& P.M.
IIntegrand reduction beyond polynomial division

$$
d=d_{/ /}+d_{\perp}
$$

idea n .1
Integrating over Transverse Space
idea n. 2
Cutting in the Longitudinal Space

1\&2-loop Automation :: AIDA Peraro Primo TorresBobadilla \& P.M.
\#Application to Mu-e scattering Ossola Peraro Primo TorresBobadilla \& P.M.

Summary

■ After Amedeo \& Uli's talks

...Outlook

V Progress in Mu-e Scattering @ 2-loop ==> Progress in pp $->$ t @ 2-loop

