CSN5 INFN new research project proposal (2017-2019)

METRICS

Multimodal pET/mRi Imaging with Cyclotron-produced $^{52/51}$ Mn and stable paramagnetic Mn iSotopes

J. Esposito on behalf of INFN/S. Orsola.Malpighi Hospital (Bo) /Padua Hospital collaboration network for the METRICS project

Proposal to CSN5 INFN, location, Sept. XXth , 2017

aboratori Nazionali di

MMI as a new standard approach nowadays to greatly improve diagnostic power *in vivo* with imaging modalities based on different physics processes.

Currently, imaging modalities are based on the use of different physics processes:

- X-rays а.
- β^+/γ -emitting radioisotopes b.
- fluorescence
- Magnetic resonance d.

(CT); (PET and SPECT), (OPTICAL) (MRI).

CT / MRI

Typically:

CT / MRI

- **PET/SPECT/OPTICAL** -> allow obtaining anatomical images of organ tissues
- **PET/SPECT/OPTICAL** -> able to deeply penetrate the **inner cellular structure** and collect molecular-type information (functional imaging)

GOAL

combining images with a different diagnostic content can significantly improve understanding of the clinical picture

Status of art for MMI technology

Already established technologies allow the acquired images, recorded by both systems in a unique gantry, to be combined as superimposed images having the full information.

- PET or SPECT cameras merged with a CT scanner (PET/CT, SPECT/CT), combining X-rays and nuclear imaging.
- hybrid PET/MRI and SPECT/MRI tomography, combining nuclear and magnetic resonance imaging.

aboratori Nazionali di Legnaro

Main limiting issues in MMI

- (PET and SPECT) -> functional imaging always requires injection of a radiolabeled tracer (e.g. ¹⁸F-FDG for PET or ^{99m}Tc-HMPAO for SPECT,
- (CT and MRI) -> anatomical imaging always involves administration of a contrast agent (e.g. Gd-OMNISCAN) to achieve the highest spatiation resolution.

HOWEVER....

- basically impossible to tightly couple infos through:
 - Functional or metabolic imaging (radioactive tracer)
 - Anatomical imaging (contrast agent)

through a simultaneous administration. Chemical species are always totally different.

THEREFORE....how MMI is carried out in practice

- either without administration of the contrast agent
- when necessary, done in a separate steps
 Corresponding images are superimposed later only

MAIN problem in MMI

- a) Usefulness of **hybrid imaging** is **strongly limited**
- b) **diagnostic imaging mismatch** because of the chemical diversity between the contrast and radioactive agents

Radiopharmaceutical

kit to be injected

xx.09.. '. Esposito on behalf of collaboration network for METRICS (2018-2020) project proposal CSN5 INFN

An example: PET-MRI cardiac perfusion investigation

- **MRI** -> accomplished by injecting a **paramagnetic gadolinium** contrast agent
- **PET** -> evaluated by administration of β^+ emitter ⁸²Rb under the chemical form of Rb⁺ ion.
- Main Result: Radically different biological pathways
 - MRI -> passive diffusion through heart capillaries for Gd contrast agent
 - PET -> membrane channel transport for ⁸²Rb⁺, being Rb⁺ a biologic analog of K⁺, fundamental in the heart cells operation

Diagnostic content of resulting images is immeasurably different.

To achieve a genuine fusion between PET and MRI, the contrast and radioactive agents should be chemically identical !!!

.09.

I. Esposito on behalf of collaboration network for METRICS (2018-2020) project proposal CSN5 INFN

Does there exist any element/isotope having paramagnet. & nuclear properties for a combined PET/MRI?

It's always **very challenging** to find out a chemical compound that can behave at the same time as:

- a contrast agent -> shows paramagnetic properties
- having some radioactive isotopes with useful nuclear properties for PET imaging like ¹⁸F

DIA	PARA	FERRO
1. Diamagnetic substances are those substances which are feebly repelled by a magnet. Eg. Antimony, Bismuth, Copper, Gold, Silver, Quartz, Mercury, Alcohol, water, Hydrogen, Air, Argon, etc.	Paramagnetic substances are those substances which are feebly attracted by a magnet. Eg. Aluminium, Chromium, Alkali and Alkaline earth metals, Platinum, Oxygen, etc.	Ferromagnetic substances are those substances which are strongly attracted by a magnet. Eg. Iron, Cobalt, Nickel, Gadolinium, Dysprosium, etc.
2. When placed in magnetic field, the lines of force tend to avoid the substance.	The lines of force prefer to pass through the substance rather than air.	The lines of force tend to crowd into the specimen.
N	S N	

Comparison of Dia, Para and Ferro Magnetic materials:

- Paramagnetic and form compounds that are paramagnetic
- Paramagnetic in pure form
- Become paramagnetic when present in compound

J. Esposito on behalf of collaboration network for METRICS (2018-2020) project proposal CSN5 INFN

Does there exist any element/isotope having paramagnetic INFN & nuclear properties for a combined PET/MRI?

The only radionuclide in 1<Z<92 having main positron-emitting nuclear properties basically mimic ¹⁸F (i.e. average $E_{\beta_+} \sim 250$ keV and similar β^+ spectrum energy range) is ⁵²Mn only, that could be conveniently employed as PET tracer. ⁵¹Mn is an alternative radionuclide PET candidate, although with a higher-energy β^+ spectrum.

The transition element Mn has moreover stable isotopes (Mn²⁺) having useful paramagnetic properties to be used as MRI contrast agents.

Comment		veis	Click on	mas De a column	header to open t	he gui	de									
Comments Uncertainty for numeric values refers to the last digits of the value: 12.1 23 means 12.1 ± 2.3 Data from: ENSDF Angeli & Marinova AME2012 Definitions and Sources ?																
Nuclide	Energy [keV]	ர	T. Abund. [1/2 mole fract.]	T _{1/2} [s]	Deca B	y Modes R [%]	Isospin	и [ИN]	Q [barn]	R [fm]	(k	λ _β - ∌V]	Q _a [keV]		
¹⁸ F ₉	0.0	1+	109.77	'min <i>5</i>	6.59E3 3E0	ec β+	100	0				-444	4.5 <i>6</i>	-4415.2 <i>5</i>	radionuclide	T1/2
⁵² Mn ₂₇	0.0	6+	5.591	1 d <i>3</i>	4.83E5 <i>2.59E2</i>	ec β+	100			+0.50 7	3.6706 1	28 -23	77 5	-8654.5 <i>21</i>	Mn-52m	21.1 mir
Click on a Electro	lick on a nuclide symbol to show the decay schemaMn-52g5.59 days															
<e<sub>β+> [keV]</e<sub>	l _{β+} (ab [%]	s)	E _{EC} [keV]	l _{EC} (abs) [%]	Daughter leve [keV]	۱ J	Logft	Trans	ition ty	ype Co	mments	Parent		T _{1/2}	Mn-51	46.2 mii
249.8 <i>3</i>	96.73	4	(1655.5)	3.27 4	0	0+	3.5700 1	9				¹⁸ F9	109.7	77 min <i>5</i>		
	0.004		(1507.2)	61 4 6	2112 002 24	6+	5 500 <i>5</i>					52	5 501	1 d 2		

Mn-based dual-modality PET/MRI imaging: a new standard in diagnostic approach

- Mn compounds, having exactly the same chemical composition, can thus be prepared using paramagnetic and radioactive Mn isotopes for both MRI and PET agents (Mn²⁺/ ⁵²Mn²⁺)
- Manganese is moreover an element essential to living organisms, regulating metabolic activities of central nervous system.

ADVANTAGES

- A new type of unprecedented PET/MRI hybrid imaging characterized by a perfect matching between the chemical and biological properties of the two imaging probes may therefore be achieved.
- It has already been used preclinically as a potent MRI contrast agent for in-vivo MEMRI (Mn-٠ **Enhanced MRI**) /PET and *ex-vivo* (Autoradiography) neural imaging activity and neural stem cell tracking in rat brain. Importantly, this dual-modality manganese-based PET/MRI approach may be used in cell tracking in other anatomy(*).

DRAWBAKS

- As in itself free manganese is toxic, this fact has hindered the use of manganese MRI in clinical • investigations, so far.
- Positron emission tomography (PET) imaging of ⁵²MnCl₂ at tracer doses has the potential to allow similar MEMRI studies while providing quantitative results and avoiding toxic effects

•

(*) C. M. Lewis 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1)-Theranostics 2015, Vol. 5, Issue 3

Rat brain MEMRI

⁵²Mn-based PET/CT

8

Laboratori Nazionali di Legnaro

Main application fields of MEMRI/PET: a new window to monitor bio processes on a days-scale basis

- Mn interests comes from several important role it has in biology for mammals and in medicine
- Mn radioisotopes could easily be used for *in vivo* studies based on manganese as a radiotracer for antibodies, nanoparticles, etc. or as a means to image biodistribution of manganese cations Mn²⁺.
- Due to the longer ⁵²Mn T_{1/2} (5.6 day) than ¹⁸F labelled compounds also makes it useful for the study of all that biological processes and for radioimmuno PET applications that have similar time scales.

9

Laboratori Nazionali di I

METRICS (2018-2020) project proposal CSN5 INFN

10

l. Esposito on behalf of collaboration network for

Comparison with some already used positron-emitting radionuclides in NM

Currently ⁸⁹Zr and ⁶⁴Cu are the common radiometals of choice for labelling proteins and monoclonal antibody with a slow bio distribution kinetics. They might be easily replaced by ⁵²Mn compounds

⁵² Mn		⁸⁹ Zr and ⁶⁴ Cu
Higher β^+ branch (I _{β^+} = 29.4%) longer half-life (T _{1/2} = 5.6 d)	⁶⁴ Cu ⁸⁹ Zr	$\begin{array}{lll} \beta^{+} \mbox{ branch } & (I_{\beta^{+}} \ = 17.6\%) \\ \mbox{ half-life } & (T_{1/2} \ = 12.7 \ h) \\ \beta^{+} \mbox{ branch } & (I_{\beta^{+}} \ = 22.7\%) \\ \mbox{ half-life } & (T_{1/2} \ = 3.3 \ d) \end{array}$
lower mean energy <e<sub>β+> =241.6 keV PET superior resolution</e<sub>	⁶⁴ Cu ⁸⁹ Zr	<e<sub>β+> = 395.5 keV <e<sub>β+> = 278.2 keV</e<sub></e<sub>
Relatively easy and cheap production from ${}^{52}Cr(p,n)$; σ^{\sim} Ep=16 MeV (${}^{52}Cr$ 83.8 at% in Cr-nat)	⁶⁴ Cu ⁸⁹ Zr	⁶⁴ Ni(p,n) σ _{max} ~ 675mb Ep=~12 MeV (⁶⁴ Ni 0.926 at% in Ni-nat) ⁸⁹ Y(p,n) σ _{max} ~ 700mb, Ep=~16 MeV (⁸⁹ Y 100 at% in Ni-nat)
Easy and more stable aqueous chelation chemistry	hard lig	gands like oxalate are needed to keep ⁸⁹ Zr

cyclotron (40-10 MeV) e.g. SPES cyclotron working at the lowest energy range

Incident Energy (MeV)

09.

Main IP/RNP contaminations to be investigated

Other possible competing reactions have to be investigated in order to determine the final Isotopic (IP) and Radionuclidic (RNP) purity

METRICS (2018-2020) project proposal CSN5 INFN

201

INIVERSITÀ DI BOLOGNA

The METRICS (2018-2020) research project proposal

MAIN project GOALS:

- Investigate the best irradiation parameters and Quality control (QC) procedures in order to get an as pure as possible ⁵²Mn a) radionuclide aimed at the new dual-modality PET/MRI investigations using the same injected radionuclide/contrast agent.
- b) Design and construct proper targets able to sustain the related power levels for a production able to fulfill the needs of Veneto region Hospitals and nearby regions
- **Develop/optimize the proper radiochemistry** method to minimize chemical reagents c)

Research units taking part...

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

Ferrara Branch Padua Branch Milan Branch

UNIVERSITÀ

DEGLI STUD

DI MILANO

Policlinico S. Orsola-Malpighi

SERVIZIO SANITARIO REGIONALI

EMILIA-ROMAGNA

The METRICS (2018-2020) research project: timeline proposed

		Č
		b
J. Esposito on behalf of collaboration network for	METRICS (2018-2020) project proposal CSN5 INFN	XX U

Research units YEAR 2018 involved a) Design and construction of low power Cr-nat targets for experimental investigation LNL/FE following the know-how gained from APOTEMA/TECHNOSP past projects Early experiments on the ⁵²Mn/nat-Cr radiochemistry extraction process Fe c) Irradiation tests and spectrometry at a low-energy cyclotrons (Ep < 20 MeV), e.g. Sant'Orsola (BO), LNL-FE-MI Negrar (VR) Hospitals or at ARRONAX (Ep > 20 MeV) to test conditions near to new LNL cycl. d) Early studies on computational dosimetry with the OLIDA tool taking in to account the PD ^{5x}Mn and contaminant nuclides **Research units YEAR 2019** involved a) Progress and optimization about the ⁵²Mn/^{nat}Cr radiochemistry extraction/separation/purification FE process b) Theoretical/Experimental nuclear physics studies on alternative production routes LNL-MI (e.g. ⁵²Cr(d,2n)^{52m/g}Mn; ⁵⁶Fe(p,αn)^{52m/g}Mn; ⁵⁶Fe(d,α2n)^{52m/g}Mn; ⁵⁴Fe(p,3He) ^{52m/g}Mn; ⁵⁴Fe(d,α) ^{52m/g}Mn either with proton or deuteron beams c) Studies about the improvement on the beam parameters optimization, prompted by the refinement PD of dosimetry computational studies with OLINDA tool on human phantom modeling

The METRICS (2018-2020) research project: timeline proposed

xx.09.201 METRICS (2018-2020) project proposal CSN5 INFN l. Esposito on behalf of collaboration network for

Laboratori Nazionali di Legnaro

METRICS project INFN-LNL

Item	What is needed	Estimated cost K€
Optimization of the Cr-nat layer deposition on backing materials with different technique (e.g, High	Service by K4Sint for the preparation of samples with SPS technique	8.0
Intensity Vibrational Powder	Cr-nat powder material purchase	3.0
Plating- HIVIPP, Simple pellet pressing and sintering Spark	Gold foil for Cu target protecting layer	3.0
Plasma Sintering –SPS,)	Chemical products for Cr/Mn radiochemical separation	1.0
Construction of High Conductivity	High conductivity materials (Cu)	5.0
Targets	External mechanical work	6.0
Travels	Domestic travels Padua-Legnaro Padua-Ferrara, Padua- Bologna	2.0
	TOTAL	27.0

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

METRICS project INFN-Padua

Item	What is needed	Estimated cost K€
Construction of 2 <i>ad-hoc</i> phantoms for imaging main parameters	High quality resin purchase 3D printing	0.5
characterization (spatial	Construction materials for standard phantoms	0.5
uniformity etc.)	High spatial resolution phantom construction	4.0
at the of the (PET/SPECT/CT) Small animal scanner which will be located at the LARIM laboratory	Contrast/uniformity phantom construction	1.0
Travels	Domestic travels Padua-Legnaro	0.5
	TOTAL	6.5

METRICS project INFN-Ferrara

PLANNED ACTIVITIES for 2017 and budget quotation (11.5 K€)

Item	What is needed	Estimated cost K€
Early experiments on the ⁵² Mn/nat-Cr radiochemistry extraction process	Consumables: solvents, glassware, chemical products to optimize the radiochemistry method, Materials to asses the quality control of the extracted radionuclide Synthesis of the radiopharmaceutical	9.0
Radioactive transport service	Bologna-Ferrara, Bologna LNL routes	1.5
Travels	Domestic travels for meetings and experimental activity at the S. Orsola (Bologna) cyclotron	1.0
	TOTAL	11.5

METRICS project INFN-Milano

PLANNED ACTIVITIES for 2017 and budget quotation (26 K€)

ltem	What is needed	Estimated cost K€
Consumables	nat-Cr thin targets for the cross section measurements, Chemicals, glasswares	8
Radioactive transport service	Nantes-MI; Pavia-Milano routes	6
Travels	Domestic travels: Milano, Legnaro, Pavia, Bologna International travels: Milano-ARRONAX for irradiations (2/3)	8
Mantainace	Nitrogen; Radiochemical Lab.; Filters hoods	4
	TOTAL	26

METRICS project Distribuzione FTE partecipanti al progetto

xx.09.201

Summary overall budget request METRICS FY2018

Sezioni / Lab	Missioni	Consumo/ Altri consumo	Trasporti	Manutenzione	Inventario	apparati	Sp- servizi	Tot. per sez/lab	FTE previsto
LNL	2.0	12.0					14.0	28.0	3.5
Fe	1.0	9.0	1.5					11.5	3.1
Pd	0.5	1.0					5.0	6.5	1.4(1.6)
Mi	8.0	8.0	6.0	4.0				26.0	1.6
TOTALE	10.0	30.0	7.5	4.0			19.0	72.0	9.6(9.8)

30

METRICS (2018-2020) project proposal CSN5 INFN J. Esposito on behalf of collaboration network for

Additional slides

28/06/2017

J.Esposito, TECHN-OPS resear project proposal

