Feynman Integrals beyond multiple polylogarithms

Lorenzo Tancredi

TTP - KIT, Karlsruhe
Muon-electron scattering: Theory kickoff workshop
Padova - 4-5 September 2017

Based on collaboration with A. von Manteuffel, A. Primo, E. Remiddi
[arXiv:1602.01481], [arXiv:1610.08397], [arXiv:1701.05905], [arXiv:1704.05465], [arXiv:17yy.xxxxx]

Differential equations method

[Kotikov '90, Remiddi '97, Gehrmann-Remiddi '00,..., C. Papadopoulos '14]

$$
\Downarrow
$$

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

$$
\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}}\left(\frac{\partial}{\partial k_{j}^{\mu}} v_{\mu} \frac{S_{1}^{\sigma_{1}} \ldots S_{s}^{\sigma_{s}}}{D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}}\right)=0, \quad v^{\mu}=k_{j}^{\mu}, p_{k}^{\mu}
$$

Reduced to N master integrals, $I_{i}\left(d ; x_{k}\right)$ with $i=1, \ldots, N$.

$$
\Downarrow
$$

Differentiating the masters and using the IBPs we get a system of N coupled differential equations

$$
\frac{\partial}{\partial x_{k}} I_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} c_{i j}\left(d ; x_{k}\right) I_{j}\left(d ; x_{k}\right)
$$

Let's look more in detail - we should recall that equations are in block form

$$
\begin{gathered}
I_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{sub}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} h_{i j}\left(d ; x_{k}\right) m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} n h_{i j}\left(d ; x_{k}\right) \operatorname{su} b_{j}\left(d ; x_{k}\right) .
\end{gathered}
$$

Let's look more in detail - we should recall that equations are in block form

$$
\begin{gathered}
I_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{sub}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} \underbrace{h_{i j}\left(d ; x_{k}\right)}_{\Downarrow} m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} n h_{i j}\left(d ; x_{k}\right) \operatorname{su} b_{j}\left(d ; x_{k}\right) . \\
\begin{array}{l}
\text { homogeneous piece is MAIN } \\
\text { source of complexity - whether } \\
\text { differential equations are coupled }
\end{array}
\end{gathered}
$$

\Downarrow
No way to solve this in general...
We must use some other "physical" insight...

Let's look more in detail - we should recall that equations are in block form

$$
\begin{gathered}
I_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{sub}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} h_{i j}\left(d ; x_{k}\right) m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} \underbrace{n h_{i j}\left(d ; x_{k}\right) \operatorname{su} b_{j}\left(d ; x_{k}\right)}_{\Downarrow} . \\
\begin{array}{l}
\text { non-homogeneous piece is the } \\
\text { second source of complexity - } \\
\text { we must integrate over it! }
\end{array}
\end{gathered}
$$

$$
\Downarrow
$$

Can be symplified using differential equations and dispersion relations [E.Remiddi, LT '16]

We are interested in computing the integrals as Laurent series in $(d-4)$, which requires integrating iteratively on the homogeneous solution and on the non-homogeneous piece.

There are two possibilities

1- The differential equations are not coupled for $d \rightarrow 4$. Order by order we need to solve first order equations with rational coefficients

2- The differential equations are coupled for $d \rightarrow 4$. Case 2×2 under study since some time, example is two loop massive Sunrise
\Downarrow
Of course, higher order couplings are possible, $n \times n$ with $n>2$

First case is "simple" (conceptually, often not in practice!), solution naturally expressed in terms of so-called multiple polylogarithms [E.Remiddi, J.Vermaseren '99; T. Gehrmann, E.Remiddi '00;

Goncharov et al '00; Duhr, Gangl, Rhodes '13; ...]

$$
\begin{aligned}
& G(0 ; x)=\ln (x), \quad G(a ; x)=\ln \left(1-\frac{x}{a}\right) \quad \text { for } \quad a \neq 0 \\
& G(\underbrace{0, \ldots, 0}_{n} ; x)=\frac{1}{n!} \ln ^{n}(x), \quad G(a, \vec{w} ; x)=\int_{0}^{x} \frac{d y}{y-a} G(\vec{w} ; y) .
\end{aligned}
$$

Multiple polylogarithms are special:
they become simpler under differentiation \rightarrow it decreases weight!

First case is "simple" (conceptually, often not in practice!), solution naturally expressed in terms of so-called multiple polylogarithms [E.Remiddi, J.Vermaseren '99; T. Gehrmann, E.Remiddi '00;

Goncharov et al '00; Duhr, Gangl, Rhodes '13; ...]

$$
\begin{gathered}
G(0 ; x)=\ln (x), \quad G(a ; x)=\ln \left(1-\frac{x}{a}\right) \text { for } a \neq 0 \\
G(\underbrace{0, \ldots, 0}_{n} ; x)=\frac{1}{n!} \ln ^{n}(x), \quad G(a, \vec{w} ; x)=\int_{0}^{x} \frac{d y}{y-a} G(\vec{w} ; y) . \\
\Downarrow
\end{gathered}
$$

Multiple polylogarithms are special:
they become simpler under differentiation \rightarrow it decreases weight!

$$
\frac{d}{d x} G(a, \vec{w} ; x)=\frac{1}{x-a} G(\vec{w} ; x) \quad \rightarrow \quad \frac{d}{d x} G(x)=\frac{d}{d x} 1=0!
$$

What lies beyond? \rightarrow We know a couple of examples now

What all these examples have in common is a bulk 2×2 (or 3×3) irreducible system of differential equations

What do we have to do?

1- Solve the homogeneous equations in the limit $d \rightarrow 4$ (or $d \rightarrow 2 n, n \in \mathbb{N}$)

$$
\begin{aligned}
\frac{d}{d x} \vec{l}(d ; x)= & A(x) \vec{l}(d ; x)+(d-4) B(x) \vec{l}(d ; x)+\mathcal{O}(d-4)^{2} \\
& \text { with } A(x) \quad n \times n, \underline{\text { non-triangular! }}
\end{aligned}
$$

Find $n \times n$ matrix homogeneous solutions $G(x)$, with

$$
\frac{d}{d x} G(x)=A(x) G(x), \quad \rightarrow \quad \vec{\Gamma}(d ; x)=G(x) \vec{m}(d ; x)
$$

then

What do we have to do?

1- Solve the homogeneous equations in the limit $d \rightarrow 4$ (or $d \rightarrow 2 n, n \in \mathbb{N}$)

$$
\begin{aligned}
\frac{d}{d x} \vec{l}(d ; x)= & A(x) \vec{l}(d ; x)+(d-4) B(x) \vec{l}(d ; x)+\mathcal{O}(d-4)^{2} \\
& \text { with } A(x) \quad n \times n, \text { non-triangular! }
\end{aligned}
$$

Find $n \times n$ matrix homogeneous solutions $G(x)$, with

$$
\frac{d}{d x} G(x)=A(x) G(x), \quad \rightarrow \quad \vec{l}(d ; x)=G(x) \vec{m}(d ; x)
$$

then

$$
\frac{d}{d x} \vec{m}(d ; x)=(d-4) G^{-1}(x) B(x) G(x) \vec{m}(d ; x)+\mathcal{O}(d-4)^{2},
$$

2- Solution given by iterative integrals over complicated kernels that contain products of the homogeneous solutions, and previous orders

By expanding in $(d-4)$:

$$
\vec{m}^{[n]}(x)=\int^{x} d y G^{-1}(y) B(y) G(y) \vec{m}^{[n-1]}(y)+\text { simpler terms }
$$

Or equivalently for the original functions

$$
\vec{l}^{[n]}(x)=G(x) \int^{x} d y G^{-1}(y) B(y) \vec{l}^{[n-1]}(y)+\text { simpler terms }
$$

2- Solution given by iterative integrals over complicated kernels that contain products of the homogeneous solutions, and previous orders

By expanding in $(d-4)$:

$$
\vec{m}^{[n]}(x)=\int^{x} d y G^{-1}(y) B(y) G(y) \vec{m}^{[n-1]}(y)+\text { simpler terms }
$$

Or equivalently for the original functions

$$
\vec{l}^{[n]}(x)=G(x) \int^{x} d y G^{-1}(y) B(y) \vec{l}^{[n-1]}(y)+\text { simpler terms }
$$

Question is of course, what are these functions?

How to solve the homogeneous equation?
Given the equations, there is no general way... this was a bottleneck

Solution:

- Take an older idea by [S.Laporta, E.Remiddi '04]
- Generalize it to all cases [A.Primo, L.Tancredi '16, '17]

$$
\left(\frac{d^{2}}{d s^{2}}+A(d ; s) \frac{d}{d s}+B(d ; s)\right)^{p} \longrightarrow+G(d ; s) \operatorname{Tad}\left(d ; m^{2}\right)=0
$$

How to solve the homogeneous equation?
Given the equations, there is no general way... this was a bottleneck

Solution:

- Take an older idea by [S.Laporta, E.Remiddi '04]
- Generalize it to all cases [A.Primo, L.Tancredi '16, '17]

$$
\begin{aligned}
& \left(\frac{d^{2}}{d s^{2}}+A(d ; s) \frac{d}{d s}+B(d ; s)\right)^{p}+G(d ; s) \operatorname{Tad}\left(d ; m^{2}\right)=0 \\
& \text { Cut } \rightarrow\left(\frac{d^{2}}{d s^{2}}+A(d ; s) \frac{d}{d s}+B(d ; s)\right)^{p}=0
\end{aligned}
$$

Maximal cut solves homogeneous differential equations

[A.Primo, L.Tancredi '16, '17]

where $\mathrm{K}(x)$ is the complete elliptic integral of the first kind.

Maximal cut solves homogeneous differential equations

[A.Primo, L.Tancredi '16, '17]

where $\mathrm{K}(x)$ is the complete elliptic integral of the first kind.

$$
\mathrm{K}(x)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-x t^{2}\right)}}
$$

Maximal cut solves homogeneous differential equations

[A.Primo, L.Tancredi '16, '17]

where $\mathrm{K}(x)$ is the complete elliptic integral of the first kind.

$$
\mathrm{K}(x)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-x t^{2}\right)}}
$$

Computation of the maximal cut can be simplified in Baikov representation
[Papadopoulos, Frellesvig '17; Bosma, Sogaard, Zhang '17;
Harley, Moriello, Schabinger '17]

How do we get the other solutions?
There is not only one independent contour! Other solutions found integrating on the other independent contours! [Bosma, Sogaard, Zhang '17; Tancredi, Primo '17; Harley, Moriello, Schabinger '17]

where C is some contour on the complex plane.

How do we get the other solutions?
There is not only one independent contour! Other solutions found integrating on the other independent contours!
[Bosma, Sogaard, Zhang '17; Tancredi, Primo '17; Harley, Moriello, Schabinger '17]

$$
\overbrace{}^{p} \overbrace{}^{m}=\oint_{C} \mathfrak{D}^{d} k \mathfrak{D}^{d} \mid \delta\left(k^{2}-m^{2}\right) \delta\left(I^{2}-m^{2}\right) \delta\left((k-I-p)^{2}-m^{2}\right)
$$

where C is some contour on the complex plane.

$$
\begin{gathered}
\operatorname{sol}_{1}(p, m)=\oint_{\mathcal{C}_{1}}=\frac{\mathrm{K}(w)}{\sqrt{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}}, \\
\operatorname{sol}_{2}(p, m)=\oint_{\mathcal{C}_{2}}=\frac{\mathrm{K}(1-w)}{\sqrt{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}}, \quad w=\frac{16 m^{3} \sqrt{s}}{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}
\end{gathered}
$$

It is very general. A nice tool to simplify the solution of differential equations, particularly useful when solution requires elliptic integrals, but not only!

$$
\Downarrow
$$

Application to a 3×3 example, "beyond just elliptic integrals"

Has three master integrals: $\mathcal{I}_{1}(\epsilon ; s) \quad \mathcal{I}_{2}(\epsilon ; s) \quad \mathcal{I}_{3}(\epsilon ; s)$

$$
\frac{d}{d x}\left(\begin{array}{l}
\mathcal{I}_{1}(\epsilon ; x) \\
\mathcal{I}_{2}(\epsilon ; x) \\
\mathcal{I}_{3}(\epsilon ; x)
\end{array}\right)=B(x)\left(\begin{array}{l}
\mathcal{I}_{1}(\epsilon ; x) \\
\mathcal{I}_{2}(\epsilon ; x) \\
\mathcal{I}_{3}(\epsilon ; x)
\end{array}\right)+\epsilon D(x)\left(\begin{array}{l}
\mathcal{I}_{1}(\epsilon ; x) \\
\mathcal{I}_{2}(\epsilon ; x) \\
\mathcal{I}_{3}(\epsilon ; x)
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
-\frac{1}{2(4 x-1)}
\end{array}\right)
$$

where $B(x)$ and $D(x)$ are 3×3 matrices, with $x=4 \mathrm{~m}^{2} / \mathrm{p}^{2}$

$$
\begin{aligned}
& B(x)=\left(\begin{array}{ccc}
\frac{\frac{1}{x}}{1} & \frac{4}{x} & 0 \\
\frac{1}{4(x-1)} 1 & \frac{1}{x}-\frac{2}{x-1} & \frac{3}{x}-\frac{3}{x-1} \\
\frac{1}{8(x-1)}-\frac{1}{8(4 x-1)} & \frac{1}{x-1}-\frac{3}{2(4 x-1)} & \frac{1}{x}-\frac{6}{4 x-1}+\frac{3}{2(x-1)}
\end{array}\right) \\
& D(x)=\left(\begin{array}{ccc}
\frac{\frac{3}{x}}{\frac{1}{x}} & \frac{\frac{12}{x}}{x} \frac{6}{x-1} & \frac{6}{x}-\frac{6}{x-1} \\
\frac{1}{2(x-1)}-\frac{1}{2(4 x-1)} & \frac{3}{x-1}-\frac{6}{2(4 x-1)} & \frac{1}{x}-\frac{12}{4 x-1}+\frac{3}{x-1}
\end{array}\right)
\end{aligned}
$$

We need to find now three independent solutions, i.e. a matrix

$$
G(x)=\left(\begin{array}{lll}
H_{1}(x) & J_{1}(x) & I_{1}(x) \\
H_{2}(x) & J_{2}(x) & I_{2}(x) \\
H_{3}(x) & J_{3}(x) & I_{3}(x)
\end{array}\right) \quad \rightarrow \quad \frac{d}{d x} G(x)=B(x) G(x)
$$

Or, if our idea is correct, there should exists three independent integration contours $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3} such that (for $\epsilon=0$)

$$
G(x)=\left(\begin{array}{lll}
\operatorname{Cut}_{\mathcal{C}_{1}}\left(\mathcal{I}_{1}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{2}}\left(\mathcal{I}_{1}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{3}}\left(\mathcal{I}_{1}(x)\right) \\
\operatorname{Cut}_{\mathcal{C}_{1}}\left(\mathcal{I}_{2}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{2}}\left(\mathcal{I}_{2}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{3}}\left(\mathcal{I}_{2}(x)\right) \\
\operatorname{Cut}_{\mathcal{C}_{1}}\left(\mathcal{I}_{3}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{2}}\left(\mathcal{I}_{3}(x)\right) & \operatorname{Cut}_{\mathcal{C}_{3}}\left(\mathcal{I}_{3}(x)\right)
\end{array}\right)
$$

Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

$$
\begin{gathered}
H_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \quad J_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(1-k_{-}^{2}\right), \\
I_{1}(x)=x \mathrm{~K}\left(1-k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \\
k_{ \pm}=\frac{\sqrt{(\gamma+\alpha)^{2}-\beta^{2}} \pm \sqrt{(\gamma-\alpha)^{2}-\beta^{2}}}{2 \gamma} \quad \text { with } \quad k_{-}=\left(\frac{\alpha}{\gamma}\right) \frac{1}{k_{+}}=\frac{2 \alpha}{k_{+}}
\end{gathered}
$$

Remaining rows of the matrix $G(x)$ can be obtained by differentiation.
Result expected from studies of Joyce ' 73 on cubic lattice Green functions Elliptic Tri-Log by [Bloch, Kerr, Vanhove '14]

Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

$$
\begin{gathered}
H_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \quad J_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(1-k_{-}^{2}\right), \\
I_{1}(x)=x \mathrm{~K}\left(1-k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \\
k_{ \pm}=\frac{\sqrt{(\gamma+\alpha)^{2}-\beta^{2}} \pm \sqrt{(\gamma-\alpha)^{2}-\beta^{2}}}{2 \gamma} \text { with } \quad k_{-}=\left(\frac{\alpha}{\gamma}\right) \frac{1}{k_{+}}=\frac{2 \alpha}{k_{+}}
\end{gathered}
$$

Remaining rows of the matrix $G(x)$ can be obtained by differentiation.
Result expected from studies of Joyce '73 on cubic lattice Green functions Elliptic Tri-Log by [Bloch, Kerr, Vanhove '14]

Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

$$
\begin{gathered}
H_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \quad J_{1}(x)=x \mathrm{~K}\left(k_{+}^{2}\right) \mathrm{K}\left(1-k_{-}^{2}\right), \\
I_{1}(x)=x \mathrm{~K}\left(1-k_{+}^{2}\right) \mathrm{K}\left(k_{-}^{2}\right), \\
k_{ \pm}=\frac{\sqrt{(\gamma+\alpha)^{2}-\beta^{2}} \pm \sqrt{(\gamma-\alpha)^{2}-\beta^{2}}}{2 \gamma} \quad \text { with } \quad k_{-}=\left(\frac{\alpha}{\gamma}\right) \frac{1}{k_{+}}=\frac{2 \alpha}{k_{+}}
\end{gathered}
$$

Remaining rows of the matrix $G(x)$ can be obtained by differentiation.
Result expected from studies of Joyce ' 73 on cubic lattice Green functions Elliptic Tri-Log by [Bloch, Kerr, Vanhove '14]

We have powerful method to write iterated integral representations for solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms [Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16...]

2- Can we say "something general", which applies to all cases and allows us to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

What is the difference with Polylogs?

We can see them as iterative integrations over rational functions with the solution of the homogeneous equation which, properly normalized, is a trivial kernel $K=1$. The fundamental property is $d / d \times K=0$.

We have powerful method to write iterated integral representations for solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms [Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16...]

2- Can we say "something general", which applies to all cases and allows us to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

What is the difference with Polylogs?

$$
\frac{d}{d x} G^{[n+1]}(a, \vec{w}, x)=\frac{1}{x-a} G^{[n]}(\vec{w}, x), \quad G^{[0]}(x)=1 \quad \rightarrow \quad \frac{d}{d x} G^{[0]}(x)=0
$$

We have powerful method to write iterated integral representations for solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms [Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16...]

2- Can we say "something general", which applies to all cases and allows us to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

What is the difference with Polylogs?

$$
\frac{d}{d x} G^{[n+1]}(a, \vec{w}, x)=\frac{1}{x-a} G^{[n]}(\vec{w}, x), \quad G^{[0]}(x)=1 \quad \rightarrow \quad \frac{d}{d x} G^{[0]}(x)=0
$$

We can see them as iterative integrations over rational functions with the solution of the homogeneous equation which, properly normalized, is a trivial kernel $K=1$. The fundamental property is $d / d x K=0$.

This generalizes as follows:
New kernel is again \sim solution of the homogeneous equation, for 2×2

Or alternatively rephrased as

$$
D\left(\frac{d}{d u}, u\right) I_{0}(u)=\left(\frac{d^{2}}{d u^{2}}+A_{1}(u) \frac{d}{d u}+A_{2}(u)\right) I_{0}(u)=0 .
$$

(And in principle similarly for higher order equations)

This generalizes as follows:
New kernel is again \sim solution of the homogeneous equation, for 2×2

$$
G(u)=\left(\begin{array}{ll}
I_{0}(u) & J_{0}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right) \quad \rightarrow \quad\left(\frac{d}{d u}-B(u)\right) G(u)=0
$$

Or alternatively rephrased as

$$
D\left(\frac{d}{d u}, u\right) I_{0}(u)=\left(\frac{d^{2}}{d u^{2}}+A_{1}(u) \frac{d}{d u}+A_{2}(u)\right) I_{0}(u)=0 .
$$

(And in principle similarly for higher order equations)

This generalizes as follows:
New kernel is again \sim solution of the homogeneous equation, for 2×2

$$
G(u)=\left(\begin{array}{ll}
I_{0}(u) & J_{0}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right) \quad \rightarrow \quad\left(\frac{d}{d u}-B(u)\right) G(u)=0
$$

Or alternatively rephrased as

$$
D\left(\frac{d}{d u}, u\right) I_{0}(u)=\left(\frac{d^{2}}{d u^{2}}+A_{1}(u) \frac{d}{d u}+A_{2}(u)\right) I_{0}(u)=0 .
$$

(And in principle similarly for higher order equations)

New functions at iteration n, let's call them for now $\mathrm{EI}_{k}^{[n]}(\vec{w}, u), k=0,2$
At first sight, they do not have a simple concept of weight since

$$
\frac{d}{d u} \mathrm{EI}_{k}^{[n]}(\vec{w}, u)=\sum_{j=0,2} c_{j}(u) \mathrm{EI}_{j}^{[n]}(\vec{w}, u)
$$

But one finds (a posteriori it is obvious...)

They do have a concept of weight w.r.t. the second order operator $D(d / d u, u)$ It lowers their weight!
It can be used to study them bottom up, like polylogs (find relations, rewrite them in terms of other functions, etc)!

New functions at iteration n, let's call them for now $\mathrm{EI}_{k}^{[n]}(\vec{w}, u), k=0,2$
At first sight, they do not have a simple concept of weight since

$$
\frac{d}{d u} \mathrm{EI}_{k}^{[n]}(\vec{w}, u)=\sum_{j=0,2} c_{j}(u) \mathrm{EI}_{j}^{[n]}(\vec{w}, u)
$$

But one finds (a posteriori it is obvious...)

$$
\begin{aligned}
D\left(\frac{d}{d u}, u\right) \mathrm{EI}_{k}^{[n]}(\vec{w}, u) & =\sum_{j=0,2} c_{j}^{[n-1]}(u) \mathrm{EI}_{j}^{[n-1]}(\vec{w}, u) \\
& +\sum_{j=0,2} c_{j}^{[n-2]}(u) \mathrm{EI}_{j}^{[n-2]}(\vec{w}, u)
\end{aligned}
$$

They do have a concept of weight w.r.t. the second order operator $D(d / d u, u)$ It lowers their weight!
It can be used to study them bottom up, 'Iike polylogs (find relations, rewrite them in terms of other functions, etc)!

New functions at iteration n, let's call them for now $\mathrm{EI}_{k}^{[n]}(\vec{w}, u), k=0,2$
At first sight, they do not have a simple concept of weight since

$$
\frac{d}{d u} \mathrm{EI}_{k}^{[n]}(\vec{w}, u)=\sum_{j=0,2} c_{j}(u) \mathrm{EI}_{j}^{[n]}(\vec{w}, u)
$$

But one finds (a posteriori it is obvious...)

$$
\begin{aligned}
D\left(\frac{d}{d u}, u\right) \mathrm{EI}_{k}^{[n]}(\vec{w}, u) & =\sum_{j=0,2} c_{j}^{[n-1]}(u) \mathrm{EI}_{j}^{[n-1]}(\vec{w}, u) \\
& +\sum_{j=0,2} c_{j}^{[n-2]}(u) \mathrm{EI}_{j}^{[n-2]}(\vec{w}, u)
\end{aligned}
$$

They do have a concept of weight w.r.t. the second order operator $D(d / d u, u)$ It lowers their weight!
It can be used to study them bottom up, like polylogs (find relations, rewrite them in terms of other functions, etc)!

Let's see an example of these functions

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}} G^{[n]}(\vec{w} ; b)
$$

with $\quad R_{4}(b, u)=b\left(b-4 m^{2}\right)\left(b-(\sqrt{u}-m)^{2}\right)\left(b-(\sqrt{u}+m)^{2}\right)$ alphabet \vec{w} drawn from roots of $R_{4}(b, u)$
(a subset appears in imaginary part of two-loop sunrise graph)

At weight zero

At weight one

Let's see an example of these functions

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}} G^{[n]}(\vec{w} ; b)
$$

$$
\text { with } \quad R_{4}(b, u)=b\left(b-4 m^{2}\right)\left(b-(\sqrt{u}-m)^{2}\right)\left(b-(\sqrt{u}+m)^{2}\right)
$$

$$
\text { alphabet } \vec{w} \text { drawn from roots of } R_{4}(b, u)
$$

(a subset appears in imaginary part of two-loop sunrise graph)
At weight zero

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}}=I_{0}(u)
$$

At weight one

Let's see an example of these functions

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}} G^{[n]}(\vec{w} ; b)
$$

$$
\text { with } \quad R_{4}(b, u)=b\left(b-4 m^{2}\right)\left(b-(\sqrt{u}-m)^{2}\right)\left(b-(\sqrt{u}+m)^{2}\right)
$$

$$
\text { alphabet } \vec{w} \text { drawn from roots of } R_{4}(b, u)
$$

(a subset appears in imaginary part of two-loop sunrise graph)
At weight zero

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}}=I_{0}(u)
$$

At weight one

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(b, u)}}\left\{\begin{array}{c}
\ln (b) \\
\ln \left(b-4 m^{2}\right) \\
\ln \left(b-(\sqrt{u}-m)^{2}\right) \\
\ln \left(b-(\sqrt{u}+m)^{2}\right)
\end{array}\right\}=? ?
$$

We know everything about weight zero, $I_{0}(u)=K(x)$, elliptic integrals, \ldots Discover relations at weight one:

$$
\mathrm{EI}_{0}^{[1]}(0, u)=\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}
$$

We know everything about weight zero, $I_{0}(u)=K(x)$, elliptic integrals, \ldots
Discover relations at weight one:

$$
\mathrm{EI}_{0}^{[1]}(0, u)=\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}
$$

$$
\begin{aligned}
D\left(\frac{d}{d u}, u\right) \mathrm{EI}_{0}^{[1]}(0, u) & =\frac{1}{m^{2}}\left(-\frac{8}{9 u}+\frac{3}{4\left(u-m^{2}\right)}+\frac{5}{36\left(u-9 m^{2}\right)}-\frac{4 m^{2}}{3\left(u-m^{2}\right)^{2}}\right) \iota_{0}(u) \\
& +\frac{1}{m^{6}}\left(\frac{2}{9 u}-\frac{7}{32\left(u-m^{2}\right)}-\frac{1}{288\left(u-9 m^{2}\right)}+\frac{4 m^{2}}{\left(u-m^{2}\right)^{2}}\right) I_{2}(u)
\end{aligned}
$$

We know everything about weight zero, $I_{0}(u)=K(x)$, elliptic integrals, \ldots
Discover relations at weight one:

$$
\begin{gathered}
\mathrm{EI}_{0}^{[1]}(0, u)=\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}} \\
D\left(\frac{d}{d u}, u\right) \mathrm{EI}_{0}^{[1]}(0, u)=\frac{1}{m^{2}}\left(-\frac{8}{9 u}+\frac{3}{4\left(u-m^{2}\right)}+\frac{5}{36\left(u-9 m^{2}\right)}-\frac{4 m^{2}}{3\left(u-m^{2}\right)^{2}}\right) I_{0}(u) \\
+\frac{1}{m^{6}}\left(\frac{2}{9 u}-\frac{7}{32\left(u-m^{2}\right)}-\frac{1}{288\left(u-9 m^{2}\right)}+\frac{4 m^{2}}{\left(u-m^{2}\right)^{2}}\right) I_{2}(u) \\
D\left(\frac{d}{d u}, u\right)\left[\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}-\frac{2}{3} \ln \left(u-m^{2}\right) I_{0}(u)\right]=0 .
\end{gathered}
$$

This implies a sort of (half-) shuffle relation

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}=\frac{2}{3} \ln \left(u-m^{2}\right) I_{0}(u)+c_{1} I_{0}(u)+c_{2} J_{0}(u) .
$$

Fixing the boundary conditions we finally have

Weight one function is simple product of standard logarithm and elliptic integral

This implies a sort of (half-) shuffle relation

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}=\frac{2}{3} \ln \left(u-m^{2}\right) I_{0}(u)+c_{1} I_{0}(u)+c_{2} J_{0}(u) .
$$

Fixing the boundary conditions we finally have

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b \ln b}{\sqrt{R_{4}(b, u)}}=\frac{2}{3} \ln \left(u-m^{2}\right) I_{0}(u) .
$$

Weight one function is simple product of standard logarithm and elliptic integral

This sort of shuffles at weight one is not an accident! Similarly we find:

This sort of shuffles at weight one is not an accident! Similarly we find:

$$
\begin{aligned}
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\sqrt{R_{4}(u, b)}}{} \ln \left(b-4 m^{2}\right)= & \left(\frac{1}{2} \ln \left(u-9 m^{2}\right)+\frac{1}{6} \ln \left(u-m^{2}\right)\right) I_{0}(u) \\
& -\frac{1}{2} \pi J_{0}(u) \\
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2}} \frac{d b}{\sqrt{R_{4}(u, b)}} \ln \left((\sqrt{u}-m)^{2}-b\right) & =\left(\frac{1}{6} \ln \left(u-m^{2}\right)+\frac{1}{4} \ln u\right. \\
& \left.+\frac{1}{2} \ln (\sqrt{u}-m)+\frac{1}{2} \ln (\sqrt{u}-3 m)\right) I_{0}(u) \\
& -\frac{1}{2} \pi J_{0}(u) \\
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\sqrt{R_{4}(u, b)}}{\sqrt{2}} \ln \left((\sqrt{u}+m)^{2}-b\right) & =\left(\frac{1}{6} \ln \left(u-m^{2}\right)+\frac{1}{4} \ln u\right. \\
& \left.+\frac{1}{2} \ln (\sqrt{u}+m)+\frac{1}{2} \ln (\sqrt{u}+3 m)\right) I_{0}(u)
\end{aligned}
$$

This approach can be used:

1- Iteratively, at higher weights and for more general polylogarithms

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\left.\operatorname{Li}_{2}\left(\frac{4 m^{2}}{b}\right)\right) \text { }{ }^{R_{4}(u, b)}}{}
$$

At higher weights, the identities are more complicated, but the highest transcendental piece follows the same pattern

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\operatorname{Li}_{2}\left(\frac{4 m^{2}}{b}\right)=\operatorname{Li}_{2}\left(\frac{u-1}{8}\right) I_{0}(u)+\text { "simpler terms" } \text { " }{ }^{R_{4}(u, b)}}{}
$$

2- For solutions of higher order differential equations: just use corresponding higher order differential operator to decrease the weight

This approach can be used:

1- Iteratively, at higher weights and for more general polylogarithms

$$
\left.\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\operatorname{Li}_{2}}{\sqrt{R_{4}(u, b)}} \frac{4 m^{2}}{b}\right)
$$

At higher weights, the identities are more complicated, but the highest transcendental piece follows the same pattern

$$
\int_{4 m^{2}}^{(\sqrt{u}-m)^{2} d b} \frac{\operatorname{Li}_{2}\left(\frac{4 m^{2}}{b}\right)=\operatorname{Li}_{2}\left(\frac{u-1}{8}\right) I_{0}(u)+\text { "simpler terms" } \text { " }{ }^{R_{4}(u, b)}}{}
$$

2- For solutions of higher order differential equations: just use corresponding higher order differential operator to decrease the weight

There are good indications that many Feynman integrals beyond multiple polylogarithms can be expressed as combinations of

$$
\int_{b_{i}}^{b_{j}} \frac{d b}{\sqrt{\left(b-b_{1}\right)\left(b-b_{2}\right)\left(b-b_{3}\right)\left(b-b_{4}\right)}} G(\vec{w}, b)
$$

for more general alphabets of polylogs (beyond only roots of the 4-th order polynomial!)

1- Approach well suited to be generalized in this case
2- It allows to find simple and compact representation for the result
3- Can be (in principle) equally applied for higher order differential equations

CONCLUSIONS

1- Until recently no tools to study Feynman integrals beyond multiple polylogarithms

2- First issue, being able to solve higher order differential equations.

3- Maximal cut provides general solution to this problem it allows to write integral representations for the solutions

4- Second issues, who are these functions? A lot of progress in studying properties of elliptic multiple polylogarithms

5- We propose a way to classify them and study their properties based on a concept of weight w.r.t to their (higher order) differential equations.

More to come soon...

THANKS!

