

 $\mu^+ e^- \to \mu^+ e^-$

 $\begin{array}{c} \mu^+ e^- \to ll\\ 000000\end{array}$

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preliminary considerations on the NP sensitivity of low-energy μe scattering data

Giovanni Marco Pruna

Paul Scherrer Institut Villigen, CH

 μe scattering WS, Padova, 5 September 2017

Beyond-the-Standard-Model physics

The Standard Model of particle physics works, but fails to account for some remarkable exceptions:

- the neutrino oscillation;
- the abundance of matter;
- dark matter;
- gravity.

So far, no experimental hints.

This seems to indicate that any new physics should either:

- exist at our energy scales, but be rather weakly connected;
- exist at some energy scale that has not yet been reached;
- exist in a combination of both scenarios.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

New Physics and μe scattering

 μe scattering as a precision tool at (rather) high energy.

IMHO we shouldn't talk about top-down structured approaches.

New-physics studies can be approached by:

- exploiting effective-field-theory technologies;
- plugging 'dark portals'.

Effective interactions unconstrained by other experiments. Dark particles surviving direct and indirect searches.

 $\mu^+ e^- \to \mu^+ e$

 $\begin{array}{c} \mu^+ e^- \to ll \\ 000000 \end{array}$

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extending the interactions of the SM

Assumptions: SM is merely an effective theory, valid up to some scale Λ . It can be extended to a field theory that satisfies the following requirements:

- its gauge group should contain $SU(3)_C \times SU(2)_L \times U(1)_Y$;
- all the SM degrees of freedom must be incorporated;
- at low energies (i.e. when $\Lambda \to \infty$), it should reduce to SM.

Assuming that such reduction proceeds via decoupling of New Physics (NP), the Appelquist-Carazzone theorem allows us to write such theory in the form:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right).$$

2-leptons

Dimension-six operators

Q

$$\begin{array}{c} Q_{eW} \\ \hline Q_{eB} \\ Q_{\varphi l}^{(1)} \\ Q_{\varphi l}^{(3)} \\ \hline Q_{\varphi e} \\ \hline Q_{e\varphi} \end{array}$$

$$= (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu};$$

$$= (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu}.$$

$$= (\varphi^{\dagger}iD^{\mu}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$$

$$= (\varphi^{\dagger}iD^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$$

$$= (\varphi^{\dagger}iD^{\mu}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$$

$$= (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$$

4-leptons

$$Q_{ll}$$

 Q_{ee}

$$= (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$$
$$= (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$$
$$= (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$$

4-fermions

$$l_q^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$$

$$Q_{lq}^{(3)} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$$

$$Q_{eu} = (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$$

$$Q_{ed} = (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$$

$$Q_{lu} = (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$$

$$Q_{ld} = (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$$

$$Q_{qe} = (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$$

$$Q_{ledq} = (\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$$

$$Q_{lequ}^{(1)} = (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$$

$$Q_{lequ}^{(3)} = (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Intro	SMEFT	$\mu^+ e^- \rightarrow \mu^+ e^-$	$\mu^+ e^- \rightarrow ll$	Conclusion
00	00	•00000	000000	0

Relevant coefficients for μe scattering at the tree-level

$$\begin{split} &C_{e\gamma}^{ii}, \text{ with } i=1,2 \\ &C_{ez}^{ii}, \text{ with } i=1,2 \\ &C_{e\varphi}^{ii}, \text{ with } i=1,2 \\ &C_{\varphi e}^{ii}, \text{ with } i=1,2 \\ &C_{\varphi l(1)}^{ii}, \text{ with } i=1,2 \\ &C_{\varphi l(3)}^{ii}, \text{ with } i=1,2 \end{split}$$

 $C_{le}^{1122}, C_{le}^{1221}, C_{le}^{2211}$

 C_{ee}^{1122}

 C_{μ}^{1122}

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Severely constrained by low-energy experiments!

Dimension-six operators: lepton current at one loop

From a point-like interaction...

... to quantum fluctuations!

No correlation: limits from muonic cLFV

GMP and A. Signer JHEP **1410** (2014) 014

GMP and A. Signer EPJWC **118** (2016) 01031

Similar limits for the flavour-conserving couplings from the $a_{e,\mu}$ and $d_{e,\mu}$

Coefficient	MEG $(\mu \rightarrow e\gamma)$	ATLAS $(Z \to e\mu)$	SINDRUM $(\mu \rightarrow 3e)$
	$BR \leq 5.7 \cdot 10^{-13}$	$BR \le 7.5 \cdot 10^{-7}$	$BR \leq 1.0 \cdot 10^{-12}$
-	_	_	
$C_{eZ}^{\mu e}(m_Z)$	$1.4 \cdot 10^{-13} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$5.5 \cdot 10^{-8} \frac{\Lambda^2}{[\text{GeV}]^2}$	$2.8\cdot 10^{-8} \frac{\Lambda^2}{[\text{GeV}]^2}$
$C^{(1)}_{\varphi l}$	$2.5\cdot 10^{-10} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.5\cdot 10^{-11} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C^{(3)}_{\varphi l}$	$2.4\cdot 10^{-10} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.5\cdot 10^{-11} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$
$C_{\varphi e}$	$2.4\cdot 10^{-10} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot10^{-8} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$2.6\cdot 10^{-11} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$
$C^{\mu e}_{e \varphi}$	$2.7\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$		$6.1\cdot 10^{-6} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$
$C_{le}^{eee\mu}$	$4.2\cdot 10^{-8} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$		$2.2\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C_{le}^{e\mu\mu\mu}$	$2.0\cdot 10^{-10} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		
$C_{le}^{e au au\mu}$	$1.2\cdot 10^{-11}\frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		
$C_{ee}^{eee\mu}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{[{\rm GeV}]^2}$
$C_{ll}^{eee\mu}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$

・ロト・西ト・ヨト ・ヨー うんぐ

No correlation: limits from EDM

Coefficient	Contribution to d_l	Limits from d_e	Limits from d_{μ}
$C^{ii}_{e\gamma}$	$\frac{2\sqrt{2}m_W s_W}{e}\Im C_{e\gamma}^{ii}$	$5.8 \times 10^{-19} \frac{\Lambda^2}{\left[\text{GeV}\right]^2}$	$6.7\times10^{-10}\frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$
C_{le}^{1ii1}	$\frac{em_e}{8\pi^2}\Im C^{1ii1}_{le}$	N/A	N/A
C_{le}^{2ii2}	$\frac{em_{\mu}}{8\pi^2}\Im C_{le}^{2ii2}$	$5.5\times 10^{-13} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$	N/A
C_{le}^{3ii3}	$\frac{em_\tau}{8\pi^2}\Im C_{le}^{3ii3}$	$3.2\times 10^{-14} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$	$3.7\times 10^{-6} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$
$C_{e\varphi}^{ii}$	$\frac{m_i^2 m_W s_W}{8\sqrt{2}m_H^2\pi^2} \left(-3 + 2\log\left[\frac{m_i^2}{m_H^2}\right]\right) \Im C_{e\varphi}^{ii}$	$3.8\times 10^{-11} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$	N/A
C_{eZ}^{ii}	$\frac{\alpha}{8\pi c_W s_W} \left(-3 c_W^2 + 3 s_W^2\right) \Im C_{eZ}^{ij}$	$5.5\times10^{-16}\frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$	$6.3\times 10^{-7} \frac{\Lambda^2}{[{\rm GeV}]^2}$

(日)

Improving on d_{τ} : M. Fael *et al.*, JHEP **1603** (2016) 140

Conclusion o

Below the EWSB scale

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{QED}} + \mathcal{L}_{ ext{QCD}} + rac{1}{\Lambda^2} \sum_i C_i Q_i,$$

and the explicit structure of the operators is given by

Dipole				
$Q_{e\gamma}$	$em_r(\bar{l}_p\sigma^{\mu\nu}P_L l_r)F_{\mu\nu}$ + H.c.			
Scalar/Tensorial		Vectorial		
Q_S	$(\bar{l}_p P_L l_r)(\bar{l}_s P_L l_t) + \text{H.c.}$	Q_{VLL}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_L l_t)$	
		Q_{VLR}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{l}_s \gamma_\mu P_R l_t)$	
		Q_{VRR}	$(\bar{l}_p \gamma^\mu P_R l_r)(\bar{l}_s \gamma_\mu P_R l_t)$	
$Q_{Slq(1)}$	$(\bar{l}_p P_L l_r)(\bar{q}_s P_L q_t) + \text{H.c.}$	Q_{VlqLL}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{q}_s \gamma_\mu P_L q_t)$	
$Q_{Slq(2)}$	$(\bar{l}_p P_L l_r)(\bar{q}_s P_R q_t) + \text{H.c.}$	Q_{VlqLR}	$(\bar{l}_p \gamma^\mu P_L l_r) (\bar{q}_s \gamma_\mu P_R q_t)$	
Q_{Tlq}	$(\bar{l}_p \sigma^{\mu\nu} P_L l_r) (\bar{q}_s \sigma_{\mu\nu} P_L q_t) + \text{H.c.}$	Q_{VlqRL}	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{q}_s \gamma_\mu P_L q_t)$	
		Q_{VlqRR}	$(\bar{l}_p \gamma^\mu P_R l_r) (\bar{q}_s \gamma_\mu P_R q_t)$	

 $\mu^+ e^- \to \mu^+ e^-$

	$Br \left(\mu^+ \to e^+ \gamma \right)$		${\rm Br}(\mu^+\to e^+e^-e^+)$		$\mathrm{Br}_{\mu \to e}^{\mathrm{Au/Al}}$	
	$4.2 \cdot 10^{-13}$	$4.0\cdot 10^{-14}$	$1.0\cdot 10^{-12}$	$5.0\cdot10^{-15}$	$7.0\cdot 10^{-13}$	$1.0\cdot 10^{-16}$
C_L^D	$1.0\cdot 10^{-8}$	$3.1\cdot 10^{-9}$	$2.0\cdot 10^{-7}$	$1.4\cdot 10^{-8}$	$2.0\cdot 10^{-7}$	$2.9\cdot 10^{-9}$
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5\cdot 10^{-5}$	$8.1\cdot 10^{-7}$	$5.8\cdot 10^{-8}$	$1.4\cdot 10^{-3}$	$2.1\cdot 10^{-5}$
$C^{S \ LL}_{\mu\mu}$	$2.3\cdot 10^{-7}$	$7.2\cdot 10^{-8}$	$4.6\cdot10^{-6}$	$3.3\cdot 10^{-7}$	$7.1\cdot 10^{-6}$	$1.0\cdot 10^{-7}$
$C_{\tau\tau}^{S\ LL}$	$1.2\cdot 10^{-6}$	$3.7\cdot 10^{-7}$	$2.4\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$2.4\cdot 10^{-5}$	$3.5\cdot 10^{-7}$
$C_{\tau\tau}^{T \ LL}$	$2.9\cdot 10^{-9}$	$9.0\cdot 10^{-10}$	$5.7\cdot 10^{-8}$	$4.1\cdot 10^{-9}$	$5.9\cdot 10^{-8}$	$8.5\cdot 10^{-10}$
$C_{bb}^{S \ LL}$	$2.8\cdot 10^{-6}$	$8.6\cdot 10^{-7}$	$5.4\cdot 10^{-5}$	$3.8\cdot 10^{-6}$	$9.0\cdot 10^{-7}$	$1.2\cdot 10^{-8}$
$C_{bb}^{T \ LL}$	$2.1\cdot 10^{-9}$	$6.4\cdot 10^{-10}$	$4.1\cdot 10^{-8}$	$2.9\cdot 10^{-9}$	$4.2\cdot 10^{-8}$	$6.0\cdot 10^{-10}$
$C_{ee}^{V \ RR}$	$3.0\cdot10^{-5}$	$9.4\cdot 10^{-6}$	$2.1\cdot 10^{-7}$	$1.5\cdot 10^{-8}$	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C^{V RR}_{\mu\mu}$	$3.0\cdot10^{-5}$	$9.4\cdot 10^{-6}$	$1.6\cdot 10^{-5}$	$1.1\cdot 10^{-6}$	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C_{\tau\tau}^{VRR}$	$1.0\cdot10^{-4}$	$3.2\cdot 10^{-5}$	$5.3\cdot 10^{-5}$	$3.8\cdot 10^{-6}$	$4.8\cdot 10^{-6}$	$7.9\cdot 10^{-8}$
$C_{bb}^{V \ RR}$	$3.5\cdot 10^{-4}$	$1.1\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.8\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$
C_{bb}^{RA}	$4.2\cdot 10^{-4}$	$1.3\cdot 10^{-4}$	$6.5\cdot 10^{-3}$	$4.6\cdot 10^{-4}$	$1.3\cdot 10^{-3}$	$2.2\cdot 10^{-5}$
C_{bb}^{RV}	$2.1\cdot 10^{-3}$	$6.4\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.7\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$

Limits on the various coefficients $C_i(m_W)$ from current and future experimental constraints, assuming that (at the high scale m_W) only one coefficient at a time is non-vanishing and not including operator-dependent efficiency corrections.

・ロト・西ト・モー・ ヨー うらぐ

Relevant coefficients for $\mu^+e^- \rightarrow \mu^-e^+$ at the tree-level

No three-point operators!

No three-point operators!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Interesting rearrangement of the flavour indexes!

Same interaction in muon-antimuon conversion

Effective Hamiltonian:

$$\begin{aligned} \mathcal{H}_{1} &= \frac{G_{M\overline{M}}}{\sqrt{2}} \left[\overline{u} \gamma^{\lambda} \left(1 + \gamma_{5} \right) e \right]^{2} + h.c. \\ \mathcal{H}_{2} &= \frac{G'_{M\overline{M}}}{\sqrt{2}} \left[\overline{u} \gamma^{\lambda} \left(1 - \gamma_{5} \right) e \right]^{2} + h.c. \\ \mathcal{H}_{3} &= \frac{G''_{M\overline{M}}}{\sqrt{2}} \left[\overline{u} \gamma^{\lambda} \left(1 + \gamma_{5} \right) e \right] \left[\overline{u} \gamma^{\lambda} \left(1 - \gamma_{5} \right) e \right] + h.c. \end{aligned}$$

For example, \mathcal{H}_1 produces a transition described by

$$\mathcal{P}\left(\overline{M}\right) = 64^3 \left(\frac{3\pi^2 \alpha^3}{G_F m_{\mu}^2}\right)^2 \left(\frac{m_e}{m_{\mu}}\right)^6 \left(\frac{G_{M\overline{M}}}{G_F}\right)^2 \le \frac{8.3 \times 10^{-11}}{S_B}$$

Conclusion o

(ロ) (同) (三) (三) (三) (○) (○)

An explicit BSM realisation

The doubly charged scalar $(SU(2)_L$ -singlet) is a perfect candidate for the neutrino mass generation mechanism.

Effective Majorana mass term at the tree-loop level.

$$\mathcal{L}_{UV} = \mathcal{L}_{SM} + (D_{\mu}S^{++})^{\dagger} (D^{\mu}S^{++}) + \left(\lambda_{ab} \overline{(\ell_R)_a^c} \ell_{Rb} S^{++} + \text{h.c.}\right).$$

7 new parameters: the mass of the doubly charged scalar m_{ϕ} , and the 6 complex parameters λ_{ab} .

What happens to the muon-antimuon oscillation?

Matching BSM physics to the EFT

$$C_{e\gamma}^{pr}(m_W) = \frac{1}{24m_{\phi}^2 \pi^2} \sum_{w=1}^{3} (\lambda_{rw} \lambda_{pw}^*)$$

$$C_{VRR}^{prst}\left(m_{W}\right) = -\frac{\lambda_{rt}\lambda_{ps}^{*}}{2m_{\phi}^{2}}$$

500

Phenomenology at lower scales

This is the only observable constraining such combination of couplings:

$$\mathcal{P}\left(\overline{M}\right) = \frac{18(8\pi)^4 \alpha^6 m_e^6 |\lambda_{11}|^2 |\lambda_{22}|^2}{G_F^4 m_\mu^{10} m_\phi^4} \le 10^{-10}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exploring the high energy scale at colliders

Same-charge e pair final states in pp collisions at the LHC.

ATLAS & CMS (7-13 TeV)

Right-handed coupling:

 $m_\phi > 460 \; \mathrm{GeV}$

Left-handed coupling:

 $m_\phi > 570~{\rm GeV}$

$$\mathsf{BR}(\phi^{\pm} \to e^{\pm} e^{\pm}) \simeq 100\%$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

Conclusion

- $\sqrt{}$ More questions than answers
 - light New Physics in the µe scattering?
 - light/heavy New Physics associated to different final states?

 \checkmark Thinking about a different set-up for BSM searches

- spin-off experimental project?
- maybe a joint pheno effort with atomic physics and the muon-antimuon oscillation guys?
- complementarity with searches at present and future colliders?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \checkmark Our theoretical set-up is (basically) ready.

Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgements

"Lepton flavour violation in an effective-field-theory approach with dimension 6 operators"

Supported by the Swiss National Science Foundation

giovanni-marco.pruna(at)psi.ch