Effect of the atomic wave function in μ scattering off bound e^-

Eugenio Del Nobile

Università di Padova and INFN, Sezione di Padova

Dipartimento di Fisica e Astronomia Galileo Galilei

Preserving discrete about ongoing with myself about Selfect of the atomic wave function in μ scattering off bound e^{-1}

Eugenio Del Nobile

Università di Padova and INFN, Sezione di Padova

Dipartimento di Fisica e Astronomia Galileo Galilei

From Dark Matter to muons

From Dark Matter to muons

From Dark Matter to muons

µ off a free *e*⁻

- Is a *free e* a good approximation to a *bound e*-?
- What's the correction due to the *e* wave function?

µ off a bound *e*⁻

- Is a *free e* a good approximation to a *bound e*-?
- What's the correction due to the *e* wave function?

Effect of ψ: bound electron

- Not in a momentum eigenstate, not at rest
- Momenta distributed according to ψ
- Can have ~any momentum
- Not on the mass shell

Free electron at rest

1 dof

 θ_{μ}

Bound electron

5 dof

 $E'_{\mu}, \theta_{\mu}, \phi_{\mu}, \theta_{e}, \phi_{e}$

(possibly less, symmetries permitting)

Scattering cross section

$$\mathrm{d}\sigma = \frac{2\pi}{v_{\mu}} \left| \tilde{V}(|\boldsymbol{q}|) \left\langle \psi' | e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} | \psi \right\rangle \right|^2 \delta(\mathrm{Energy}) \frac{\mathrm{d}^3 p'}{(2\pi)^3} \frac{\mathrm{d}^3 \psi'}{(2\pi)^3}$$

Electron wave function

In *s* wave (zero orbital angular momentum)

$$\gamma = \sqrt{1 - (Z\alpha)^2}$$

Non-relativistic expansion: $Z\alpha \sim 0$

Relativistic corrections become important when

$$2m_e Z\alpha r \leqslant e^{\mp 2/(Z\alpha)^2} \approx 10^{\mp 10^4/Z^2}$$

For Z = 1
$$r \leq 10^{\pm 10^4} \text{ fm}$$

For Z = 50 $r \leq 10^{\pm 3} \text{ fm}$

Shut up and integrate

Integrating the angular part of ψ

$$\int Y_{\ell}^{m}(\Omega) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\Omega \sim \int P_{\ell}(\cos\theta) e^{-i\boldsymbol{q}r\cos\theta} d\cos\theta \sim j_{\ell}(\boldsymbol{q}r)$$

Thus

$$\begin{split} \langle \psi' | e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} | \psi \rangle &\sim \int R'^*(r) R(r) j_0(qr) \, r^2 \, \mathrm{d}r \sim \int e^{-m_e Z \alpha r} r^{2\gamma} j_0(qr) \, \mathrm{d}r \\ &= \text{known ugly expression} \end{split}$$

Suppression at large momentum transfer:

$$\langle \psi' | e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} | \psi \rangle \sim \frac{1}{q^{3-(Z\alpha)^2}}$$

Open questions

- Does any of this actually matter?
- When is *free* a good approximation to *bound*?
- And how good an approximation is it?
- Understand the kinematics: what q is most likely?
- Effect of atomic recoil: does it matter?
- O(10) estimated yet unknown issues