Hybrid and monolithic pixel detectors for X-ray imaging at FELs and synchrotron light sources

XDET

Programma di attività e preventivo di spesa Sezione di Pavia

Resp. Naz.: Lodovico Ratti Resp. Loc.: Massimo Manghisoni

INFN Pavia, Consiglio di Sezione, 6 luglio 2017

XDET project

- Goal of the project: develop the building blocks for hybrid and monolithic detectors for X-ray imaging at FELs and synchrotron light sources; build a demonstrator based on a 2-tier structure, including the sensor with integrated analog electronics in one layer and digital circuits (memory, readout) in the other
- Duration: 3 years
- Participating INFN groups:
 - INFN Pavia
 - INFN Pisa (DTZ5)
 - TIFPA Trento
 - INFN Torino (DTZ5)

FELs and synchrotron light sources

- Powerful tools for exploring the world at the atomic scale and characterizing fast microscopic processes
- Synchrotron light sources
 - widespread, with several experimental beam lines
 - upgrade in progress in many facilities (e.g., ESRF Upgrade Programme)

- Free electron lasers
 - increasing in number
 - extremely brilliant beams, orders of magnitude more brilliant than at synchrotron light sources
 - very short pulses, down to femtosecond duration

Starting point: the PixFEL project

Active-edge sensor production run fabricated at FBK on 450+250 um SiSi DWB, 6" wafers. Structures included:

- Diodes and strips
- Arrays
- Test structures for process characterization

Starting point: the PixFEL project

INFN Pavia, Consiglio di Sezione, 6/7/2017

Activity in progress

- Working on the design of a new version of the 32x32 channel array for postprocessing with peripheral TSVs
 (wafers needed)
 - participation in an engineering run organized by RD53 and MPA groups at CERN
 - wafers available for post-processing

memory+digital readout

Develop a detector based on monolithic technologies with high resistivity substrate (suitable for full depletion)

- faster charge collection and more efficient detection as compared to present monolithic detectors at FEL
- cheaper solution
- Develop second tier for memory and digital readout
 - 65 nm CMOS, compatible with both hybrid (PixFEL) and monolithic solutions
- Vertical integration
- Peripheral through silicon vias towards buttability

MONOLITHIC PIXEL

Summary of the proposed activity

- CMOS with HR epi-layer
 - max energy limited to a few keV

SOI + HR support wafer

- In general:
 - low noise
 - small pitch
 - slow readout (ADCs serving large chip regions) → limited frame rate

Monolithic sensor demonstrator

Development required on sensor (trenches for slim edge design, backside processing for low energy photons)

Activity plan

- 🛚 First year
 - investigation on technologies for monolithic sensors (towerjazz, XFAB, LFoundry, ESPROS - SEED experiment is successfully developing a fully depleted monolithic sensor in 110 nm CMOS technology by LFoundry)
 - design and simulation of analog front-end for monolithic sensor, TCAD simulations on sensor (taking into account the final test on a synchrotron source beam)
 - production of a test chip for monolithic process characterization from the standpoint of the sensor
 - characterization of chips from the engineering run and hybrid sensor (pixel detector in fully depleted technology connected to front-end chip - from PixFEL), including radiation hardness tests

Activity plan

- Second year
 - monolithic sensor fabrication
 - digital layer fabrication
 - exploration of peripheral TSV options (LFoundry is developing a proprietary TSV process)
 - prototype characterization (including radiation tolerance tests)
 - Third year
 - interconnection of monolithic sensor layer with the digital layer
 - characterization of the two-tier demonstrator
 - test of the demonstrator at a synchrotron light source experiment

- WP1 Sensors (simulation, design and characterization of monolithic and pixel sensors) - TIFPA
- WP2 Analog front-end (simulation and design of analog front-end for monolithic pixels) – INFN Pavia
- WP3 Memories, digital readout and chip integration (simulation and design of the digital layer) INFN Torino
- WP4 Testing (prototype characterization, including experiment on X-ray beam) INFN Pavia

Involved people and groups

- TIFPA: L. Pancheri (resp. loc.) et al., 2 FTE
- INFN PISA: F. Morsani, 0.3 FTE
- INFN Torino: L. Demaria, ~0.7 FTE
- INFN Pavia

Name	Position	Committment
Alessandro Cabrini	RTDB	20%
Paolo Ghigna	PA	30%
Marco Grassi	Assegnista	20%
Piero Malcovati	PA	20%
Massimo Manghisoni (resp. loc.)	PA	20%
Stefano Noli	Ph.D	40%
Lodovico Ratti (resp. naz.)	PA	40%
Valerio Re	PO	10%
Gianluca Traversi	PA	20%
Carla Vacchi	RU	20%
FULL TIME EQUIVALENT	2.4	

Three-year budget - Overall

	2018		2019		2020	
Travels	CSN5 meetings	1 kEuro	CSN5 meetings	1 kEuro	CSN5 meetings	1 kEuro
	Joint tests	4 kEuro	Joint activity on design	2 kEuro	Joint tests	4 kEuro
	Contacts with the foundry	2 kEuro	Contacts with the foundry	2 kEuro	Test beam at ESRF	4 kEuro
Consumables	Laboratory material	10 kEuro	Analog layer, including sensor (LFoundry 110 nm, 12 mm²)	20 kEuro	Laboratory material	10 kEuro
	Test structures (LFoundry 110 nm, 10 mm²)	12 kEuro	Substrates, process tuning (LFoundry)	50 kEuro	Bonding with IZM	30 kEuro
			Digital layer (CMOS 65 nm, 12 mm²)	50 kEuro		
			Laboratory material	10 kEuro		
Investments		0		0		0
	Total	29 kEuro	Total	135 kEuro	Total	49 kEuro

Three-year budget - Pavia

	2018		2019		2020	
Travels	CSN5 meetings	1 kEuro	CSN5 meetings	1 kEuro	CSN5 meetings	1 kEuro
	Joint tests	2 kEuro	Joint activity on design	1 kEuro	Joint tests	2 kEuro
	Contacts with the foundry	1 kEuro	Contacts with the foundry	1 kEuro	Test beam at ESRF	4 kEuro
Consumables	Laboratory material	3 kEuro	Digital layer (CMOS 65 nm, 12 mm²)	50 kEuro	Laboratory material	3 kEuro
	Test structures (LFoundry 110 nm, 10 mm²)	12 kEuro	Laboratory material	3 kEuro		
Investments		0		0		0
	Total	16 kEuro	Total	56 kEuro	Total	9 kEuro