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Feynman Integrals beyond multiple polylogarithms

Differential equations method
[Kotikov 90, Remiddi '97, Gehrmann-Remiddi '00,..., C. Papadopoulos '14]

I

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

S7t...57¢
/H G ( K DD) =0 V=KL

Reduced to N master integrals, l;(d; xx) with i =1,..., N.

4
Differentiating the masters and using the IBPs we get a system of
N coupled differential equations

N

aiXk/,-(d;xk) = ci(di xe) fi(d; xi) -

j=1
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Let's look more in detail - we should recall that equations are in block form

li(di xic) = (mj(d; ), subj(d; x«))
m

0

N M
6—ka,-(d;xk) = Z hij(d; xk) mj(d; xk) + Z nhj(d; xk) subj(d; xx) .

j=t j=t
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Let's look more in detail - we should recall that equations are in block form

li(d; xic) = (mj(d; ), subj(d; x«))
4

N M
0

i(d; xx) Z hij(d; xk) mj(d; xk) + Z nhii(d; xk) subj(d; x«) .
8Xk = %/—/ =
4
homogeneous piece is MAIN
source of complexity - whether

differential equations are coupled

¢

No way to solve this in general...
We must use some other
“physical” insight...
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Let's look more in detail - we should recall that equations are in block form

li(d; x) = (mj(di x) , subj(d; x))

I

9 N M
a—x‘(m;(d;xk) = Z hij(d; xi) mj(d; xk) + Z nhij(d; xk) subj(d; xk) .

j=1 j=1

4

non-homogeneous piece is the
second source of complexity —
we must integrate over it!

¢

Can be symplified using
differential equations and
dispersion relations [E.Remiddi, LT '16]
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We are interested in computing the integrals as Laurent series in (d — 4), which
requires integrating iteratively on the homogeneous solution and on the
non-homogeneous piece.

There are two possibilities

1- The differential equations are not coupled for d — 4. Order by order we
need to solve first order equations with rational coefficients

2- The differential equations are coupled for d — 4. Case 2 x 2 under study
since some time, example is two loop massive Sunrise

¢

Of course, higher order couplings are possible, n x n with n > 2
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First case is “simple” (conceptually, often not in practice!),

solution naturally expressed in terms of so-called multiple polylogarithms
[E.Remiddi, J.Vermaseren '99; T. Gehrmann, E.Remiddi '00;

Goncharov et al '00; Duhr, Gangl, Rhodes '13; ...]

G(0;x) =In(x), G(a;x) =1In (l—g) for a#0

G0, 0x) = ~n"(x),  G(a, vv;x):/
N~—— n! 0
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First case is “simple” (conceptually, often not in practice!),

solution naturally expressed in terms of so-called multiple polylogarithms
[E.Remiddi, J.Vermaseren '99; T. Gehrmann, E.Remiddi '00;

Goncharov et al '00; Duhr, Gangl, Rhodes '13; ...]

G(0;x) =In(x), G(a;x)=1n (l—g) for a#0

G(0,...,0;x) = %In"(x), G(a, VV;X):/OX G(W:y).

y—a

I

Multiple polylogarithms are special:
they become simpler under differentiation — it decreases weight!

1 d d
X aG(W,X) — XG(X)— xl_O !

d v j—
&G(a7 Wi x) =
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What lies beyond? — We know a couple of examples now

pP1
P

P2

-
N
e
s>

What all these examples have in common is a bulk 2 x 2 (or 3 x 3)
irreducible system of differential equations
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What do we have to do?

1- Solve the homogeneous equations in the limit d — 4 (or d — 2n, n € N)

%f(d; x) =A(X)I(d; x) + (d — 4)B(x)I(d; x) + O(d — 4)?,

with A(x) nxn, non-triangular!
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What do we have to do?

1- Solve the homogeneous equations in the limit d — 4 (or d — 2n, n € N)

%f(d; x) =A(X)I(d; x) + (d — 4)B(x)I(d; x) + O(d — 4)?,

with A(x) nxn, non-triangular!

Find n X n matrix homogeneous solutions G(x), with

-

%G(x):A(X)G(X), —  I(d; x) = G(x)mi(d; x)

then d
&Iﬁ(d; x) = (d — 4)G71(x) B(x)G(x) m(d; x) + O(d — 4)2,
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2- Solution given by iterative integrals over complicated kernels that contain
products of the homogeneous solutions, and previous orders

By expanding in (d — 4):

X
m P (x) = / dy G X(y) B(y)G(y) m " U(y) + simpler terms,
Or equivalently for the original functions

T(x) = G(x)/ dy G Y(y) B(y) I'l""U(y) + simpler terms,
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2- Solution given by iterative integrals over complicated kernels that contain
products of the homogeneous solutions, and previous orders

By expanding in (d — 4):

X
m P (x) = / dy G X(y) B(y)G(y) m " U(y) + simpler terms,
Or equivalently for the original functions

T(x) = G(x)/ dy G Y(y) B(y) I'l""U(y) + simpler terms,

Question is of course, what are these functions?
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How to solve the homogeneous equation?

Given the equations, there is no general way... this was a bottleneck

Solution:
- Take an older idea by [S.Laporta, E.Remiddi '04]

- Generalize it to all cases [A.Primo, L. Tancredi '16, '17]

m

(% + A(d;s)% + B(d;s)) p—@— + G(d;s) Tad(d; m*) = 0
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How to solve the homogeneous equation?

Given the equations, there is no general way... this was a bottleneck

Solution:
- Take an older idea by [S.Laporta, E.Remiddi '04]

- Generalize it to all cases [A.Primo, L.Tancredi '16, '17]

m

(dd—; + A(d;s)% + B(d;s)) P——@f + G(d;s) Tad(d; m*) = 0

d? d P
Cut — (d 5 + A(d; s)dS B(d;s)) =0
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Maximal cut solves homogeneous differential equations
[A.Primo, L.Tancredi '16, '17]

B At mr  \Bm VR T mp

P /11\ - 1 ( 16m*\/s
NEZ

)
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Maximal cut solves homogeneous differential equations
[A.Primo, L.Tancredi '16, '17]

B At mr  \Bm VR T mp

7 /11\ _ 1 ( 16m*y/s )
NI

where K(x) is the complete elliptic integral of the first kind.

! dt
Kl = /o JO-B) (1 —xB)
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Maximal cut solves homogeneous differential equations
[A.Primo, L.Tancredi '16, '17]

P /,LI\ _ 1 K ( 16m3\/§ )
w - \/(3’" —Vs)(v/s+ m)3 (3m — /s)(v/5 + m)3

where K(x) is the complete elliptic integral of the first kind.

! dt
Kl = /o JO-B) (1 —xB)

Computation of the maximal cut can be simplified in Baikov representation
[Papadopoulos, Frellesvig '17; Bosma, Sogaard, Zhang '17;
Harley, Moriello, Schabinger '17]
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How do we get the other solutions?

There is not only one independent contour! Other solutions found
integrating on the other independent contours!
[Bosma, Sogaard, Zhang '17; Tancredi, Primo '17; Harley, Moriello, Schabinger '17]

- 7{ DD UK = m*) (1 = m?) 6((k — 1 = p)* = )

where C is some contour on the complex plane.
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How do we get the other solutions?

There is not only one independent contour! Other solutions found
integrating on the other independent contours!
[Bosma, Sogaard, Zhang '17; Tancredi, Primo '17; Harley, Moriello, Schabinger '17]

- 7{ DD UK = m*) (1 = m?) 6((k — 1 = p)* = )
c
where C is some contour on the complex plane.

K(w)
o Bm— a5+ mp

soli(p, m) =

K(1l—w) 16m*\/s

sola(p, m) =

& Bm— e srmE | Bm— R+ m)
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It is very general. A nice tool to simplify the solution of differential equations,
particularly useful when solution requires elliptic integrals, but not only!

Application to a 3 x 3 example, "beyond just elliptic integrals”

£
S

Has three master integrals : Zi(e;s) Zo(e;s) Zs(es)
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d Zi(€; x) Z1(€; x) Z1(€; x) 0
™ Io(e;x) | =B(x) | Zo(e;x) | + eD(x) | Zo(e; x) | + 0
Zs(€; x) Zs(e; x) Ts(e€; x) — )
where B(x) and D(x) are 3 x 3 matrices, with x = 4m?/p?
. . 0
B(x) = =y e %~
1 1 1 3 1 6 3
8(x—1)  8(4x—1) x—1  2(@x—1) x  4x—1 + 2(x—1)
: 2 0
D(X): _xil %_% g_xgl
35779 11 3
-1 2(4x—1) X 4x—1 x—1

1
2(x—1) = 2(4x—1) x—1
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We need to find now three independent solutions, i.e. a matrix

H1(X) J1(X) /1(X) d
G(x) = Ha(x)  h(x) h(x) — EG(X) = B(x) G(x).
Hs(x)  J(x)  h(x)

Or, if our idea is correct, there should exists three independent integration
contours C1, C2 and C3 such that (for e = 0)

Cute, (Z2(x)) Cute,(Z2(x))  Cute,(Z2(x))

( Cute, (Za(x))  Cute,(Zi(x))  Cutey(Za(x)) )
G(x) =
Cute, (Z3(x)) Cute,(Zs(x))  Cute,(Zs(x))

17/29
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Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

Hi(x) =x K (K1) K(K2), A =xK((K)K(@IL-K),
h(x) =x K (1 - k3) K (k2),

ki:\/(v+a)2—ﬁ2i\/('y—a)2—ﬁ2 with k_:(ﬁ>i 20

2y v
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Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

Hi(x) =x K (K1) K(K2), A =xK((K)K(@IL-K),
h(x) =x K (1 - k3) K (k2),

Vi +aP2 -2+ /(v —a) -5
2y

ky =
~

Remaining rows of the matrix G(x) can be obtained by differentiation.

with k. — (g> 1 2a
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Interestingly enough, with some effort, and following:
[Bailey, Borwein, Broadhurst '08]

Hi(x) =x K (K1) K(K2), A =xK((K)K(@IL-K),
h(x) =x K (1 - k3) K (k2),

Vi +aP2 -2+ /(v —a) -5
2y

ky =
-
Remaining rows of the matrix G(x) can be obtained by differentiation.

Result expected from studies of Joyce '73 on cubic lattice Green functions
Elliptic Tri-Log by [Bloch, Kerr, Vanhove '14]

with k. — (g> 1 2a
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We have powerful method to write iterated integral representations for
solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms
[Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16... ]

2- Can we say “something general”, which applies to all cases and allows us
to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

19/29
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We have powerful method to write iterated integral representations for
solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms
[Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16... ]

2- Can we say “something general”, which applies to all cases and allows us
to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

What is the difference with Polylogs?

d 1
= Glrtl(a, w,x) =
dx X —a

Gl(w,x), =1 - dic;[ol(x):o
X

19/29
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We have powerful method to write iterated integral representations for
solutions. How do we handle the functions now?

1- In the sunrise case, progress on Elliptic polylogarithms
[Brown, Levin '11; Bloch, Vanhove '13,'14 ; Weinzierl et al, '14,'15,'16... ]

2- Can we say “something general”, which applies to all cases and allows us
to handle these functions? [Remiddi, Tancredi '17 (soon...?)]

What is the difference with Polylogs?

9 Gt (5,9, x) = 1

Gl(w,x), =1 - ic;[ol(x) =0
dx X —a dx

We can see them as iterative integrations over rational functions with the solution of
the homogeneous equation which, properly normalized, is a trivial kernel K =1. The
fundamental property is d/dx K = 0.

19/29



Feynman Integrals beyond multiple polylogarithms

This generalizes as follows:

New kernel is again ~ solution of the homogeneous equation, for 2 x 2
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This generalizes as follows:

New kernel is again ~ solution of the homogeneous equation, for 2 x 2

G(u):( ;2%5; jggzg ) - (% —B(u)) G(u)=0
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This generalizes as follows:

New kernel is again ~ solution of the homogeneous equation, for 2 x 2

_( To(u)  Jo(u) d _
G(u) = ( /Z(u) Jg(u) ) — (E — B(u)) G(u)=0
Or alternatively rephrased as

D(%,u) lo(u) = (:22 + A () d - Ao(u )) lo(u) =0.

(And in principle similarly for higher order equations)
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New functions at iteration n, let’s call them for now EILH](VV, u), k

At first sight, they do not have a simple concept of weight since
d

duEI[k"l(w, u)=>" G(u)EL(#, u)

j=0,2

=0,2
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New functions at iteration n, let's call them for now EILH](VV, u), k=0,2

At first sight, they do not have a simple concept of weight since
d

duEI[k"l(w, u)=>" G(u)EL(#, u)

j=0,2
But one finds (a posteriori it is obvious...)

D (diu,u) EL) (w,u) = > " ) B (W, u)

j=0,2

+ > ") B, )
j=0,2
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New functions at iteration n, let's call them for now EILH](VV, u), k=0,2

At first sight, they do not have a simple concept of weight since

d n — n —
EEIL](W, u) = Z ci(u) EIJ[. ](W, u)
j=0,2

But one finds (a posteriori it is obvious...)

D (diu,u) EL) (w,u) = > " ) B (W, u)

j=0,2

+ > ") B, )

j=0,2

They do have a concept of weight w.r.t. the second order operator D(d/du, u)
It lowers their weight!

It can be used to study them bottom up, like polylogs (find relations, rewrite them in
terms of other functions, etc)!
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Let's see an example of these functions

(Va—m)?
/ LG["](VT/; b)
4

m2 \/ :‘?4(137 u)

with  Ry(b, u) = b(b — 4m?)(b — (v/u — m)?)(b — (v/u + m)?)

alphabet w drawn from roots of Rs4(b, u)

(a subset appears in imaginary part of two-loop sunrise graph)

N
N

~
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Let's see an example of these functions

(Va—m)?
/ LG["](VT/; b)
4

m2 V/Ra(b, u)
with  Ry(b, u) = b(b — 4m?)(b — (v/u — m)?)(b — (v/u + m)?)
alphabet w drawn from roots of Rs4(b, u)
(a subset appears in imaginary part of two-loop sunrise graph)
At weight zero

Wa=m?  gp
/ ~ o(w)
4

m? R4(b7 U)

N
N

~
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Let's see an example of these functions

(Va—m)?
/ LG["](VT/; b)
4

m2 V/Ra(b, u)
with  Ry(b, u) = b(b — 4m?)(b — (v/u — m)?)(b — (v/u + m)?)
alphabet w drawn from roots of Rs4(b, u)
(a subset appears in imaginary part of two-loop sunrise graph)

At weight zero

(Vu—m)? db
/ 2 = ho(u)
4m? R4(b7 U)
At weight one
) In (b)
/<ﬁ*m> db In(b— 4m?) o
am? VRa(b,u) | In(b—(Vu—m)?) -

In (b~ (/i + m)?)

N
N

~
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We know everything about weight zero, Ih(u) = K(x), elliptic integrals, ...

Discover relations at weight one:

(Vu—m)?
EIE](O, u) = / dbInb
4m? R4(b7 U)
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We know everything about weight zero, Ih(u) = K(x), elliptic integrals,

Discover relations at weight one:

(Va—m)?
EIE](O, u) = / dbInb
4m? R4(b7 U)
d 1] 1 ( 8 3 5 4m? )
D=, u) ElOu)= = (-—— - I
<du’u) 0 =50 " = T 360 3 mp )W
N 1 (2 7 1 n am? )/( )
— | = - - u
32(u—m?)  288(u—9m2)  (u—m2)2 )"
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We know everything about weight zero, Ih(u) = K(x), elliptic integrals, ...

Discover relations at weight one:

(Vu—m)?
EIE](O, u) = / dbInb
4m? R4(b7 U)

d 1] 1 ( 8 3 5 4m? )
D= u) ElO,u0)= = (- - I
(du’ ”) 0 =50 " = T 360 3 mp )W
N 1 (2 7 1 n am? )/( )
— | = - - u
mo\9u  32(u—m2) 288(u—9m?2)  (u—m2)2 )"

d Va=m? b Inb 2 ) 3
D(—,u) [/4m2 Nl 3|n(u—m)lg(u):|0.
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This implies a sort of (half-) shuffle relation

= —1In (u — m2) lo(u) + Cllo(u) + Cng(u) .

m?2 v/ Ra(b, u) 3

/(ﬁ—m)2 dbInb 2
4
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This implies a sort of (half-) shuffle relation

Va=m? ghinb 2
/ n = 7|n(u—m2) /0(u)+C1/0(u)+C2Jo(u).
4

m?2 v/ Ra(b, u) 3

Fixing the boundary conditions we finally have

(Va—m)?
/ M:gln(ufmz)lo(u).
4m? R4(b’ U) 3

Weight one function is simple product of standard logarithm and elliptic integral
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This sort of shuffles at weight one is not an accident! Similarly we find:
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This sort of shuffles at weight one is not an accident! Similarly we find:

(Va=m)® gp 1 1
A ————— In(b—4m?) = (Eln(uf9m2)+ gln(ufm2)> o(u)

m2  +/Ra(u, b)

(Va=m? gp 1 1
/W Tres N )= (gln(u—m2)+zlnu

+% In(vu—m)+ % In(vu— 3m)> Io(u)

1
— §7rJ0(u)

/(\ﬁfm)2 db
4

—_— 2— 7lnu—m2 1nU
ey () b>—(6'< )+

+% In(v/a + m) + % In(v/a + 3m)> Io(u)
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This approach can be used:

1- lteratively, at higher weights and for more general polylogarithms

(Vo=m? gp y (4m2)
ab (A
am2 4/ R4(u7 b) 2 b

At higher weights, the identities are more complicated, but the highest
transcendental piece follows the same pattern

(Va=m)? gp , <4m2
Trn 2\ p

u—1
= Liy (7) lo(u) + “simpler terms”
am2 4/ R4(u, b) ) 8
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This approach can be used:

1- lteratively, at higher weights and for more general polylogarithms

(Vo=m? gp y (4m2)
ab (A
am2 4/ R4(u7 b) 2 b

At higher weights, the identities are more complicated, but the highest
transcendental piece follows the same pattern

(Va—m? gp am? —1
———— Lip ( m ) = Lip (UT) lo(u) + “simpler terms”

am2 4/ R4(u, b) T

2- For solutions of higher order differential equations: just use corresponding
higher order differential operator to decrease the weight
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There are good indications that many Feynman integrals beyond multiple
polylogarithms can be expressed as combinations of

/bj db G(#, b)
b /(b= b1)(b— b2)(b— b3)(b— bs)

for more general alphabets of polylogs (beyond only roots of the 4-th order
polynomiall)

1- Approach well suited to be generalized in this case
2- It allows to find simple and compact representation for the result

3- Can be (in principle) equally applied for higher order differential equations
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CONCLUSIONS

1- Until recently no tools to study Feynman integrals beyond multiple
polylogarithms

2- First issue, being able to solve higher order differential equations.

3- Maximal cut provides general solution to this problem
it allows to write integral representations for the solutions

4- Second issues, who are these functions? A lot of progress in studying
properties of elliptic multiple polylogarithms

5- We propose a way to classify them and study their properties based on
a concept of weight w.r.t to their (higher order) differential equations.

More to come soon...
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THANKS!



